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Abstract

Building on the concept of LIDAR-RGB extrinsic calibration using simple box targets (Pusztai and Hajder, 2017), we propose a
low-cost and effective method for extrinsic calibration between a thermal camera and a LIDAR. Our approach utilizes a single,
inverted half-box target featuring a heated asymmetric circles grid on one of its planes, designed for high visibility in thermal
imagery. Thermal camera poses are estimated using OpenCV’s calibration toolbox, while LIDAR poses are computed by extracting
the three planar surfaces of the calibration target. The extrinsic transformation between the thermal camera and the LIDAR is
then determined using a cycle consistency constraint. We evaluate the method in terms of calibration accuracy and precision.
Additionally, the setup can be used to assess the time synchronization between the thermal and LIDAR data streams by visualizing
the projection errors on dynamic scene elements. Additional results can be found in the video at youtu.be/00DHZe4rVec. The
source code is available at github.com/SaxionMechatronics/CycleCameraliDARCalibration.

1. Introduction

Multi-sensor systems play a crucial role in a wide range of ap-

plications, including uncrewed systems and vehicles (UXS/UXV),

by providing complementary, multi-modal data. To enable re-
liable data fusion for downstream tasks, both intrinsic and ex-
trinsic calibration of the sensors is essential (Yeong et al., 2021).
Our research is motivated by firefighting scenarios in smoke-
filled environments, where an Unmanned Ground Vehicle (UGV)
equipped with a LiDAR and a thermal camera is used to create
3D maps of the fire incident to increase the situational aware-
ness of firefighters. The thermal imaging and LiDAR pointclouds
are combined to see through the smoke to capture the surround-
ing geometry. While this is the primary use case, the proposed
calibration method is general and can be applied across differ-
ent platforms, sensors and applications.

The essential idea in the proposed thermal-LiDAR extrinsic cal-
ibration method is to leverage the strength of each sensor: planar
surfaces serve as reliable features for LiDAR, while a pattern
target, designed to be clearly visible in thermal imagery, provides
robust features for the camera. This work is inspired by the
use of ordinary boxes to perform a low-cost LIDAR-RGB ex-
trinsic calibration (Pusztai and Hajder, 2017). However, unlike
RGB cameras, thermal cameras capture temperature differences
rather than visual features, making standard boxes often indis-
tinct in thermal imagery. To address this, we introduce a tem-
perature gradient using heating elements to form a clearly vis-
ible asymmetric circles grid in the thermal images. This pattern
is embedded on one face of an inverted box structure composed
of three planar surfaces.

Our contributions are:

1. The design of a low-cost calibration target for thermal-
LiDAR extrinsic calibration with clear plane boundaries
and guaranteeing a visible pattern at all times.

Figure 1. Sensor setup to be calibrated. A Velodyne VLP16
LiDAR with 16 channels and a FLIR Boson+ Industrial thermal
camera with a 95° horizontal field-of-view. The thermal camera

is placed a few centimeters to the left of the LIDAR’s x-axis.

The x-, y-, and z-axis are denoted by the red, green and blue

arrows respectively. Following the right hand rule, the thermal
camera’s x-axis is pointing towards the reader while the
LiDAR’s y-axis is pointing away.

2. The method for a suitable thermal-LiDAR calibration pro-
cedure requiring a single target and no training, where we
form a cycle consistency constraint between the camera
and the LiDAR from two distinct poses.

3. The calibration results to show the precision and accuracy,
followed by elaborative discussion.

Our sensor setup is displayed in Fig. 1. The paper is structured
as follows. Related work is reviewed in section 2, after which
we propose our calibration approach in section 3. Section 4
presents the evaluation of the results and a discussion of the
their limitations. Finally, this paper is concluded in section 5.
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2. Related work

Based on the surveyed literature, thermal-LiDAR extrinsic cal-
ibration methods may be categorized into two categories: target-
based techniques and targetless techniques. Target-based calib-
ration approaches rely on a known physical pattern and/or sur-
faces to reliably extract robust features in the different modalit-
ies. Targetless methods extract features from the natural scene,
making them more flexible and faster to implement. The quality
of the features is however dependent on the environment.

