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Abstract

Lidar Odometry (LO) is crucial for autonomous navigation, forming the foundation for simultaneous localization and mapping, and
providing essential feedback for control systems. Adverse weather conditions, however, introduce false readings, missing echoes,
and noise to lidar measurements, severely degrading point cloud quality and compromising LO effectiveness. This study proposes
Fast Point Ranking (FPR), a technique that effectively minimizes the impact of adverse weather effects during registration and
map denoising via a robust rank-based point cloud voxelization. Experiments on the real-world KITTI-360 and the novel, openly
shared Adverse-Weather-KITTI-360 dataset demonstrate that FPR significantly enhances localization accuracy in adverse weather,
providing up to 10 m smaller root mean square errors in positioning. Furthermore, FPR shows increased resilience to adverse
weather, maintaining consistent localization accuracy despite the weather conditions.

1. Introduction

Lidar Odometry (LO) is an essential technology for any auto-
nomous robot, drone, or vehicle in various outdoor environ-
ments, serving as a foundation for Simultaneous Localization
and Mapping (SLAM), and providing crucial feedback for con-
trol systems. Current LO methods primarily depend on vari-
ants of Iterative Closest Point (ICP) (Censi, 2008} [Vizzo et al.,|
2023)) or Normal Distributions Transform (NDT)
2009)), with differences mainly in their cost functions. However,
the performance of these methods is compromised by adverse
weather conditions, characterized by data sparsity and outlier
measurements induced by fog, rain, or snowfall. The outlier
points can distort the voxel mean in point cloud voxelization or
be mistakenly selected for registration, while valid points may
be discarded.

The challenge of outliers is commonly addressed by applying
robust kernel functions (Kim and Scott, 2012). However, when
outliers are abundant, this approach alone may prove insuffi-
cient. Traditional methods for scan pre-cleaning, such as Stat-
istical Outlier Removal (SOR), Radius Outlier Removal (ROR),
and Dynamic Radius Outlier Removal (DROR)
[2022), filter out incorrect measurements based on local point
density. Additionally, learning-based methods (Seppénen et al.]
2022} Heinzler et al., 2020 [Charron et al., 2018] [Seppénen ef
al., 2023), perform segmentation or multi-echo filtering for out-
liers. However, these techniques have limitations, as they may
remove valid data points or fail to eliminate outliers completely
due to their reliance on threshold parameters or binary classi-
fication of points.

Figure 1. Fast Point Ranking (FPR): The foggy point cloud (a)
(coloured by the z-axis) is projected on the cylindrical image (b)

In this study, we present Fast Point Ranking (FPR), an ex-
tension of the KISS-ICP framework (Vizzo et al., 2023), de-

signed to improve LiDAR odometry (LO) robustness in ad-
verse weather conditions. Unlike traditional methods that rely
on pre-cleaning scans, FPR directly addresses weather-induced
noise during the voxelization stage by ranking points based on
neighborhood density and range consistency in a cylindrical
range image representation. We hypothesize that higher-ranked

for the fast nearest neighbour search. Next, the point ranking is
computed and displayed on (c) (coloured by the rank). Red
pixels on the cylindrical image indicate missing points or points
with low ranks.
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points are less likely to originate from adverse weather effects
(see Fig. [T) and are more likely to have valid data associations
with the map. This ranking is then used to perform robust scan
voxelization by selecting the best-ranked point in each voxel,
leading to improved LO performance. Additionally, we ap-
ply the same ranking strategy for map denoising, updating the
map only with top-ranked points to reduce the integration of
weather-corrupted measurements. We evaluate our method on
the KITTI-360 (Liao et al., 2022) and Adverse-Weather-KITTI-
360 (Vezeteu, 2024)) datasets, where adverse weather conditions
(fog, rain, and snowfall) are simulated using point-wise aug-
mentations. Results show that FPR enhances localization ac-
curacy under various weather conditions compared to the state-
of-the-art KISS-ICP baseline. In this work, we address the fol-
lowing experimental research questions:

e How does LO perform under adverse weather conditions
using Adverse-Weather-KITTI-360 (Vezeteu, 2024) and
KITTI-360 (Liao et al., 2022)) datasets?

e What are the accuracy and robustness of plain KISS-
ICP and KISS-ICP with FPR voxelization in challenging
weather scenarios?

