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Abstract

High-quality 3D reconstruction of infrastructure using UAVs is essential for inspection, monitoring, and digital twin applications.
Traditional flight planning methods rely on predefined paths and often struggle with complex geometries, leading to incomplete models
and inefficiencies. This paper evaluates a state-of-the-art autonomous Next Best View (NBV) of MACARONS model (Mapping And
Coverage Anticipation with RGB Online Self-Supervision), which enables online, self-supervised 3D reconstruction of large-scale
scenes using only a monocular RGB sensor. The MACARONS NBYV model autonomously adjusts UAV trajectories in real time based
on predictions of unseen scene structure to improve reconstruction accuracy and surface detail recovery. Despite its advantages, a key
limitation is its lack of consideration for camera coverage percentage from a photogrammetric perspective, which makes it challenging
to consistently obtain an informative point cloud. The simulation results demonstrate that the autonomous NBYV strategy significantly
enhances both reconstruction quality and operational efficiency. To evaluate its effectiveness, we applied the MACARONS NBV
model to two open-access 3D bridge models. The generated camera trajectories were imported into Blender, where we rendered high-
resolution images using realistic camera intrinsics to overcome the limitations of the low-resolution depth predictions. From these
images, we reconstructed point clouds and compared them to those produced by a traditional flight planning approach, as well as to
the ground truth models. The comparison highlights the added value of autonomous view planning for accurate and efficient UAV -
based 3D reconstruction. The two experiments showed a high coverage percentage of 88 % compared to the ground truth and 90%
compared to traditional flight planning based on a 37.5% efficiency raise. This work highlights the potential and current limitations of

prediction-based NBV in UAV photogrammetry and motivates further research into integrating coverage-aware planning.

1. Introduction

The application of Structure-from-Motion algorithms to images
captured from Unmanned Aerial Vehicles (UAVs) has made it
feasible to reconstruct 3D models of expansive outdoor settings,
for instance, in order to create a Digital Twin of the scene.
Autonomous path planning methods like the modified A*
algorithm (Duchon et al., 2014), and RRT algorithm (Kuwata et
al., 2009) are aimed at navigating robots in a three-dimensional
domain with obstacles, which are formulated as an optimization
problem for the shortest path. However, those flight path
algorithms are not designed for the 3D reconstruction task and
can lead to incomplete models, especially in complex
environments. To provide high-quality 3D reconstruction data of
infrastructure, precise UAV image data acquisition is important.
Nowadays, automatic navigation in 3D reconstruction can be
effectively achieved through various methods such as Object-
Aware Guidance and Scene Reconstruction (Liu et al., 2018), and
sensor fusion and accuracy (Li et al., 2020). These methods focus
on maximizing information gain and minimizing path
inefficiencies, such as excessive turns, to improve reconstruction
quality and reduce operational costs. Despite advancements,
challenges remain in achieving fully automatic 3D reconstruction
and navigation. Issues such as scale accuracy, especially in GPS-
denied environments, require systematic analysis and error
evaluation. Therefore, informative UAV motion planning should
be considered to capture the images and cover the whole scene
from different perspectives. The Next Best View (NBV)
approach is increasingly used as an outstanding methodology for
viewpoint selection optimization in autonomous UAYV,
demonstrating substantial potential to enhance the operational
efficacy of informative path planning.

In this paper, we will implement a self-supervised online NBV
method to reconstruct the scene using an RGB sensor. Among
the growing number of NBV strategies developed in recent years,