Target-based techniques rely on identifying corresponding fea-
tures in both camera and LiDAR data; however, this is partic-
ularly challenging with thermal cameras due to low resolution
and limited texture, and with LiDAR due to its sparse, texture-
less nature, making feature matching across modalities difficult.
Using a well-designed calibration target can help mitigate these
issues by providing distinct, high-contrast features that are re-
liably detectable in both sensor modalities. (Borrmann et al.,
2012) track the movement of a planar target to estimate the ex-
trinsic transformation between a LiDAR and a thermal camera.
The planar target is embedded with a symmetric circular pattern
created by 30 tiny incandescent light bulbs to compute the pose
of the target with respect to the thermal camera. The light bulbs
are detected by first creating a binary image based on a tem-
perature threshold. After applying a second binary filter that
removes blobs that are too small or too large, the final mask
should contain 30 distinct blobs. The planar target is detec-
ted in the LiDAR pointcloud using RANSAC plane extraction.
The location of the symmetric light bulb circular pattern is then
matched on the extracted 3D plane using Iterative Closest Point
(ICP) to obtain the 3D coordinates of the light bulb pattern. The
extrinsic transformation between the LiDAR and the thermal
camera is finally found by minimizing the reprojection error of
the light bulb pattern from LiDAR to thermal image. Similar to
(Borrmann et al., 2012), (Yuan et al., 2022) uses a symmetric
circular pattern as a target. To make the pattern visible in the
thermal images. The circles grid is however cut out of black
carbon fiber. Behind the carbon fiber plate is a thin heated sheet
of aluminium. The authors employ the Maximum Stable Ex-
tremal Regions (MSER) and arc-support ellipse fitting to detect
the pattern circles rather than OpenCV’s findCirclesGrid() as
they state that MSER is robust to the image noise in the low-
resolution thermal images. The target plane is extracted from
the LiDAR data using RANSAC and edge detection based on
depth discontinuities between the front carbon fiber plate and
the back aluminium plate. As in (Borrmann et al., 2012), the
3D location of the holes is then projected onto the detected tar-
get plane and the extrinsic parameters are estimated by min-
imizing the reprojection error from 3D LiDAR to 2D thermal
camera. (Zhang et al., 2018) demonstrates a two-phase target-
based approach to obtain the extrinsic transformation between
a LiDAR and a thermal camera by first estimating the extrinsic
parameters between the LIDAR and the RGB camera, and then
from the RGB camera to the thermal camera. The extrinsinc
transformation from the LiDAR to the RGB camera is obtained
from the KITTI Calibration Toolbox which is provided with
time-synchronized observations in both modalities of a collec-
tion of large chessboard patterns at different orientations inside
a empty room. Through stereo calibration using an asymmetric
circles grid, the extrinsinc transformation from the RGB camera
to the thermal camera is obtained. The calibration pattern vis-
ible in both image modalities is constructed using a heated plate
with a laser-cut asymmetric circles grid. The final extrinsic cal-
ibration from LiDAR to thermal camera is finally equal to the

transformation from LiDAR to RGB camera times the trans-
formation from RGB camera to thermal camera. (Zhang et al.,
2019) employs a heated plate with four large holes as a calibra-
tion target to estimate the extrinsic parameters between a sparse
LiDAR and a low-resolution thermal image. This approach is
an adaptation of (Guindel et al., 2017) for LiDAR-stereo RGB
extrinsic calibration. The 3D coordinates of the centers of the
four circles are first extracted as in (Guindel et al., 2017). The
3D coordinates of the four centers in the thermal camera frame
are obtained by first detecting the circles in a binary mask of
the thermal image. The homography matrix mapping the 3D
circle centers in world coordinates to 2D coordinates in the
thermal image is estimated. The obtained homography mat-
rix is then used to calculate the 3D coordinates of the centers
in the thermal camera frame. Finally, the extrinsic parameters
between the LiDAR and the thermal camera are estimated by
matching the pairs of four 3D circle centers as in (Guindel et al.,
2017). (Dalirani et al., 2023) created a large square calibration
target for RGB-thermal-LiDAR extrinsic calibration. The tar-
get has a checkerboard pattern including Aruco markers. Each
corner of the checkerboard is equipped with thermal resistors to
make them visible in the thermal images. The four corners of
the target plane are also marked with brighter thermal resistors.
The locations of all the resistors are obtained using blob detec-
tion. The edges of the target plane are obtained using RANSAC
line equation estimation and the location of the detected bright
resistors. Using RANSAC again, the target plane and its four
edges are extracted from the 3D LiDAR data. Corresponding
lines and plane are then matched in both modalities. The ini-
tial extrinsic rotation and translation are obtained by Singular
Value Decomposition (SVD) and by solving a linear system re-
spectively. The extrinsinc parameters are futher refined using
non-linear optimization by minimizing the point-to-plane and
point-to-line reprojection. The authors state that due to the size
of the calibration target, a single pair of LiDAR and thermal
data is sufficient to obtain a correct estimation of the extrinsinc
transformation. The accuracy can be further increased by using
multiple different poses.