Our main contributions are:

e A simple and efficient rank-based scan voxelization that
serves both LO and map denoising in adverse weather
scenarios. By selecting the most suitable point from each
voxel, we demonstrate a reduction of the adverse weather
impact.

e The proposed method does not require any scan cleaning
for LO to work. It avoids the use of weather-dependent
methods, parameters, or thresholds for cleaning the point
cloud prior to the registration.

e We extensively test the proposed method with a novel,
openly shared Adverse-Weather-KITTI-360 dataset (Vez-
eteu, 2024) that provides point clouds attenuated by simu-
lated fog, rain, and snowfall.

e We share an open-source implementation on GitHub

The remaining of this paper is organised as follows: we review
the relevant literature in Section[2]and present the key compon-
ents of the system in Section [3] The experimental setup and
results are described in Section[]and the discussions in Section
B] Finally, Section [6] concludes the paper.

2. Related Work

In this section, we review key lidar odometry (LO) and point
cloud cleaning methods, focusing on the most relevant ap-
proaches.

2.1 Lidar odometry

LO is an extensively explored topic. It aims to compute the tra-
jectory of a mobile sensor by sequentially aligning ego-centric
point clouds (Vizzo et al., 2023)). Most scan registration meth-
ods, like variants of Iterative Closest Point (ICP) (Censi, 2008))
(e.g., LOAM (Zhang and Singh, 2014), F-LOAM (Wang et al.,

! https://github.com/eugeniul994/FPR

2021), LegoLOAM (Shan and Englot, 2018), G-ICP (Kurama-
chi et al., 2015)), use point-to-point, point-to-line, or point-to-
plane cost functions to estimate the alignment. Alternatively,
methods such as NDT (Magnusson, 2009) adopt a probabilistic
approach and minimise a point-to-distribution cost function. To
achieve computational efficiency or enable real-time processing
of large point clouds, techniques such as voxelization or down-
sampling are frequently applied. A common approach is voxel-
mean, where an average of points within a voxel is computed.
Another method involves keeping only K points per voxel and
discarding the rest.

Choosing the best LO method hinges on the particular prob-
lem, as these methods are quite similar and highly dependent on
their parameters and data quality. Also, these techniques com-
monly encounter the same challenges with sparse point clouds,
especially in adverse weather conditions like fog, rain, or snow-
fall, which attenuate sensor signals, leading to data loss and
the introduction of outliers. The Keep It Small and Simple
ICP (KISS-ICP) (Vizzo et al., 2023) developed an adaptive
threshold for point correspondences and employed a robust ker-
nel on a point-to-point cost function to mitigate outliers. How-
ever, it uses the first point from each voxel for voxelization,
which can result in outlier points being selected for registration
and map update. We believe that while employing robust ker-
nels on cost functions helps mitigate outliers, additional scan
preprocessing or cleaning remains necessary.

2.2 Map denoising

Classical point cloud cleaning methods typically involve filter-
ing low-density points, like Statistical Outlier Removal (SOR)
and Radius Outlier Removal (ROR), which use a local point
density threshold. However, these methods struggle with vary-
ing density, often discarding points from distant areas. To solve
this, Dynamic Radius Outlier Removal (DROR) (Prio et al.,
2022)), adapts the threshold based on point range. Low-Intensity
Outlier Removal (LIOR) (Park et al., 2020) considers intens-
ity, preserving points with low intensity and high density. A
fusion of DROR and LIOR was proposed in Dynamic Dis-
tance—Intensity Outlier Removal (DDIOR) (Xu et al., 2020),
to achieve better performance. A common drawback of these
methods is their slowdown with large point clouds due to reli-
ance on k-d tree structures for nearest-neighbour (NN) searches.

In contrast, learning-based approaches perform point cloud seg-
mentation to filter weather-induced outliers. Recent advance-
ments like WeatherNet (Heinzler et al., 2020) and 4DenoiseNet
(Seppénen et al., 2022)) accurately segment fog and rain clutter.
(Seppénen et al., 2023) implements a multi-echo approach to
denoise point clouds in challenging weather conditions. Rather
than selecting points from the strongest echo, their model util-
izes points from alternative echoes, which are not present in
conventional strongest echo point clouds. While providing
promising results, these networks require extensive labelled
data, memory, and computational power due to numerous train-
able parameters. Additionally, they often rely on graphics pro-
cessing units (GPUs) for online computation and require re-
training.

On the contrary, our method operates efficiently without requir-
ing a GPU or powerful hardware, it uses cylindrical range im-
ages for NN searches, eliminating the need for k-d trees. Also,
rather than filtering data based on a density threshold, we pick
the most suitable points from each voxel according to their
rank. This approach prioritizes the selection of points with the
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highest rank, allowing even those attenuated by adverse weather
to be considered for registration when no alternatives are avail-
able. Subsequently, we update the map with the highest rank
points. Thus, our method serves a dual purpose: selecting op-
timal points for registration and cleaning the map, as outliers
typically exhibit smaller rankings.

