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Abstract 

 

High-quality 3D reconstruction of infrastructure using UAVs is essential for inspection, monitoring, and digital twin applications. 

Traditional flight planning methods rely on predefined paths and often struggle with complex geometries, leading to incomplete models 

and inefficiencies. This paper evaluates a state-of-the-art autonomous Next Best View (NBV) of MACARONS model (Mapping And 

Coverage Anticipation with RGB Online Self-Supervision), which enables online, self-supervised 3D reconstruction of large-scale 

scenes using only a monocular RGB sensor.  The MACARONS NBV model autonomously adjusts UAV trajectories in real time based 

on predictions of unseen scene structure to improve reconstruction accuracy and surface detail recovery. Despite its advantages, a key 

limitation is its lack of consideration for camera coverage percentage from a photogrammetric perspective, which makes it challenging 

to consistently obtain an informative point cloud. The simulation results demonstrate that the autonomous NBV strategy significantly 

enhances both reconstruction quality and operational efficiency. To evaluate its effectiveness, we applied the MACARONS NBV 

model to two open-access 3D bridge models. The generated camera trajectories were imported into Blender, where we rendered high-

resolution images using realistic camera intrinsics to overcome the limitations of the low-resolution depth predictions. From these 

images, we reconstructed point clouds and compared them to those produced by a traditional flight planning approach, as well as to 

the ground truth models. The comparison highlights the added value of autonomous view planning for accurate and efficient UAV-

based 3D reconstruction. The two experiments showed a high coverage percentage of 88 % compared to the ground truth and 90% 

compared to traditional flight planning based on a 37.5% efficiency raise. This work highlights the potential and current limitations of 

prediction-based NBV in UAV photogrammetry and motivates further research into integrating coverage-aware planning. 

 

1. Introduction 

The application of Structure-from-Motion algorithms to images 

captured from Unmanned Aerial Vehicles (UAVs) has made it 

feasible to reconstruct 3D models of expansive outdoor settings, 

for instance, in order to create a Digital Twin of the scene. 

Autonomous  path planning methods like the modified A* 

algorithm (Duchoň et al., 2014), and RRT algorithm (Kuwata et 

al., 2009) are aimed at navigating robots in a three-dimensional 

domain with obstacles, which are formulated as an optimization 

problem for the shortest path. However, those flight path 

algorithms are not designed for the 3D reconstruction task and 

can lead to incomplete models, especially in complex 

environments. To provide high-quality 3D reconstruction data of 

infrastructure, precise UAV   image data acquisition is important. 

Nowadays, automatic navigation in 3D reconstruction can be 

effectively achieved through various methods such as Object-

Aware Guidance and Scene Reconstruction (Liu et al., 2018), and 

sensor fusion and accuracy (Li et al., 2020). These methods focus 

on maximizing information gain and minimizing path 

inefficiencies, such as excessive turns, to improve reconstruction 

quality and reduce operational costs. Despite advancements, 

challenges remain in achieving fully automatic 3D reconstruction 

and navigation. Issues such as scale accuracy, especially in GPS-

denied environments, require systematic analysis and error 

evaluation.  Therefore, informative UAV motion planning should 

be considered to capture the images and cover the whole scene 

from different perspectives. The Next Best View (NBV) 

approach is increasingly used as an outstanding methodology for 

viewpoint selection optimization in autonomous UAV, 

demonstrating substantial potential to enhance the operational 

efficacy of informative path planning. 

In this paper, we will implement a self-supervised online NBV 

method to reconstruct the scene using an RGB sensor. Among 

the growing number of NBV strategies developed in recent years, 

we customize the MACARONS method (Guédon et al., 2023) 

due to its unique strengths in autonomous online learning and 

scalability. Compared to traditional NBV methods, it relies on 

supervised training with limited datasets or handcrafted 

heuristics. MACARONS prediction-based policy allows to 

dynamically adapt trajectories during flight without predefined 

maps or human intervention which aligns with our goal of UAV 

autonomy. MACARONS NBV method demonstrates strong 

performance in self-supervised online 3D reconstruction. 

However, it often struggles in complex or large-scale indoor 

environments. One key limitation is that it focuses only on the 

next immediate view and then the UAV tends to get trapped in 

locally reconstructed areas and missing under-explored regions 

of the scene. This behaviour reduces overall coverage and 

reconstruction completeness (Li et al., 2025). To our knowledge, 

no prior study has evaluated prediction-based NBV methods like 

MACARONS from a photogrammetric perspective, particularly 

in terms of image coverage and reconstruction quality. 