we customize the MACARONS method (Guédon et al., 2023)
due to its unique strengths in autonomous online learning and
scalability. Compared to traditional NBV methods, it relies on
supervised training with limited datasets or handcrafted
heuristics. MACARONS prediction-based policy allows to
dynamically adapt trajectories during flight without predefined
maps or human intervention which aligns with our goal of UAV
autonomy. MACARONS NBV method demonstrates strong
performance in self-supervised online 3D reconstruction.
However, it often struggles in complex or large-scale indoor
environments. One key limitation is that it focuses only on the
next immediate view and then the UAV tends to get trapped in
locally reconstructed areas and missing under-explored regions
of the scene. This behaviour reduces overall coverage and
reconstruction completeness (Li et al., 2025). To our knowledge,
no prior study has evaluated prediction-based NBV methods like
MACARONS from a photogrammetric perspective, particularly
in terms of image coverage and reconstruction quality.
Accordingly, this paper seeks to answer the following research
question: Can the MACARONS NBV method achieve high-
quality 3D reconstruction with sufficient scene coverage during
online exploration of complex infrastructure objects? To answer
this, we design a pipeline that evaluates the coverage quality of
the reconstructed 3D models by comparing them to ground truth
point clouds, offering insight into the performance and
limitations of this prediction-based NBV of MACARONS in
autonomous UAV mapping tasks.

Building upon the NBV strategy in Macarons, optimized global
exploration trajectories are generated by iteratively selecting
camera poses that maximize surface coverage gain. The derived
poses are validated in Blender for geometric consistency, where
synthetically projected multi-view RGB images are analysed for
visibility and occlusion check. These validated images and poses
are then processed using the Metashape photogrammetric
pipeline, applying automated feature matching, dense point cloud
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reconstruction, and global bundle adjustment to generate a high-
fidelity 3D model. At the end, the reconstructed 3D model is
compared to the ground truth point cloud (section 3.4).
Furthermore, a reconstructed 3D model using a traditional flight
plan is also demonstrated.

In the following section 2, we will first introduce the
methodology, including the MACARONS module description
(section 2.1) and our evaluation pipeline (section 2.2). Then, the
experiments will be described (section 3) showing the results of
two bridge models. Next, we will discuss the result (section 4)
and followed by a conclusion and future work (section 5).

2. Methodology

This section is to introduce the methodology of MACARONS
and the evaluation pipeline for the autonomous reconstruction
performance of the MACARONS NBYV approach. First, the core
principles and functionality of the MACARONS model are
described. Then, our custom evaluation pipeline is designed.

2.1 Prediction-Based NBV with MACARONS

As mentioned, MACARONS represents a significant advance in
3D scene reconstruction and exploration. With RGB online self-
supervision, it offers an efficient and scalable solution to the
NBYV problem, and as a result, it is a promising tool for large-
scale environmental mapping applications where depth sensors
are not applicable.

This method works without perfectly known 3D objects and
explicit 3D supervision and can explore the scene and reconstruct
it only by using RGB images. The MACARONS takes coverage
maximization as its core optimization criterion to solve the NBV
problem. The method is assumed to provide a 3D bounding box
to accurately reconstruct the area.

As we know, the NBV problem is the identification process of
the next most informative sensor position for reconstructing a 3D
object or scene efficiently and accurately (Hepp et al., 2018;
Mendoza et al., 2020; Zeng et al., 2020). Here, we look for the
view that increases the most of the total coverage of the scene
surface: the number of new visible surface points.

To describe the problem in a mathematical way, first the scene
is represented as occupied points x € R® and boundary d,. Then,
the observation of the scene are presented as images captured by
cameras, therefore images (I ... I;) and cameras (cq ...c;) are
used for NBV strategy. The total coverage of the scene surface is
described as surface coverage gain G.(c). See Figure 1.
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Figure 1. Mathematical description in Macarons

For the scene representation, a bounding box is asked to as an
input to the algorithm, which allows the user to define the target
reconstruction area within the scene and newly reconstructed
surface points will be registered inside the coarse 3D grid to
compute accurate surface coverage gains optimizing viewpoint
parameters and coverage boundaries for the 3D reconstruction.
Based on the given scene bounding box, an adaptive camera
bounding box is calculated by the scene bounding box to ensure
the candidate camera poses exploration. Each bounding box is
discretized with grids. The amount of the grid in height, width
and length can be tuned based on the scene. See Figure 2.

For the cameras (cy ... ¢t), camera poses can be written as ¢; =
(Cpos: Crot) € C: R3x S0(3) All the camera poses are
discretized on a 5D grid. The 3D camera position is represented
as Cpos = (X¢» Yer Zc) and 2D camera rotation ¢y, is encoded as
azimuth and elevation. See Figure 3.