Targetless approaches for thermal-LiDAR extrinsic calibration
have also been proposed. They rely on ground truth training
data (Mharolkar et al., 2022) or on environments with high
thermal contrasts (Yang et al., 2024, Fu et al., 2022). In (Mhar-
olkar et al., 2022), the estimation of the extrinsic transforma-
tion between a LIDAR and RGB camera, and between a LIDAR
and a thermal camera is performed online using a single pair of
LiDAR scan and thermal image through a deep-learning net-
work. The LiDAR scan is projected into a 2D image using
the thermal camera’s intrinsic matrix. Features are then extrac-
ted from both modalities with ResNet-34. Features are then
matched in a separate block of consecutive convolutional lay-
ers of increasing number of channels. The extrinsic rotation
(quaternion) and translation are finally estimated in parallel in
two regression blocks. The loss function used for training is the
weighted linear combination of the translational and rotation er-
ror between the estimated and ground truth extrinsic paramet-
ers. The approach is trained and validated on the KITTI360
dataset and the NTU Dataset using the provided extrinsic para-
meters as ground truth. (Fu et al., 2022) proposes a targetless
calibration approach to estimate the extrinsic transformations
between a LiDAR, a thermal camera and a stereo RGB camera.
First SIFT features are extracted and matched in the stereo pair
to obtain a sparse 3D pointcloud from the RGB stereo camera.
The extrinsic transformation between the LiDAR and the stereo
RGB camera are obtained by aligned both pointclouds through

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-2-W2-2025-181-2025 | © Author(s) 2025. CC BY 4.0 License. 182



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2/W2-2025
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10—12 September 2025, Espoo, Finland

Multiframe Iterative Closest Point (MFICP) algorithm. To ob-
tain features to estimate the extrinsic transformation between
the LiDAR and the thermal camera, edges are first extracted in
the thermal images using the Canny filter and in the LiDAR
pointcloud using depth discontinuities across scanning lines.
The extrinsinc transformation is then estimated by Reprojection
Edge Alignment Error (REAE), i.e. by minimizing the distance
of the points on the 3D edges projected to their closest edge
in the thermal image. (Yang et al., 2024) proposes a targetless
LiDAR-RGB and LiDAR-thermal calibration that focuses on
extracting and matching edges across the different modalities.
LiDAR edges are obtained by computing the intersection lines
of neighboring planes extracted from a dense pointcloud. The
dense pointcloud is obtained by accumulating and matching
scans from a mechanical LiDAR using the LiDAR-inertial odo-
metry algorithm Fast-LIO. Edges are extracted from the thermal
images by combining the first- and second-order derivatives of
the image. Edges from both modalities are then matched to-
gether through k-Nearest Neighbors (kNN) matching by pro-
jecting the LiDAR edges into the thermal image using an ini-
tial guess of the extrinsic transformation between the sensors.
The extrinsic transformation is then refined using Perspective
n-Lines optimization. The approach is validated both in simula-
tions and real-world data, using a single pair of LiDAR-thermal
data and multiple consecutive pairs.

‘When comparing various target-based thermal-LiDAR extrinsic
calibration methods, a common approach in (Yuan et al., 2022,
Zhang et al., 2018, Zhang et al., 2019) involves preheating the
element that produces contrast in the thermal image. However,
during data acquisition, this heated element gradually cools down,
causing the thermal pattern to become less distinct with re-
spect to the background over time. Additionally, all target-
based methods reviewed used a single target plane, with which
it is often challenging, especially with low-resolution LiDARs
like the Velodyne VLP16, to consistently capture all four edges
of the target surface in the pointcloud while simultaneously cov-
ering the entire thermal image frame. Achieving accurate ex-
trinsic calibration that generalizes across the full frame during
point cloud projection requires a large calibration target as in
(Dalirani et al., 2023) if only a single data pair is used for op-
timization. This, in turn, increases both the cost and complexity
of the calibration setup. The targetless approaches proposed by
(Fu et al., 2022, Yang et al., 2024) depend on naturally occur-
ring thermal gradients in the environment to extract robust edge
features that can also be detected by the LiDAR. However, in
practice, such conditions are difficult to achieve, particularly
in environments at room temperature. Furthermore, supervised
learning methods as in (Mharolkar et al., 2022) that aim to es-
timate the extrinsic transformation in real-time require ground
truth extrinsic values for training. These methods essentially
attempt to replicate, on-the-fly, the results typically obtained
through prior target-based calibration. This raises important
questions about the ability of supervised learning approaches
to generalize to previously unseen environments and to differ-
ent sensor configurations.