To conclude, the FPR method does not filter out points during
the LO phase. Instead, it focuses on selecting the most suitable
points for registration. Points are filtered only in the map
denoising phase, as this filtering depends on a threshold that
requires tuning. By performing this filtering after registration,
we avoid the risk of inlier points being filtered out due to
inaccurate or unknown threshold parameters. Therefore, in
our experiments, we compare our method with the KISS-ICP
algorithm and do not apply any density-based scan cleaning
methods discussed in the map denoising section of the literature
review.

3. Method

This work introduces a rank-based scan voxelization method to
mitigate the impact of adverse weather conditions (fog, rain,
and snowfall) on lidar odometry and mapping. The core idea
is to assign a reliability rank to each point based on the range
deviation of its local neighbors in the cylindrical range image.
Points with higher ranks are considered more reliable for odo-
metry estimation.

Within a local neighborhood, the point with the highest rank is
more likely to have valid correspondences in the map due to its
association with higher local point density. In contrast, noise
measurements, often caused by adverse weather, tend to exhibit
low point density and yield lower ranks. This behavior is shown

in Figl[T]

The process begins by projecting the lidar point cloud into
cylindrical range image space, enabling efficient approximation
of nearest neighbors. Then, each point is assigned a rank,
which is used during voxelization to select the most reliable
representative point from each voxel. The following sections
provide a detailed explanation of each step.

3.1 Cylindrical range image projection

The range image projection parameters are determined using
the sensor’s specifications (angular resolution A¢ and the num-
ber of rings/channels). The pixel coordinates of a projected
point p are computed as follows

u = ring,
1
{V:LAQ)N (1

where u and v are the row and column values, ¢ is the point’s
azimuth angle, and | -] rounds towards the nearest integer. Since
the cylindrical projection is used only for rank computation, no
point cloud data used in the later processing is lost nor rounded.
Unlike traditional or spherical range image projections, the
cylindrical range image is less sparse, as each point’s row index
is directly taken from the lidar point ring rather than inferred
from its elevation angle. See Fig. [Tp for a visual representation
of a cylindrical range image.

3.2 Fast Point Ranking method
For each 3D point p mapped to (u,v) range image coordinates,

we consider the surrounding neighbourhood within a 5x5 kernel
centered at (u,v) with

Nsys (M7V) = {(ulvvl)

u—2<u <u+2
P . 2
v=—2<Vv <v+2

A 5x5 kernel provides enough neighborhood context for rank
computation without losing spatial relationships. Larger ker-
nels capture more context but increase the number of neighbors
and computational cost, making 5x5 a balanced choice. Next,
inspired by the Gaussian function, we compute the rank of the
Jjth point as

1N ) ,
Ri=(1+5Ye o <1+ K ) 3)
Ni:l T'max

where r; is the range of the jth point and N is the number of
non-empty neighbours (pixels with at least 1 projected point)
with N’ < N, where N = 25 is the total number of neighbouring
pixels. For weighting, we assume a zero-mean Gaussian distri-
bution with a standard deviation, ¢ = 1 m. A higher ranking
indicates more non-empty neighbours (N') and smaller differ-
ences in their range values. Due to the sparsity of distant points,
we weight them using a normalized range factor (r;/ruq) with
Tmax = 100 m. Without this weighting, closer points, having
higher density, would naturally receive higher ranks and be pri-
oritized during voxelization. Since both terms are below 1, we
have to add 1 to both sides to preserve the intended ranking
order and avoid the geometric decay.

In the scan voxelization phase, we utilize the rank values asso-
ciated with all points. As outlined in Algorithm |1} after com-
puting the FPR for the point cloud, we identify the voxel corres-
ponding to each point and retain only the highest-ranked point
per voxel. Unlike selecting the first, middle, or mean point, this
approach prioritizes points less affected by adverse conditions.
In cases where multiple points share the highest rank, the first
occurrence is selected.

Algorithm 1 Fast Point Ranking Voxelization

Input: 3D point cloud P, voxel leaf size s
Output: Voxelized point cloud
Compute the range image for P
Compute FPR for each point using
for point p € P do

Find the corresponding voxel V

if point in V has a smaller rank then

Set voxel centroid V < p

end if

end for

4. Experiments
4.1 Experimental Setup

We utilized the KITTI-360 dataset (Liao et al., 2022)) as a good
weather reference, leveraging its extensive driving distance of
over 70 km (see Fig. [2), which represents a significant ad-
vancement over its predecessor, KITTI (Geiger et al., 2012).
The dataset includes 10 Hz point cloud scans with (x, y, 2)
coordinates and intensity acquired with the Velodyne HDL-
64 sensor, which has 64 channels and an angular resolution,
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Figure 2. Estimated trajectories on the Adverse-Weather-KITTI-360 dataset, using good-weather sequences as a reference. This
visualization highlights the accumulated drift over long-term driving. Note: KITTI-360 does not provide sequences 01 and 08.