Accordingly, this paper seeks to answer the following research 

question: Can the MACARONS NBV method achieve high-

quality 3D reconstruction with sufficient scene coverage during 

online exploration of complex infrastructure objects? To answer 

this, we design a pipeline that evaluates the coverage quality of 

the reconstructed 3D models by comparing them to ground truth 

point clouds, offering insight into the performance and 

limitations of this prediction-based NBV of MACARONS in 

autonomous UAV mapping tasks. 

Building upon the NBV strategy in Macarons, optimized global 

exploration trajectories are generated by iteratively selecting 

camera poses that maximize surface coverage gain. The derived 

poses are validated in Blender for geometric consistency, where 

synthetically projected multi-view RGB images are analysed for 

visibility and occlusion check. These validated images and poses 

are then processed using the Metashape photogrammetric 

pipeline, applying automated feature matching, dense point cloud 
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reconstruction, and global bundle adjustment to generate a high-

fidelity 3D model. At the end, the reconstructed 3D model is 

compared to the ground truth point cloud (section 3.4). 

Furthermore, a reconstructed 3D model using a traditional flight 

plan is also demonstrated. 

In the following section 2, we will first introduce the 

methodology, including the MACARONS module description 

(section 2.1) and our evaluation pipeline (section 2.2). Then, the 

experiments will be described (section 3) showing the results of 

two bridge models. Next, we will discuss the result (section 4) 

and followed by a conclusion and future work (section 5). 

 

2. Methodology 

This section is to introduce the methodology of MACARONS 

and the evaluation pipeline for the autonomous reconstruction 

performance of the MACARONS NBV approach. First, the core 

principles and functionality of the MACARONS model are 

described. Then, our custom evaluation pipeline is designed. 

 

2.1 Prediction-Based NBV with MACARONS 

As mentioned, MACARONS represents a significant advance in 

3D scene reconstruction and exploration. With RGB online self-

supervision, it offers an efficient and scalable solution to the 

NBV problem, and as a result, it is a promising tool for large-

scale environmental mapping applications where depth sensors 

are not applicable. 

This method works without perfectly known 3D objects and 

explicit 3D supervision and can explore the scene and reconstruct 

it only by using RGB images. The MACARONS takes coverage 

maximization as its core optimization criterion to solve the NBV 

problem. The method is assumed to provide a 3D bounding box 

to accurately reconstruct the area. 

As we know, the NBV problem is the identification process of 

the next most informative sensor position for reconstructing a 3D 

object or scene efficiently and accurately (Hepp et al., 2018; 

Mendoza et al., 2020; Zeng et al., 2020). Here, we look for the 

view that increases the most of the total coverage of the scene 

surface: the number of new visible surface points. 

To describe the problem in a mathematical way, first  the scene 

is represented as occupied points 𝑥 ∈ 𝑅3  and boundary 𝜕𝑥. Then, 

the observation of the scene are presented as images captured by 

cameras, therefore images (𝐼0 …𝐼𝑡) and cameras (𝑐0 …𝑐𝑡)  are 

used for NBV strategy. The total coverage of the scene surface is 

described as surface coverage gain 𝐺𝑡(𝑐). See Figure 1. 

 
Figure 1. Mathematical description in Macarons 

 

For the scene representation, a bounding box is asked to as an 

input to the algorithm, which allows the user to define the target 

reconstruction area within the scene and newly reconstructed 

surface points will be registered inside the coarse 3D grid to 

compute accurate surface coverage gains optimizing viewpoint 

parameters and coverage boundaries for the 3D reconstruction. 

Based on the given scene bounding box, an adaptive camera 

bounding box is calculated by the scene bounding box to ensure 

the candidate camera poses exploration. Each bounding box is 

discretized with grids. The amount of the grid in height, width 

and length can be tuned based on the scene. See Figure 2. 

For the cameras (𝑐0 …𝑐𝑡), camera poses can be written as 𝑐𝑖 =
(𝑐𝑝𝑜𝑠 , 𝑐𝑟𝑜𝑡) ∈ 𝐶: 𝑅3 × 𝑆𝑂(3) All the camera poses are 

discretized on a 5D grid. The 3D camera position is represented 

as 𝑐𝑝𝑜𝑠 = (𝑥𝑐, 𝑦𝑐 , 𝑧𝑐) and 2D camera rotation 𝑐𝑟𝑜𝑠 is encoded as 

azimuth and elevation. See Figure 3. 