Scene bounding box

Figure 2. Bounding boxes and girds

Camera bounding box

2D rotation grid

Camera bounding box
Figure 3. Camera 5D grid

Online exploration is operated by a self-supervised online
learning procedure, where parameter optimization in each
module is achieved by an iterative training executing three steps
at each time step t: (i) Decision Making, (ii) Data Collection &
Memory Building, and (iii) Memory Replay. The steps are
described in the following Figure 4 while the three modules:
depth module, volume occupancy module and surface coverage
gain module, which are executed during the first step are shown
in Figure 5 and described in the following section. In our
evaluation process, the pre-trained module is used, which was
already trained by large infrastructure provided.

These three steps will work as follow:

(1) In the Decision-making step, the next best camera pose C¢41
is selected by calculating the highest coverage gain of all sampled
camera poses.

(i1) In the Data Collection & Memory Building step, the camera
is moving from c; to ¢;41, which is done by n linear interpolation
steps. During this camera moving procedure, n images will be
captured. The images with the depth data and camera poses will
be taken as three different supervision signals to three different
modules. These signals will be used to instruct the training
process of the three modules by iterations, to calculate the Loss
and to update the modules parameters. They will be stored in the
Memory.

(iii) In the Memory Replay step, newly acquired data is added to
the sample data, which is already stored in Memory in the second
step to update the loss of each module by comparing the current
scene state to the state of the same scene at the previous camera
pose.
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Figure 4. Three iteration steps (Guédon et al., 2023)

2.1.1 Depth module: This module (Watson et al., 2021) is
aimed at online surface point reconstruction by depth prediction.
During the exploration camera will capture a sequence of images
Iy, I1—q, It—3,...It_py. These images and corresponding camera
poses C¢, Cr_1, Ci_2,---Ce_m Will be used as inputs for the
module to predict the depth map d; based on the last observation
I; (0 K m K t). In the end, S; as reconstructed surface point
clouds (Godard et al., 2017) (Heise et al., 2013) which will be
kept updated during observation using predicted depth maps.
2.1.2  Volume occupancy module: This module can derive a
“volume occupancy field” o; from the predicted depth maps. It
provides a basis for sample points for visibility integration of all
the sampled points in the next step. a; (p) = 0 demonstrates that
point p is empty in space; o; (p) = 1 demonstrates that point p is
occupied in space. The inputs of this module (Vaswani et al.,
2023) are the point p surface point cloud S; and previous camera
poses c¢;, with the pseudo ground truth occupancy this module
will predict a partial volumetric representation regarding a scalar
value [0,1].

2.1.3 Surface coverage gain module: The number of new
visible surface points is defined as the surface coverage gain.
Given any camera pose ¢ based on the predicted occupancy field
V., the results of visibility integration G¢(c) of the sample points
can be derived. The criterion to select the next camera pose ¢¢1q
is to choose the maximum surface coverage gain (Guédon et al.,
2022).

MACARONS is a method that enables efficient exploration and
reconstruction of large-scale scenes from a single monocular
RGB input. However, the method assumes a static scene
environment, though this limitation can be mitigated by existing
self-supervised depth prediction models that demonstrate
robustness to dynamic objects. Furthermore, a rather simple path
planning is conducted by sampling the camera pose in the
neighbourhoods of the current camera to estimate cpiq -
Therefore, developing trajectory planning algorithms could
improve exploration efficiency.
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Figure 5. Three modules to generate the next camera pose
(Guédon et al., 2023)

2.2 Evaluation pipeline

Our evaluation pipeline Figure 6 provides an assessment method
of the 3D reconstruction quality using camera trajectories
generated by MACARONS.
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Figure 6. Evaluation pipeline

Here, we follow the pipeline to discover and improve the 3D
reconstruction result using MACARONS. It will provide a basis
for the validation procedure in this paper. The input in the
pipeline are existing 3D models, which are obtained from an open
source website (https://sketchfab.com/feed), Sketchfab.