3. Calibration approach

The proposed approach, described in Fig. 2, relies on tracking
a calibration target in both the thermal and LiDAR modalities.
First the asymmetric circles grid is detected in the thermal im-
ages to obtain the thermal camera’s poses with respect to the
world frame. Secondly, the LIDAR world poses are estimated

Thermal camera
world poses

Perspective n-Paints
thermal images

Pattern

arientations Extrinsic calibration

3

k.

Plane identification
LIDAR scans

LiDAR
world poses

Figure 2. Flowchart of the proposed thermal-LiDAR extrinsinc
calibration approach

by detecting the three planes of the calibration target in the
scans. Here, the orientation of the calibration pattern in the
corresponding thermal images is used to help identify the three
planes. Lastly, corresponding thermal-LiDAR measurements
are randomly matched in pairs to compute relative pose trans-
formations and estimate the extrinsic transformation between
the two sensors by imposing a cycle consistency constraint. The
sensor setup to be calibrated including a FLIR Boson+ Indus-
trial thermal camera and a Velodyne VLP16 LiDAR is depicted
in Fig. 1.

The design of the calibration target is shown in Fig. 3. It is an
inverted half-box with one wall equipped with a heated asym-
metric circles grid as in Fig. 4b visible by the thermal cam-
era. We have used low-cost elements such as multiplex wooden
plates, foam and aluminium. A bang-bang controller with a
single thermo-couple in the center circle assures the calibration
pattern maintains high contrast through the entire calibration
process. The mat black coated aluminium pucks inserted in the
circles act as a low-pass filter preserving the heat as the heating
elements are switched on and off by the controller.

3.1 Optimization problem

Notation. Transformations between 6 degree-of-freedom poses
are expressed as 4 x 4 homogeneous transformation matrices,
as follows:

. TS): The pose of the LiDAR in the world frame at
timestamp ¢ expressed as a homogeneous transformation
from the LiDAR coordinate system L to some fixed world
frame W.

. Tg): The pose of the thermal camera in the world frame
at timestamp 7 expressed as a homogeneous transformation

Figure 3. Calibration target plane description and coordinate
system (following right-hand rule)
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from the thermal camera coordinate system C' to the same
world frame W.

. Tgij ). The relative transformation from the pose of the
LiDAR at timestamp ¢ to the pose of the LiDAR at

.. . —1 .
timestamp 7, defined as 7\ = (Téﬂ )) T,

° ng ). The relative transformation from the pose of the
thermal camera at timestamp ¢ to the pose of the thermal

.. N\ —1 .
camera at timestamp 7, defined as T = (Té”) TS,

° TLC : The extrinsic transformation, the homogeneous trans-
formation mapping from the LiDAR frame L to the
thermal camera frame C.

Cycle consistency constraint. We form the following product
of transformations, which ideally should equal to the identity
matrix /:

Ny = (T8)7 () w e o

This cycle is interpreted from right to left as:

1. Start in LiDAR frame L at timestamp ¢,
2. move to camera frame C' at timestamp ¢,
3. then to camera frame C' at timestamp j,
4. then to LIDAR frame L at timestamp j,

5. and back to LIDAR frame L at timestamp .

If T is perfectly consistent with a single rigid extrinsic trans-
formation between LiDAR and camera, then A;;) = I. We
assume that the mount is rigid, so T = const ¥ (4, 4). Thus,
it is noise or imperfect estimates that may cause A, ;) # I.

Least-squares objective. The cycle constraint is computed
over random pairs of timestamps (i,j). Enforcing the cycle
consistency constraint over randomly-assigned pairs instead of
consecutive timestamps ensures that there is sufficient differ-
ence in the two sensor poses. This is important to guarantee
successful convergence towards the correct solution as the rel-
ative poses are then further from identity matrix.