 
Figure 2. Bounding boxes and girds 

 

 
Figure 3. Camera 5D grid 

 

Online exploration is operated by a self-supervised online 

learning procedure, where parameter optimization in each 

module is achieved by an iterative training executing three steps 

at  each time step 𝑡: (i) Decision Making, (ii) Data Collection & 

Memory Building, and (iii) Memory Replay. The steps are 

described in the following Figure 4 while the three modules: 

depth module, volume occupancy module and surface coverage 

gain module, which are executed during the first step are shown 

in Figure 5 and described in the following section. In our 

evaluation process, the pre-trained module is used, which was 

already trained by large infrastructure provided. 

These three steps will work as follow: 

(i) In the Decision-making step, the next best camera pose 𝑐𝑡+1 

is selected by calculating the highest coverage gain of all sampled 

camera poses.  

(ii) In the Data Collection & Memory Building step, the camera 

is moving from 𝑐𝑡 to 𝑐𝑡+1, which is done by n linear interpolation 

steps. During this camera moving procedure, 𝑛 images will be 

captured. The images with the depth data and camera poses will 

be taken as three different supervision signals to three different 

modules. These signals will be used to instruct the training 

process of the three modules by iterations, to calculate the Loss 

and to update the modules parameters. They will be stored in the 

Memory.  

(iii) In the Memory Replay step, newly acquired data is added to 

the sample data, which is already stored in Memory in the second 

step to update the loss of each module by comparing the current 

scene state to the state of the same scene at the previous camera 

pose. 
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Figure 4. Three iteration steps (Guédon et al., 2023) 

 

2.1.1 Depth module: This module (Watson et al., 2021) is 

aimed at online surface point reconstruction by depth prediction. 

During the exploration camera will capture a sequence of images 

𝐼𝑡,  𝐼𝑡−1, 𝐼𝑡−2, . . . 𝐼𝑡−𝑚. These images and corresponding camera 

poses 𝑐𝑡,  𝑐𝑡−1, 𝑐𝑡−2, . . . 𝑐𝑡−𝑚 will be used as inputs for the 

module to predict the depth map 𝑑𝑡 based on the last observation 

 𝐼𝑡  (0 ≪ 𝑚 ≪ 𝑡). In the end, 𝑆𝑡  as reconstructed surface point 

clouds (Godard et al., 2017) (Heise et al., 2013) which will be 

kept updated during observation using predicted depth maps.  

2.1.2 Volume occupancy module: This module can derive a 

“volume occupancy field” 𝜎𝑡 from the predicted depth maps. It 

provides a basis for sample points for visibility integration of all 

the sampled points in the next step. 𝜎𝑡 (𝑝) = 0 demonstrates that 

point 𝑝 is empty in space; 𝜎𝑡  (𝑝) = 1 demonstrates that point 𝑝 is 

occupied in space. The inputs of this module (Vaswani et al., 

2023) are the point 𝑝 surface point cloud  𝑆𝑡 and previous camera 

poses 𝑐𝑖 , with the pseudo ground truth occupancy this module 

will predict a partial volumetric representation regarding a scalar 

value [0,1]. 

2.1.3 Surface coverage gain module: The number of new 

visible surface points is defined as the surface coverage gain. 

Given any camera pose 𝑐 based on the predicted occupancy field 

𝑉𝑐, the results of visibility integration 𝐺𝑡(𝑐) of the sample points 

can be derived. The criterion to select the next camera pose 𝑐𝑡+1 

is to choose the maximum surface coverage gain (Guédon et al., 

2022). 

MACARONS is a method that enables efficient exploration and 

reconstruction of large-scale scenes from a single monocular 

RGB input. However, the method assumes a static scene 

environment, though this limitation can be mitigated by existing 

self-supervised depth prediction models that demonstrate 

robustness to dynamic objects. Furthermore, a rather simple path 

planning is conducted by sampling the camera pose in the 

neighbourhoods of the current camera to estimate 𝑐𝑡+1 . 

Therefore, developing trajectory planning algorithms could 

improve exploration efficiency. 

 

 

 
Figure 5. Three modules to generate the next camera pose 

(Guédon et al., 2023) 

 

2.2 Evaluation pipeline 

Our evaluation pipeline Figure 6 provides an assessment method 

of the 3D reconstruction quality using camera trajectories 

generated by MACARONS. 