2.2.1 Camera poses Conversion: The goal of the conversion
is to get the same camera pose in Blender as in MACARONS to
render the correct images. As one of the most important outputs
from MACARONS, camera poses in ¢; = (¢;P%%, ¢;"°!) provide
both the location and rotation of the cameras in sequence which
is in world (local) coordinates. Additionally, the rotation is given
as azimuth and elevation, where the conversion is needed later.
Then, we can import these camera sequences into the blender tool
using an embedded Python interpreter in the scripting function.
From the given azimuth and elevation, we convert them into
zyx — euler as the representation used in Blender. Moreover,
the camera settings also need to be added to Blender.

The method mentioned in (Alsadik et al., 2023) is introduced to
calculate the transformation despite the initial orientation
difference between camera coordinates and world coordinates as
shown in Figure 7.
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Figure 7. camera normal vector and world coordinates

Where:

N': normal vector of the camera

a: camera original view direction without rotation in Blender

a: angle between the normal vector and the original view
direction

The viewing direction N of the camera should be defined by the
given azimuth and elevation angles.

In Blender, the default downward camera orientation a (0, 0, -1)
is -Z axis. A Rodrigues formula is used to calculate the rotation
matrix based on the given conditions shown in Figure 6.

R=1+sinaK + (1 —cosa)K? (D
0 -k, ky

K= kz 0 _kx (2)
~ky ke O

Where:

R is 3 X 3 rotation matrix

lis 3 X 3 identity matrix

K is the skew-symmetric matrix regarding to unit axis vector,
here is represented as a

2.2.2 3D reconstruction: The 3D reconstruction alignment
of the rendered frames is applied in Agisoft Metashape with the
initial camera poses exported from MACARONS.

The 3D reconstruction can be generated following the procedures
outlined in Metashape. This reconstructed 3D model can be
compared against the ground-truth dataset (SketchFab as
mentioned) to quantitatively assess the coverage accuracy
through percentage-based metrics, thereby evaluating the
geometric accuracy of the reconstruction.

2.2.3  Multiplicity check: After transformation, rendering,
image alignment, and 3D reconstruction, the coverage percentage
of the images generated by MACARONS is also computed
(Mousavi et al., 2021). An illustration of the principle of
coverage computation and visualization is shown in Figure 8.

Camera Visibility
Color Mapping

Figure 8. Multiplicity check

The visibility analysis for 3D point cloud validation is
implemented through a multi-stage computational pipeline. In a

visibility check, a camera-centered reference system is used,
where 3D points are transformed into the image reference system
using the camera's projection matrix. After transformation, the
resulting homogeneous coordinates are analyzed. If the
normalized X, y, and z of the transformed point fall in the range
[0, 1], the point is considered to be in the camera’s view frustum
(Ilie, 2003), which means the point is visible to the camera.
Subsequently, an occlusion check via ray-casting is performed on
these visible points. A ray is cast from each camera’s optical
center to the target point, using collision detection constrained
within ray casting distance (from camera to the target point).

Furthermore, points visible to fewer than two cameras were
annotated with a red marker to indicate insufficient multi-view
coverage. For points observable by two or more cameras, a
baseline-to-depth ratio analysis was conducted on all observing
camera combinations pairwisely based on the photogrammetric
principles to ensure the 3D reconstruction quality. This metric
quantified the space distribution between camera baselines (B)

and point-to-camera distances (di, d2) through the ratios dﬁ and
1

ai' Points satisfying the empirical range of 0.1 < g <04
2

In the multiplicity check, it is verified if the point can be seen for
more than 2 cameras. The color of the point is classified based on
the result of visible camera count with the color transitioning
from cool to warm to represent increasing visible camera counts
as shown in Figure 8.

3. Experiment

In this section, our results will be introduced. The experiments
aimed to assess the 3D reconstruction of bridge structure, which
compares conventional flight planning (Lopez et al,
2013)(Santamaria et al., 2012) with the selected autonomous
NBYV planning of MACARONS.