A¢ = 0.2°. The KITTI-360 dataset includes high-accuracy
reference poses, which are measured using position sensors
combined with visual features (Liao et al., 2022). The Ve-
lodyne data comes in an ordered format, allowing us to infer
the ring/channel field (see the shared example code in

for details).

The KITTI-360 dataset provides good weather measurements,
while some of the existing datasets like the Seeing Through
Fog (STF) (Bijelic et al., 2020) include fog, snowfall, and
rain but lack ground truth positioning for evaluating LO. The
well-known Canadian Adverse Driving Conditions (CADC)
(Pitropov et al., 2021) and Winter Adverse Driving dataset

(WADS) (Kurup and Bos, 2021)) datasets primarily concentrate
on snowfall for 3D object detection and contain sequences that

are too short, making them unsuitable for LO evaluation. The
novel SnowyKITTI dataset (Seppénen et al., 2022) augments
the KITTI scans (Geiger et al., 2012) with simulated snow-
fall. However, it lacks the point ring information, which can-
not be inferred after the augmentation process. To evaluate
our method, we applied point-wise augmentation techniques

to simulate fog (Hahner et al., 2021), snowfall
P2022), and rain (Kilic et al, 2021) on the KITTI-360 data-

set. We generated long-term LiDAR driving sequences un-
der adverse weather conditions, incorporating (X, y, z, intens-
ity, ring/channel) data, following the structure of the Adverse-

Weather-KITTI-360 dataset introduced in (Vezeteu, 2024).

Fog (Hahner et al., 2021) models lidar pulse transmission by
modifying the impulse response of the optical channel, which
converts clear-weather point clouds to foggy counterparts. Rain
has a physics-based approach that uses a
hybrid Monte Carlo method to simulate rain effects on lidar
point clouds by placing large particles randomly and calculat-
ing scattering efficiencies from Mie scattering theory
[2012] [Kilic et al., 202T)) given the rain rate and lidar paramet-
ers. The snowfall (Hahner et al., 2022) affects lidar data by
sampling snow particles and adding the ground wetness effect.
Fig. [B| provides illustrative examples of each weather scenario.
The augmented adverse weather on point clouds appears real-
istic, even though it’s simulated. Since we have identical scans
under different weather conditions, the results are directly com-
parable.

We observe that adverse weather conditions cause signal oc-
clusion and introduce false measurements, especially near the

sensor and in the direction of movement, leading to the loss
of long-distance points. While most near-sensor noise can be
filtered using a minimum range threshold (e.g., in rain), de-
termining an optimal threshold is challenging. Additionally, as
shown in Fig.EH, snowfall attenuates most measurements, mak-
ing it difficult to distinguish valid points from those that should
be removed, limiting the effectiveness of traditional cleaning
methods.

Most traditional lidar odometry and mapping techniques are
model-based algorithms that require parameter adjustment for

a) Original

il
e F

¢) Rainy

b) Foggy

d) Snowfall

Figure 3. A demonstration of the KITTI-360 scan, showcasing
various weather conditions: a) Original scan plotted by
ring/channel field, b) Foggy weather, c) Rainy conditions, and
d) Snowfall. The scans were not subjected to min-max range
filtering. The red points indicate data affected by adverse
weather conditions or attenuated scan points. The grey points
are original measurements that were not affected by adverse
weather. The coloring of gray/red is based on metadata
produced by the noise simulation methods and included in the
dataset as labels. This visualization emphasizes how points
closer to the sensor are more attenuated by adverse weather,
while points at longer distances are often lost.
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Absolute error (f,p5[m] / rps[deg]) Relative error (f.e;[%] / rye1[%))
Mean Median | Std |  RMSE Mean | Median | Std | RMSE
KITTI-360
KISS-ICP  13.63/4.11 | 10.43/3.81 | 10.27/2.10 | 17.06/4.62 | 1.46/.70 | 1.07/.54 | 1.64/.72 | 2.20/1.00
FPR 11.26/3.26 | 8.90/2.93 8.67/1.78 | 14.21/3.71 | 1.39/.69 | 1.01/.51 | 1.62/.73 | 2.14/1.00
KITTI-360 with simulated fog
KISS-ICP  13.13/3.90 | 9.90/3.45 10.66/2.13 | 16.91/4.45 | 1.56/.71 | 1.08/.55 | 2.08/.72 | 2.60/1.02
FPR 10.71/3.32 | 7.92/2.96 9.32/1.88 | 14.20/3.82 | 1.44/.69 | 1.02/.51 | 1.73/.73 | 2.25/1.00
KITTI-360 with simulated rain
KISS-ICP  24.45/6.26 | 17.49/5.39 | 20.98/3.58 | 32.22/7.21 | 1.75/.83 | 1.32/.71 | 1.77/.71 | 2.49/1.09
FPR 11.11/3.61 | 8.93/3.24 8.24/190 | 13.83/4.08 | 1.41/.71 | 1.05/.54 | 1.61/.72 | 2.14/1.01
KITTI-360 with simulated snowfall
KISS-ICP  15.07/3.93 | 13.01/3.49 | 10.78/2.24 | 1854/4.58 | 1.59/.66 | 1.09/.49 | 2.22/.71 2.73/ .98
FPR 11.48/3.66 | 8.29/3.27 9.31/1.96 1478 /415 | 1.42/.67 | 1.04/ .49 | 1.63/.72 | 2.17/.98