 
Figure 6.   Evaluation pipeline 

 

Here, we follow the pipeline to discover and improve the 3D 

reconstruction result using MACARONS.  It will provide a basis 

for the validation procedure in this paper. The input in the 

pipeline are existing 3D models, which are obtained from an open 

source website (https://sketchfab.com/feed), Sketchfab. 

 

2.2.1 Camera poses Conversion:  The goal of the conversion 

is to get the same camera pose in Blender as in MACARONS to 

render the correct images. As one of the most important outputs 

from MACARONS, camera poses in 𝑐𝑖 = (𝑐𝑖
𝑝𝑜𝑠 , 𝑐𝑖

𝑟𝑜𝑡) provide 

both the location and rotation of the cameras in sequence which 

is in world (local) coordinates. Additionally, the rotation is given 

as azimuth and elevation, where the conversion is needed later.  

Then, we can import these camera sequences into the blender tool 

using an embedded Python interpreter in the scripting function. 

From the given azimuth and elevation, we  convert them into 

𝑧𝑦𝑥 − 𝑒𝑢𝑙𝑒𝑟 as the representation used in Blender. Moreover, 

the camera settings also need to be added to Blender. 

The method mentioned in (Alsadik et al., 2023) is introduced to 

calculate the transformation despite the initial orientation 

difference between camera coordinates and world coordinates as 

shown in Figure 7. 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2/W2-2025 
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10–12 September 2025, Espoo, Finland

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-2-W2-2025-207-2025 | © Author(s) 2025. CC BY 4.0 License.

 
209



 

 
Figure 7. camera normal vector and world coordinates 

 

Where: 

𝑁⃑⃑ : normal vector of the camera 

𝑎 : camera original view direction without rotation in Blender 

𝛼 : angle between the normal vector and the original view 

direction 

 

The viewing direction 𝑁⃑⃑  of the camera should be defined by the 

given azimuth and elevation angles. 

In Blender, the default downward camera orientation 𝑎  (0, 0, -1) 

is -Z axis. A Rodrigues formula is used to calculate the rotation 

matrix based on the given conditions shown in Figure 6. 

 

𝑅 = 𝐼 + sin 𝛼𝐾 + (1 − cos 𝛼)𝐾2  (1) 

 

 

𝐾 = [

0 −𝑘𝑧 𝑘𝑦

𝑘𝑧 0 −𝑘𝑥

−𝑘𝑦 𝑘𝑥 0
] (2) 

 

Where:  

R is 3 × 3 rotation matrix 

I is  3 × 3 identity matrix 

K is the skew-symmetric matrix regarding to unit axis vector, 

here is represented as 𝑎  

 

2.2.2 3D reconstruction:   The 3D reconstruction alignment 

of the rendered frames is applied in Agisoft Metashape with the 

initial camera poses exported from MACARONS. 

The 3D reconstruction can be generated following the procedures 

outlined in Metashape. This reconstructed 3D model can be 

compared against the ground-truth dataset (SketchFab as 

mentioned) to quantitatively assess the coverage accuracy 

through percentage-based metrics, thereby evaluating the 

geometric accuracy of the reconstruction. 

2.2.3 Multiplicity check: After transformation, rendering, 

image alignment, and 3D reconstruction, the coverage percentage 

of the images generated by MACARONS is also computed 

(Mousavi et al., 2021). An illustration of the principle of 

coverage computation and visualization is shown in Figure 8. 

 
Figure 8.  Multiplicity check  

 

The visibility analysis for 3D point cloud validation is 

implemented through a multi-stage computational pipeline. In a 

visibility check, a camera-centered reference system is used,  

where 3D points are transformed into the image reference system 

using the camera's projection matrix. After transformation, the 

resulting homogeneous coordinates are analyzed. If the 

normalized x, y, and z of the transformed point fall in the range 

[0, 1], the point is considered to be in the camera’s view frustum 

(Ilie, 2003), which means the point is visible to the camera. 

Subsequently, an occlusion check via ray-casting is performed on 

these visible points. A ray is cast from each camera’s optical 

center to the target point, using collision detection constrained 

within ray casting distance (from camera to the target point). 

Furthermore, points visible to fewer than two cameras were 

annotated with a red marker to indicate insufficient multi-view 

coverage. For points observable by two or more cameras, a 

baseline-to-depth ratio analysis was conducted on all observing 

camera combinations pairwisely based on the photogrammetric 

principles to ensure the 3D reconstruction quality. This metric 

quantified the space distribution between camera baselines (B) 

and point-to-camera distances (d₁, d₂) through the ratios 
𝐵

𝑑1
  and 

𝐵

𝑑2
. Points satisfying the empirical range of  0.1 ≤

𝐵

𝑑
 ≤ 0.4  

In the multiplicity check, it is verified if the point can be seen for 

more than 2 cameras. The color of the point is classified based on 

the result of visible camera count with the color transitioning 

from cool to warm to represent increasing visible camera counts 

as shown in Figure 8.  