3.1 Experiment setup

Both experiments used 3D bridge models are sourced from the
open-access platform Sketchfab , which are selected for different
distinct structural types and varying geometric complexity.
Bridge A: A brick-arched stone bridge, characterized by thick
masonry walls, arched spans, and relatively enclosed geometry.
The surfaces exhibit high textural richness and some underdeck
occlusion zones.

Figure 9. stonebridge (height: 14m length: 55.5m width:
11.9m)

Bridge B: A steel truss bridge with open lattice-like geometry
formed by repeated triangular steel elements and elevated side
railings. This model presents more internal visibility but includes
complex self-occlusion due to its framework.
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Figure 10. Truss bridge (height: 30.4m length: 100m width:
22.1m)

Experiment 1 is conducted on Bridge A, comparing both
conventional flight planning and NBV planning.

For NBV planning, the MACARONS framework is used to select
the next best view online, based on prediction-based coverage
estimation. The plot visualizes the surface coverage curves for
two bridges, showing how the coverage improves over multiple
rounds. The red line represents the mean surface coverage across
multiple runs, indicating the average performance of
MACARONS. The shaded red band around the line represents
the variability (standard deviation) in surface coverage across
runs, providing insight into the consistency of the method. A
narrower band means more consistent behaviour, while a wider
band suggests higher variability. The x-axis represents the
number of rounds, which corresponds to iterative steps (e.g.,
adding new cameras or actions), and the y-axis represents the
surface coverage, which measures the percentage of the covered
scene surface. This visualization shows the effectiveness and
reliability of the MACARONS method in achieving high surface
coverage over time. The system continues to collect views until
no significant additional coverage gain is detected, which is
shown in Figure 11.

Scene: stonebridge.d Scene: steelbridge

Surface coverage
Surface coverage

—— MACARONS (Ours) —— MACARONS (Ours)

0 ) 0 0 M 100 0 2 10 o s0 100

Number of rounds Number of rounds

Figure 11. BridgeA (left) & Bridge B (right) surface coverage
curve

Experiment 2 is conducted on Bridge B using both conventional
flight planning and NBV-driven planning.

Important parameters are evaluated, such as reprojection errors,
tie point multiplicity, and computational efficiency.

All the experiments use the same camera settings: the camera lens
is an 18 mm fixed-focal-length, lens distortion-free, and the
image resolution is 1920x1080. The GSD (ground sampling
distance) (Felipe-Garcia et al., 2012) in both planning methods is
around 2cm and 1.5c¢m for Bridge A and Bridge B, respectively.

3.2 Experiment 1: Bridge A

3.2.1 Conventional flight planning: This planning is
designed as a grid-based flight path. The GSD is calculated as
2.0cm. 485 images were captured during the flight. Coverage is
97.5%. The average tie point multiplicity is 5.7, and the RMS
(root mean square) reprojection error (Yuan et al., n.d.) is 0.69
pixels. The UAV waypoints are shown in Figure 12 from
different perspectives.
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Figure 12. stonebridge in conventional flight planning

3.2.2 NBV driven flight planning: The flight path is
dynamically online adjusted in MACARONS using NBV
planning. The GSD is calculated around 1.8cm. This approach
completes the reconstruction with only 303 images, achieving
91.5% coverage. The tie point multiplicity is 4.2, RMS error is
0.84 pixels. The waypoints of UAV can be seen in Figure 14.
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Figure 13. stonebridge in NBV flight planning

3.3 Experiment 2 — Bridge B

3.3.1 Conventional planning: Camera path settings are the
same as the Bridge A. The GSD is calculated as 1.5cm. 1106
images are captured, covering 99% of the model, with an average
tie point multiplicity of 5.2. The RMS reprojection error is 0.89
pixels. The UAV waypoints are shown in Figure 14 from
different perspectives.
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Figure 14. the truss bridge in conventional flight planning
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3.3.2 NBV driven planning: The autonomous MACARONS

approach completed the model using only 392 images, resulting
in 88% total coverage. The GSD is calculated as 1.5cm. The tie
point multiplicity is 4.7, and the RMS is 0.85 pixels. The
waypoints of UAV are shown in Figure 15.
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Figure 15. truss bridge in NBV flight planning
3.4 3D reconstruction quality evaluation parameters

Three different parameters to evaluate the comparison between
conventional and NBV planning using two bridges model are
shown below in Table 1 and Table 2. Reconstruction is quantified
using reprojection errors and average tie point multiplicity. A
quantitative comparison performance reveals distinct differences
between conventional and autonomous bridge reconstruction
methods.