To enforce consistency across all pairs (i, 7), we penalize the
deviation of each A(;;y of Eq. 1 from I. A standard choice is to
use the matrix logarithm in SE(3), mapping A;;) to a 6D re-
sidual vector. Hence, we seek the extrinsic transformation TLC
by optimizing

min > |[Log(Acy)|I" @)

Lo (G9)

In practice, Log(A(i;)) € se(3) ~ R° in Eq. (2) measures how
far A(;;) is from the identity, thus ensuring the “cycle closure”
is satisfied in an optimal least-squares sense.

Available transformations. From the thermal camera tracking
of the heated asymmetric circles grid and Perspective n-Points
(PnP), we have estimates of the relative transformations Tg 7 ),
which describe the camera’s motion from the pose at timestamp
i to the pose at timestamp j. From the LiDAR plane-fitting (and

intersection point estimation), we likewise obtain estimates of
the relative transformations Téij ), describing the LiDAR’s mo-
tion between the poses of the same pair (4,5) of timestamps.
Both sets of transformations are derived in isolation, and hence
may not be mutually consistent.

(a)

()

Figure 4. (a) Calibration target used for the estimation of the
extrinsic parameters between the LiDAR and the thermal
camera. The target is comprised of three orthogonal planes,
where the front plane has a heated asymmetric circles grid
visible by the thermal camera. (b) The mat black coated
aluminium pucks of the asymmetric circles grid are heated using
temperature-controlled heating elements.

The extrinsic transformation is defined by six parameters which
are estimated by the optimization problem: three translations
components and three Rodrigues rotation vector components
(Valdenebro, 2016). The non-linear problem is solved using
the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) algorithm (Liu and Nocedal, 1989) using Scipy’s minim-
ize function and using JAX (Bradbury et al., 2018) to compute
the cost function gradient.

3.2 Relative transformation calculation of the thermal
camera

The relative transformations ng ) between pairs of thermal
camera world poses is computed as described in Algorithm 1.

For processing convenience and software compatibility
(OpenCV), the 16-bit raw thermal data is linearly mapped to
an 8-bit range to generate the thermal images, preserving only
the dynamic range from the 16-bit histogram. Then a binary
mask is generated, where the threshold is manually chosen such
that the circles are clearly distinguished from the foam around
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Algorithm 1 Thermal camera relative transformation es-
timation using the asymmetric circles grid

1: Input: Sequence of 8-bit thermal images
{6, I,...,In},camera matrix K, distortion coefficients d;

2: Output: Camera poses {T(C”}, relative transformations
(T

3: for each image I; in the sequence do

4: Mask; + BinaryThreshold(1;)

5: pattern_detected < DetectCircularGrid(Mask;)

6: if pattern_detected then

7: points2D, < SavePatternPoints(1;)

8: end if

9: end for

10: for each points2D, in detected pattern points do
11: T(Cf> < SolvePnP(points2D,, pattern3D)
12: end for

13: for each pair ¢, j in pairs do

14: T (1Y)~ 7Y

15: end for

the calibration pattern. The calibration pattern is then detected
in the obtained binary mask using OpenCV’s findCirclesGrid()
function.

The pose of the thermal camera with respect to the calibration
target is then computed using Perspective n-Points (PnP), where
the 3D coordinates of each circle in the pattern is expressed fol-
lowing the world coordinate system defined in Fig. 3.

The thermal camera’s instrinsic parameters were obtained prior
to the thermal-LiDAR calibration by utilizing the same calib-
ration board and pattern detection method as explained above.
The instrinsic parameters were estimated using OpenCV'’s cal-
ibrateCamera() function.

3.3 Relative transformation calculation of the LiDAR

The relative transformations Té” ) between LiDAR scans are
obtained as described in Algorithm 2.

Planes are initially detected in the LiDAR scan using iterat-
ive RANSAC plane fitting. We assume that the three planes
of the calibration target are always the closest planes to the
LiDAR sensor. Due to the nature of iterative RANSAC, points
near the intersections of planes are sometimes incorrectly as-
signed at the surface intersections. To mitigate this, the detected
plane boundaries are refined by reassigning each point associ-
ated with the calibration target to its nearest plane, based on the
obtained plane equations.