Table 1. The absolute and relative trajectory error statistics w.r.t. translation [m] and rotation [deg] of the KITTI-360 dataset for each
weather condition shared in Adverse-Weather-KITTI-360. Bold indicates the best result (smallest error). The table compares the
output of KISS-ICP with the proposed Fast Point Ranking (FPR) modification.

various data types and scenarios. In contrast, the KISS—ICl:ﬂ
(Vizzo et al., 2023) method stands out for its ability to perform
effectively across different sensor data and scenarios with the
same set of parameters. Consequently, in this study, we com-
pared our method against the state-of-the-art KISS-ICP (Vizzo
et al., 2023), modifying only the point sampling step while
keeping the rest of the pipeline unchanged. Specifically, it ap-
plies a double voxelization strategy: a voxel leaf size of 1.5 m
is used for selecting points for registration, while a finer leaf
size of 0.5 m is used for updating the map. During the voxel-
ization phase, KISS-ICP selects the first point from each voxel
and discards the rest. In contrast, we select the highest-ranked
point from each voxel, ensuring more robust data association
and improved LO performance. We chose KISS-ICP (Vizzo et
al., 2023) as our baseline for several reasons. First, it is the cur-
rent state-of-the-art, demonstrating superior performance com-
pared to other LO methods. Second, its modular and open-
source design makes it straightforward to integrate our ranking-

2 nttps://github.com/PRBonn/kiss-icp

a) Point cloud 1

b) Point cloud 2

Figure 4. Two consecutive point clouds from sequence 10 of
the Adverse-Weather-KITTI-360 dataset coloured by FPR
values. (a) A snow-affected point cloud colored by FPR values.
(b) The same scene after 0.1 seconds of motion, from a slightly
different viewpoint, showing the stability of FPR values. The
enlarged circle in b) highlights FPR values computed for traffic
poles and tree trunks.

based voxelization without altering the core algorithm. In the
upcoming Results section, ”KISS-ICP” denotes the original al-
gorithm, while "FPR” represents our modified version of KISS-
ICP. Therefore, we investigate the impact of rank-based voxel-
ization on KISS-ICP.

The scan pre-cleaning methods discussed in the literature re-
view, such as SOR, ROR, LIOR (Park et al., 2020), DROR
(Prio et al., 2022), DDIOR (Xu et al., 2020), WeatherNet (Hein-
zler et al., 2020), and 4DenoiseNet (Seppinen et al., 2022), aim
to remove adverse-weather-induced noise but require parameter
tuning, which may over-filter valid points or retain outliers de-
pending on weather conditions. In contrast, our approach is
not a pre-cleaning method but a ranking-based subsampling
strategy designed for LO. While it can be extended for map
cleaning, its primary focus is on selecting the most reliable
points for LO voxelization without directly filtering the scan.
Since our method fundamentally differs from pre-cleaning ap-
proaches and does not require removing points before LO, we
do not evaluate these methods in our experiments.

The estimated localization was evaluated based on absolute
(ATE) and relative trajectory errors (RTE) w.r.t. rotation and
translation (Grupp, 2017). For ATE, the trajectories were first
aligned. As presented in (Vizzo et al., 2023), relative errors
were calculated across all trajectory segments ranging from 100
m to 800 m in size.

4.2 Results

Table E] presents averaged statistics (mean, median, standard
deviation, and root mean square error (RMSE)) on absolute
and relative trajectory errors across all scenarios of the KITTI-
360 dataset under different weather conditions. Comparisons
are made between trajectories generated by KISS-ICP and FPR
methods. Overall, FPR demonstrates superior trajectory accur-
acy. The improvement in translation by using FPR for each
dataset scenario is illustrated in Fig.[5] with subplots depicting
(a) absolute and (b) relative RMSE differences between KISS-
ICP and FPR methods.