BridgeA: Referring to reprojection errors, the autonomous
method has a 10.3% increase in RMS error compared to the
traditional method. It indicates that NBV planning has lower
matching consistency in feature-sparse regions. When it comes
to tie point Multiplicity, a 26.3% decrease in the autonomous
method shows a sparser cross-view feature tracking in NBV
planning, see Table 1.

These error is mainly caused by the image decrease, which is
strongly influenced by UAV efficiency. Despite all, the rise of

the error in NBV planning captured images are decreased by 37.5%

with comparable reconstruction quality, see Figure 16.
Conventional planning

front view

top view side view

NBYV driven planning

front view
top view side view
Figure 16. Coverage comparison with ground truth (white spots
uncovered)

Bridee Images RMS Average tie
Bridge A co erf R amog nt reprojection point
verag u error multiplicity
Conventional 97.5% 485 0.69 pix 5.7
Autonomous 91.5% 303 0.84 pix 4.2

Table 1. Bridge A evaluation parameters

Bridge B: The conventional approach achieves 6.0% greater
coverage requiring 60% more images to accomplish. Precision
metrics show the conventional method reduced RMS
reprojection error by 17.9%. Network robustness differed
substantially, with the conventional technique exhibiting 36%
higher average tie point multiplicity, see Table 2.

The lower coverage achieved in this experiment suggests that
MACARONS had more difficulty handling self-occlusion within
the lattice structure, potentially missing areas that are only visible
through multiple indirect lines of sight. Nevertheless, the model
quality remained visually acceptable, and the image count was
reduced by nearly 65%, highlighting the method’s efficiency and
potential scalability. See Figure 17.
Conventional planning

front view

top view side view

NBYV driven planning

top view side view
Figure 17. Coverage comparison with ground truth (white spots
uncovered)

. Bridge Images RMS. Avergge tie

Bridge B reprojection point
coverage amount T

error multiplicity
Conventional 99% 1106 0.89 pix 52
Autonomous 88% 392 0.85 pix 4.7

Table 2. Bridge B evaluation parameters

4. Discussion

Examining the differences between conventional flight planning
and autonomous NBV planning using the MACARONS
framework helped to have a thorough understanding in terms of
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model accuracy, efficiency, and completeness of coverage in 3D
bridge reconstruction scenarios.

One of the first differences we noted is the marked decrease in
the number of images needed with the autonomous planning
method (37-65% reduction). In experiment one, we needed 303
images with the autonomous method, compared to 485 for the
conventional method. The difference was at its highest during
experiment two, where a total of 392 images were required
autonomously versus 1106 with the conventional method. This
indicates that the autonomous flight planning significantly
increases data acquisition efficiency by decreasing the total
amount of images that were redundant or of little value. What we
consider efficient data acquisition is wisely selecting camera
locations rather than flying in a predefined, predictable required
pattern, which the drone targets image areas that haven't already
been taken. However, fewer images simply corresponded to
fewer tie point multiplicity and fewer overlapping observations
per feature. This change can impact the robustness of matching
features in photogrammetric processing.

The two planning methods generated similar RMS reprojection
errors within each experiment. For the conventional flights, the
RMS errors were approximately. 0.69-0.89 pixels, while the
NBYV autonomous method yielded RMS errors of approximately
0.84 - 0.89 pixels. While RMS reprojection error is slightly
higher with the autonomous approach, this is still at an acceptable
variance considering there were more irregular and adaptive
flight types which could contribute marginally to distortions in
the image geometry.