The three calibration planes are then identified using their nor-
mal vectors and the orientation of the calibration pattern, as de-
tected in the corresponding thermal image. The normal vectors
are adjusted to ensure they point toward the interior of the cal-
ibration structure (i.e., toward each other). We first assume that
the pattern has an angle < 45° in the corresponding thermal
image. In that case, the normal vector of plane 3 is pointing up-
wards and therefore has the highest z-component of the three.
Plane 1 and plane 2 are distinguished based on their normal
vectors’ y-components: under the assumption that the calibra-
tion target is oriented such that all three planes are visible to
the LiDAR, the y-component of the normal vector of plane 1 is
always less than or equal to zero, while that of plane 2 is greater
than or equal to zero. If the pattern angle in the thermal image is
> 45°, the plane indices are cyclically shifted downward by one
(i.e., plane 1 becomes plane 3, plane 2 becomes plane 1, etc.).
Outliers (due to wrongly detected planes) are automatically re-
moved by only accepting scans where the three detected planes
have a minimum number of points, the orthogonality between

the three intersection lines is within a certain threshold and the
obtained intersection point of the lines is within a certain dis-
tance from the mean location of the three planes.

Having identified the three planes, the intersection line fii2
between plane 1 and plane 2 as well as the intersection line
f13 between plane 1 and plane 3 are computed using the plane
equations. The intersection point P, also known as the origin
of the world coordinate frame, is obtained by finding the in-
tersection iy N fiyg. The orientation of the LiDAR in world
coordinates is then defined as in Eq. 3 following the right hand
rule:

w ~ ~ ~ ~ T
Ry = [fi2 X A3, M3, N12] 3)

where both i and 113 are 3 x 1 vectors. The LiDAR pose
T{" is then defined as in Eq. 4:

_ W _pw
T = {RL R} P] @

O1x3 1

Algorithm 2 LiDAR relative transformation calculations
via plane intersection detection

Input: Sequence of LiDAR scans {51, S2,...,Sn}
2: Output: Poses {Ty)}, relative transforms {T(L”>}
for each scan S; do

4: ‘P; < ExtractPlanes(S;)
Pl < FindThreeClosestPlanes(P;)

6: prefined . RefinePlaneBoundaries ()
pidentfied . TdentifyPlanes(Pri"¢ Fig. 3)
8: L,, + ComputePlanelntersections(/Pidenified)
x; + ComputelntersectionPoint(Pidentified)
10: T<Li) < ComputePoseFromPlanes(P*ified £, ;)
end for

12: for each pair ¢, j in pairs do
T, ()T
14: end for

4. Results

In our test setup, there are about N = 1003 inlier poses over
which the estimation is done. The number of poses is high, be-
cause the LiDAR captures data at 10 Hz frequency. The camera
has 30 Hz frequency, and the closest image in time is used for
matching against the LiDAR scan. The time difference between
the LiDAR scans and their matched thermal images is 8.5+ 4.8
milliseconds. The calibration dataset is acquired by holding the
calibration target at different distances up to five meters and dif-
ferent orientations in front of the sensor setup. Each posture of
the target is held still for about half a second before moving to
the next one. The entire dataset was recorded uninterrupted and
lasted less than ten minutes.

Orthogonality of the planes is estimated by computing the dot
product between the normal vectors of the LiDAR-measured
planes, and it is of the order of 1e~'? . Even if the plane nor-
mals are not orthogonal, an orthonormal basis can be calculated
using the normals, and the thermal pattern can be set to span e.g.
the yz-plane of that basis.

Detection examples of the calibration target are displayed in
Fig. 5. The difficulty in obtaining robust detections lies in cov-
ering the entire thermal frame over time while also always en-
suring that all three planes are visible in the LiDAR scans and
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Figure 5. Detection examples of the calibration target in the
thermal camera (left) and in the corresponding LiDAR
pointcloud (right). In the two upper rows, the pattern angle is
< 45° while it is > 45° in the bottom two rows.

that the calibration pattern is distinguishable in the thermal im-
ages. Being too close to the sensors, the planes are partially
outside of the LiDAR’s field-of-view or inside its dead-zone
and cannot be detected correctly. When being further away to
have more vertical freedom in the LiDAR, the risk of not being
able to detect the pattern as it becomes one big white blob in
the thermal image increases. Our tests showed that remaining
between 1.5 and 3.5 meters from the sensor setup is optimal.
Furthermore, preventing plane 1 with the calibration pattern
from being parallel with the thermal camera plane guarantees
that the corner of the inverted half-box is visible in the LIDAR
scans. The control temperature of the asymmetric circles grid
is set at 28°C. This temperature produced good contrast to re-
liably detect the asymmetric circles grid across the thermal im-
ages while limiting heat transfer to the surrounding foam.