Notably, FPR significantly enhances on the absolute scale
(Fig. Bh), particularly in rainy conditions, showing an approx-
imate average translation improvement of 10 m. In contrast,
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the improvement is around 3 m in other weather conditions.
The most significant ATE improvement of approximately 50 m
is observed in raining scenario 07. Also, our method exhibits
inferior performance in snowfall scenario 07, yet it surpasses
the original method in all other cases. On the relative scale
(Fig.[Bb), the maximum improvement of over 1.5 % is observed
in snowfall scenario 10.

The relative errors (Table ED show that KISS-ICP provides an
average 1.46 % translation error, while our proposal yields 1.39
%, almost an insignificant 0.07 % improvement. However,
there’s a noticeable average relative translation improvement
for fog (0.12 %), rain (0.34 %), and snowfall (0.17 %). Ad-
ditionally, our method consistently yielded similar relative er-
rors of around 1.4 % regardless of the weather conditions. This
highlights its improved invariance to adverse weather condi-
tions.

Our method outperformed the original in most error metrics and
across all weather conditions, with one exception. Specific-
ally, we observed slightly inferior results on relative rotation in
snowy weather, where the original method exhibited a slightly
lower mean error by 0.01 degrees (Table [I] mean relative ro-
tation). A possible reason could be that point cloud sparsity
induces a lower rank for distant points. Consequently, the al-
gorithm may pick closer points for registration, discarding dis-
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Figure 5. The absolute (a) and relative (b) RMSE differences
calculated for each weather condition on each
Adverse-Weather-KITTI-360 (Vezeteu, 2024) sequence. The
values represent the RMSE reduction when comparing the
proposed FPR method to KISS-ICP.

tant points that might be better for estimating rotation paramet-
ers. Nonetheless, our approach excelled in all other scenarios,
highlighting its robustness in challenging weather conditions.

In addition to improving the positioning accuracy by selecting
the most suitable point from a voxel, the FPR can be used to
clean the collected data after registration. An example of the
accumulated point cloud is depicted in Fig. m (a) shows all
accumulated data colored with the rank R in @, and (b) shows
the result when 10% of the lowest ranked points are removed.
We can see that weather-induced measurements create a cloud
of outliers around the sensor trajectory, particularly in open
areas. Our method effectively gives these points a low rank,
and they can be filtered out.

The extra time required to use FPR is minimal. It scans the
points once for cylindrical projection O(n) and iterates again
to compute ranks O(n). Thus, the overall time complexity is
O(2n), indicating efficient, linear scaling with the number of
points.

As shown in Fig. @ the FPR metric effectively mirrors the
actual adverse weather-induced noise in the point cloud. The
points affected by adverse weather have lower rank values,
which have a smaller likelihood of being selected for registra-
tion and map updates. This demonstrates the FPR’s ability to
identify and appropriately down-weight the impact of adverse
weather induced points.

5. Discussion

Integrating FPR during scan voxelization improves LO per-
formance, especially under adverse weather conditions (fog,
rain, snow), by enhancing both rotational and translational ac-
curacy. While performance gains are evident in good weather,
the improvements are more significant in noisy, weather-degraded
scans, showcasing the method’s robustness. Our analysis shows
that weather-affected points tend to receive lower FPR scores,
making them less likely to influence scan registration or map
updates. Unlike prior work focusing on pre-cleaning, our res-
ults highlight the benefit of precise scan voxelization for robust
registration.

Given Eq.(3) and Fig[l] vertical structures (e.g., walls) receive
higher ranks than the ground due to lidar sampling density.
Although small features like poles may have lower ranks, this
poses no issue since ranking is done locally within each voxel.
Fig. E|further shows FPR stability across consecutive scans and
highlights values for poles and tree trunks.

We validated our method using a newly released Adverse-
Weather-KITTI-360 dataset (Vezeteu, 2024), created by sim-
ulating fog, rain, and snow on KITTI-360 (Liao et al., 2022).
This allows controlled, repeatable comparisons of localization
accuracy across weather types using high-quality reference tra-
jectories (see Table[T] Fig.[5). Future work should extend this
evaluation to real adverse conditions.

One limitation is that the simulations assume motion-compensated
scans, while noise is added to raw data, compensation is applied
later using a constant-velocity model. We believe this absorbs
most motion distortion, but the exact impact was not analyzed.