The conventional flights consistently had the strongest advantage
in overall coverage. In both tests, conventional planning achieved
97% and 99% coverage, while the autonomous system achieved
91.5% and 88% coverage. This highlights a possible challenge of
NBYV approaches in constrained settings like bridges. The fact
that uncovered white spots remained in the autonomous coverage
maps under structural elements was also evidence of this
possibility. It seems to confirm that current NBV plans like
MACARONS could benefit from hybrid integration with manual
guidance or predefined safety margins to guarantee full scene
completeness in mission-critical applications.

In summary, these findings indicate that although conventional
planning still involves better coverage and slightly better
accuracy, autonomous NBV-based planning also possesses
considerable potential for data-efficient and valuable solutions
for bridge inspection, particularly under time constraints or any
storage limitations. As autonomous method systems continue to
improve, particularly their ability to reason about occlusions and
the use of scene priors, the current gap in coverage may not be an
issue.

While MACARONS computes Next Best Views using depth
maps generated from a learned depth estimation model, our
evaluation pipeline relies on conventional photogrammetric
reconstruction methods based on multi-view image matching
with roughly same GSD metioned in Experiment section.
Specifically, we use the orientations given by MACARONS to
run the dense reconstruction in Metashape. This difference
introduces a key limitation in our evaluation: the quality of the
reconstructed 3D model is highly dependent on successful feature
matching across views.

In practice, certain surfaces such as textureless regions, repeating
patterns, or areas with intense illumination changes can cause
classical feature matching to fail. As a result, even if a camera
viewpoint selected by MACARONS is theoretically optimal
based on its internal depth predictions, the corresponding real-
world or simulated RGB images may not yield sufficient 3D
points using conventional photogrammetric methods. Due to the
lack of cameras marked in red as shown in Figure 18 , this
mismatch can lead to underestimating the true potential of the

NBYV strategy in our evaluation and should be considered when
interpreting the results

Mismatching

Figure 18. Mismatching using MACARONS

5. Conclusion

In this study, we set out to evaluate whether a prediction-based
Next-Best-View (NBV) method specifically the MACARONS
framework can perform effectively during online exploration for
3D reconstruction of complex infrastructure objects such as
bridges. Our central research question asked whether this
autonomous planning strategy could ensure sufficient coverage
and high reconstruction quality comparable to conventional flight
planning.

Based on the two controlled experiments, the autonomous
method demonstrated strong potential. It was significantly more
efficient in terms of image acquisition, reducing the number of
images by more than half in both experiments while maintaining
comparable RMS reprojection errors. The findings suggest that
prediction-based NBV strategies such as MACARONS are able
to assist accurate, efficient, and scalable 3D reconstruction for
real-time UAV mapping. Our results did, however, highlight
some important disadvantages: the autonomous method had
consistently worse coverage percentages (91.5% and 88%) than
conventional approaches (97.8% and 99%) and maximum
reprojection errors were also found to be higher in specific areas.
This may point to issues with occlusions and achieving consistent
coverage, in particular in areas that are hard to see and lack
distinctive texture. Thus, although consequently capable in-
principle, MACARONS implementation in (or without) any
additional strategies is unlikely to be acceptable in safety-critical
or highly-complex inspection tasks. In order to further improve
the performance and robustness of autonomous NBV methods in
infrastructure mapping we suggest that further work should
examine the incorporation of efficient path planning, real-time
occlusion detection, and semantic scene understanding to assist
more effectively with guiding the NBV selection process.
Providing MACARONS with visibility prediction models or
hybrid approaches that rely on guidance from the operator
alongside, or instead of, autonomous decision making may also
improve coverage in problematic areas.

Furthermore, it would be beneficial to investigate how
MACARONS compares to other learning-based NBV
techniques, whether they employ reinforcement learning, or
uncertainty modelling. Such comparisons could help illuminate
the trade-offs between planning speed, reconstruction quality,
and computational complexity, potentially furthering the
development of autonomously deployable photogrammetry
systems capable of operating in a diverse set of real-world
infrastructures. Path planning and further investigation is also
critical aspects in drone navigation in MACARONS to increase
the efficiency.
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