Figure 6. Examples of LiDAR projections onto thermal images
using the estimated extrinsic calibration parameters.
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Figure 7. (a) Translational and (b) rotational error between TS)

and Tf) using the final extrinsinc parameters on the entire
calibration dataset.

The extrinsinc transformation 7' obtained for the sensor setup
in Fig. 1 is presented in Eq. (5) and standard error oo in

Eq. (6):

0.0396 —0.9987 0.0307  0.0367
jo _ [0.0386  —0.0292 —0.9988 —0.0716 5)
L 0.9985 0.0407  0.0374 —0.0834
0.0 0.0 0.0 1.0
3.9-107° 1.32-107% 2.7-107° 7.0-1073
_|29-107° 2.7-107® 1.3-107% 1.5.1073
97¢ T 12.0-107¢ 3.9.107° 2.9.107° 2.2.107°
0.0 0.0 0.0 0.0
(6)

The standard error oo in Eq. (6) quantifies the statistical un-
certainty, i.e. the precision or generalization of the solution over
all optimizer inputs. Each element in matrix TLC represents an
average of that element over IV cycles or time steps of Eq. (1).
Similarly, we compute the variances o? for each element, and
consequently obtain the standard errors opc =0 /VN.

Examples of the projected LiDAR pointcloud onto the corres-
ponding thermal image are displayed in Fig. 6.

To quantitatively evaluate the estimated extrinsic transforma-
tion TF from Eq. (5), Fig. 7 presents the translational and ro-
tational error between the approximated pose of the LiDAR

PN
in world frame 7" = ((Tf ) - (Tg)) 1) and the ob-

served pose T]Ei). The dashed red line in both graphs represents
the mean norm of the error in translation and the mean angle
error in rotation.

Limitations. In Fig. 7, the errors visible are not constant over
time. These follow not only from the pose estimation errors,
but also from the time synchronization error when 10 Hz
LiDAR scans are matched with the closest images coming from
30 Hz frequency. This error is only present when the platform
is moving. Hence, it does not affect our calibration method.
However, if the platform is used to capture data from motion,
the time synchronization should be done properly. This method
can thus also be used to check the time synchronization of the
system. Furthermore, obtaining input data to the optimizer with
a variety of different vertical positions is challenging due to
the 16 scanning lines only covering half of the thermal image.
Despite the best efforts to automatically remove outliers, some
still remain as can be seen by the large error peaks in Fig. 7.

5. Conclusion

We have presented a low-cost extrinsic calibration method for
thermal-LiDAR systems that employs a single calibration tar-
get: an inverted half-box with one face equipped with heating
elements to produce a distinct and constant calibration pattern
using thermal gradient. The three surfaces of the inverted half-
box provide clear boundaries for plane extraction in the LIDAR
data and to define a common world frame for both sensors. Not-
ably, the planar surfaces of the target do not require precise or-
thogonality. Instead, plane normals are estimated directly from
the LiDAR pointcloud, allowing for the construction of an or-
thonormal basis in which the thermal pattern can be aligned, for
example, with the xy-plane of the coordinate system. This flex-
ibility makes the approach particularly well-suited to low-cost
implementations. Additionally, by moving the target in front of
the sensor setup, the estimated extrinsic transformation is valid
across the entire image frame without requiring a large target or
multiple targets. These movements also enable our method to
be used for verification of temporal synchronization across the
thermal and LiDAR modalities. The results have been tested
and validated within a range of at least five meters from the
sensor setup, which is adequate for the intended indoor map-
ping application.

Future work will focus on enhancing the robustness of the
pose estimation pipelines. For the LIDAR pose estimation, this
involves improving plane segmentation, particularly in cases
where the plane is only partially within the LiDAR’s vertical
field-of-view, as well as refining the outlier rejection process
to eliminate incorrectly identified planes. In the case of the
thermal camera, pose estimation can be improved by extending
the effective range of the pattern detection algorithm, enabling
more reliable extraction of the calibration pattern. Combined,
these improvements should obtain a broader range of poses, es-
pecially in the vertical direction. Other work includes steps that
have already been proposed in the literature such as implement-
ing hardware time synchronization to reduce motion errors by
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introducing a common clock, and extend the extrinsic calibra-
tion method to allow for a RGB camera and Inertial Measure-
ment Unit (IMU) to be added into the sensor setup.
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