Lastly, while our approach depends on ring/channel info for cyl-
indrical projection, extending it to non-rotating LiDARs would
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b)

Figure 6. The illustration of the FPR metric versus the actual
adverse weather labels. a) An example of a point cloud affected
by fog, sourced from the Adverse-Weather-KITTI-360
[ 2024) dataset trajectory 03. The points are coloured by labels:
red represents fog-induced noise, and grey denotes actual
measurements. b) The same point cloud coloured by FPR values.

require adaptations. For rotating LiDARs, users may tune the
FPR neighborhood size based on sensor specs. Future work
could also explore using FPR for weighted voxel means rather
than selecting a single point per voxel.

6. Conclusion

In this paper, we proposed a novel approach, Fast Point Rank-
ing (FPR), that leverages the cylindrical range image view of
a scan and computes a rank for each point based on the num-
ber of neighbours and their range discrepancy. Moreover, we
introduced a novel rank-based point cloud voxelization method
for robust lidar odometry (LO) and map denoising in adverse
weather conditions. The method employs a simple yet effect-
ive strategy, assigning a rank to each point and selecting the
optimal point from each voxel in the scan voxelization phase.
Additionally, the ranks can be utilized to remove noisy points

Figure 7. A demonstration of scan accumulation showcasing the
initial 100 scans from sequence 02 of the foggy (see Fig.[3b)
Adverse-Weather-KITTI-360 dataset. a)
Depiction of KISS-ICP output plotted by point rank value, b)
The same point cloud with 10% lowest ranked points dropped
out. The red line denotes the sensor trajectory. The red and
orange points around the sensor trajectory in a) are the
fog-induced range measurements.

and to enhance the map’s quality.

The experimental results with KITTI-360 (Liao et al., 2022) and
Adverse-Weather-KITTI-360 (Vezeteu, 2024) datasets demon-

strated significant improvement in LO performance across all
tested weather conditions, with notable improvements observed
in rainy, foggy, and snowfall scenarios. Furthermore, the ap-
proach demonstrates robustness for adverse weather, with a
consistent relative translation error of 1.4 % observed regard-
less of the weather condition. This demonstrates the robustness
and reliability of the proposed method under different weather
conditions.

Our study is limited to demonstrate the potential of the pro-
posed FPR in positioning accuracy for only KISS-ICP
method. However, the results encourage the future
integration of FPR also with other LO and mapping methods,
especially, since FPR is simple to implement and computation-
ally efficient. It is important to note that the approach relies
on point ring/channel information, which may present limita-
tions with existing data sets. To overcome this, we shared the

Adverse-Weather-KITTI-360 dataset (Vezeteu, 2024), which

also includes the ring/channel information for each point.

Overall, the proposed method presents a promising solution
for addressing the challenges of LO in adverse weather condi-
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tions, offering potential benefits for navigation and perception
systems across various real-world scenarios. Future research
should test the method also with other LO methods and in real
challenging adverse weather conditions to observe the limits of
the proposed method.

7. Acknowledgements

Co-funded by the European Union. Views and opinions ex-
pressed are however, those of the authors only and do not neces-
sarily reflect those of the European Union or European Climate,
Infrastructure and Environment Executive Agency (CINEA).
Neither the European Union nor the granting authority can be
held responsible for them. Project grant no. 101069576.

References

Bijelic, M., Gruber, T., Mannan, F., Kraus, F., Ritter, W,
Dietmayer, K., Heide, F., 2020. Seeing through fog without
seeing fog: Deep multimodal sensor fusion in unseen adverse
weather. The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Censi, A., 2008. An ICP variant using a point-to-line metric.
2008 IEEE international conference on robotics and automa-
tion, IEEE, 19-25.

Charron, N., Phillips, S., Waslander, S. L., 2018. De-noising of
lidar point clouds corrupted by snowfall. 2018 15th Conference
on Computer and Robot Vision (CRV), IEEE, 254-261.

Geiger, A., Lenz, P, Urtasun, R., 2012. Are we ready for auto-
nomous driving? the KITTI vision benchmark suite. Confer-
ence on Computer Vision and Pattern Recognition (CVPR).

Grupp, M., 2017. evo: Python package for the evaluation of
odometry and slam. https://github.com/MichaelGrupp/
evo.

Hahner, M., Sakaridis, C., Bijelic, M., Heide, F., Yu, F,, Dai, D.,
Van Gool, L., 2022. LiDAR snowfall simulation for robust 3D
object detection. IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR).

Hahner, M., Sakaridis, C., Dai, D., Van Gool, L., 2021. Fog
Simulation on Real LiDAR Point Clouds for 3D Object De-
tection in Adverse Weather. IEEE International Conference on
Computer Vision (ICCV).

Heinzler, R., Piewak, F., Schindler, P., Stork, W., 2020. CNN-
Based Lidar Point Cloud De-Noising in Adverse Weather. I[EEE
Robotics and Automation Letters, 5(2), 2514-2521.

Kilic, V., Hegde, D., Sindagi, V., Cooper, A. B., Foster, M. A.,
Patel, V. M., 2021. Lidar light scattering augmentation (LISA):
Physics-based simulation of adverse weather conditions for 3D
object detection. arXiv preprint arXiv:2107.07004.

Kim, J., Scott, C. D., 2012. Robust kernel density estimation.
The Journal of Machine Learning Research, 13(1), 2529-2565.

Kuramachi, R., Ohsato, A., Sasaki, Y., Mizoguchi, H., 2015. G-
ICP SLAM: An odometry-free 3D mapping system with robust
6DOoF pose estimation. 2015 IEEE International Conference on
Robotics and Biomimetics (ROBIO), IEEE, 176-181.

Kurup, A., Bos, J., 2021. Dsor: A scalable statistical filter for
removing falling snow from lidar point clouds in severe winter
weather. arXiv preprint arXiv:2109.07078.

Liao, Y., Xie, J., Geiger, A., 2022. KITTI-360: A Novel Dataset
and Benchmarks for Urban Scene Understanding in 2D and 3D.
Pattern Analysis and Machine Intelligence (PAMI).

Magnusson, M., 2009. The three-dimensional normal-
distributions transform: an efficient representation for registra-
tion, surface analysis, and loop detection. PhD thesis, Orebro
universitet.

Park, J.-I., Park, J., Kim, K.-S., 2020. Fast and accurate des-
nowing algorithm for LiDAR point clouds. IEEE Access, 8,
160202-160212.

Pitropov, M., Garcia, D. E., Rebello, J., Smart, M., Wang, C.,
Czarnecki, K., Waslander, S., 2021. Canadian adverse driving
conditions dataset. The International Journal of Robotics Re-
search, 40(4-5), 681-690.

Prio, M. H., Patel, S., Koley, G., 2022. Implementation of
dynamic radius outlier removal (DROR) algorithm on LiDAR
point cloud data with arbitrary white noise addition. 2022 IEEE
95th Vehicular Technology Conference:(VIC2022), IEEE, 1-7.

Seppénen, A., Ojala, R., Tammi, K., 2022. 4DenoiseNet: Ad-
verse Weather Denoising From Adjacent Point Clouds. /EEE
Robotics and Automation Letters, 8(1), 456—463.

Seppénen, A., Ojala, R., Tammi, K., 2023. Multi-Echo Denois-
ing in Adverse Weather. arXiv preprint arXiv:2305.14008.

Shan, T., Englot, B., 2018. LeGO-LOAM: Lightweight and
ground-optimized lidar odometry and mapping on variable ter-
rain. 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE, 4758—4765.

Vezeteu, E., 2024. Adverse-Weather-KITTI-
360 dataset. https://doi.org/10.23729/
b73a84dc-89cf-4750-a93d-343046dd2cab. National
Land Survey of Finland, FGI Dept. of Remote sensing and
photogrammetry.

Vizzo, 1., Guadagnino, T., Mersch, B., Wiesmann, L., Behley,
J., Stachniss, C., 2023. KISS-ICP: In Defense of Point-to-Point
ICP-Simple, Accurate, and Robust Registration If Done the
Right Way. IEEE Robotics and Automation Letters, 8(2), 1029—
1036.

Wang, H., Wang, C., Chen, C.-L., Xie, L., 2021. F-loam:
Fast lidar odometry and mapping. 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 1EEE,
4390-4396.

Wriedt, T., 2012. Mie theory: a review. The Mie theory: Basics
and applications, 53-71.

Xu, C., Wu, B., Wang, Z., Zhan, W., Vajda, P., Keutzer, K.,
Tomizuka, M., 2020. Squeezesegv3: Spatially-adaptive convo-
lution for efficient point-cloud segmentation. Computer Vision—
ECCV 2020: 16th European Conference, Glasgow, UK, August
23-28, 2020, Proceedings, Part XXVIII, Springer, 1-19.

Zhang, J., Singh, S., 2014. LOAM: Lidar odometry and map-
ping in real-time. Proceedings of Robotics: Science and Sys-
tems, Berkeley, USA.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-2-W2-2025-199-2025 | © Author(s) 2025. CC BY 4.0 License. 206


https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo
https://doi.org/10.23729/b73a84dc-89cf-4750-a93d-343046dd2ca6
https://doi.org/10.23729/b73a84dc-89cf-4750-a93d-343046dd2ca6

	Introduction
	Related Work
	Lidar odometry
	Map denoising

	Method
	Cylindrical range image projection
	Fast Point Ranking method

	Experiments
	Experimental Setup
	Results

	Discussion
	Conclusion
	Acknowledgements