 

3. Experiment 

In this section, our results will be introduced. The experiments 

aimed to assess the 3D reconstruction of bridge structure, which 

compares conventional flight planning (López et al., 

2013)(Santamaria et al., 2012) with the selected autonomous 

NBV planning of MACARONS.  

 

3.1 Experiment setup 

Both experiments used 3D bridge models are sourced from the 

open-access platform Sketchfab , which are selected for different 

distinct structural types and varying geometric complexity.  

Bridge A: A brick-arched stone bridge, characterized by thick 

masonry walls, arched spans, and relatively enclosed geometry. 

The surfaces exhibit high textural richness and some underdeck 

occlusion zones.  

 
Figure 9. stonebridge (height: 14m  length: 55.5m  width: 

11.9m) 

 

Bridge B: A steel truss bridge with open lattice-like geometry 

formed by repeated triangular steel elements and elevated side 

railings. This model presents more internal visibility but includes 

complex self-occlusion due to its framework. 
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Figure 10. Truss bridge (height: 30.4m  length: 100m  width: 

22.1m) 

 

Experiment 1 is conducted on Bridge A, comparing both 

conventional flight planning and NBV planning.  

For NBV planning, the MACARONS framework is used to select 

the next best view online, based on prediction-based coverage 

estimation. The plot visualizes the surface coverage curves for 

two bridges, showing how the coverage improves over multiple 

rounds. The red line represents the mean surface coverage across 

multiple runs, indicating the average performance of 

MACARONS. The shaded red band around the line represents 

the variability (standard deviation) in surface coverage across 

runs, providing insight into the consistency of the method. A 

narrower band means more consistent behaviour, while a wider 

band suggests higher variability. The x-axis represents the 

number of rounds, which corresponds to iterative steps (e.g., 

adding new cameras or actions), and the y-axis represents the 

surface coverage, which measures the percentage of the covered 

scene surface. This visualization shows the effectiveness and 

reliability of the MACARONS method in achieving high surface 

coverage over time. The system continues to collect views until 

no significant additional coverage gain is detected, which is 

shown in Figure 11.  

 
Figure 11. BridgeA (left) & Bridge B (right) surface coverage 

curve  

 

Experiment 2 is conducted on Bridge B using both conventional 

flight planning and NBV-driven planning.  

Important parameters are evaluated, such as reprojection errors, 

tie point multiplicity, and computational efficiency.  

All the experiments use the same camera settings: the camera lens 

is an 18 mm fixed-focal-length, lens distortion-free, and the 

image resolution is 1920×1080. The GSD (ground sampling 

distance) (Felipe-García et al., 2012) in both planning methods is 

around 2cm and 1.5cm for Bridge A and Bridge B, respectively.   

 

3.2 Experiment 1: Bridge A 

3.2.1 Conventional flight planning: This planning is 

designed as a grid-based flight path. The GSD is calculated as 

2.0cm. 485 images were captured during the flight. Coverage is 

97.5%. The average tie point multiplicity is 5.7, and the RMS 

(root mean square) reprojection error (Yuan et al., n.d.) is 0.69 

pixels. The UAV waypoints are shown in Figure 12 from 

different perspectives. 

 
Figure 12. stonebridge in conventional flight planning 

 

3.2.2 NBV driven flight planning: The flight path is 

dynamically online adjusted in MACARONS using  NBV 

planning. The GSD is calculated around 1.8cm. This approach 

completes the reconstruction with only 303 images, achieving 

91.5% coverage. The tie point multiplicity is 4.2, RMS error is 

0.84 pixels.  The waypoints of UAV can be seen in Figure 14. 

 
Figure 13.  stonebridge in NBV flight planning 

 

3.3 Experiment 2 – Bridge B 

3.3.1 Conventional planning: Camera path settings are the 

same as the Bridge A. The GSD is calculated as 1.5cm. 1106 

images are captured, covering 99% of the model, with an average 

tie point multiplicity of 5.2. The RMS reprojection error is 0.89 

pixels. The UAV waypoints are shown in Figure 14 from 

different perspectives. 

 
Figure 14. the truss bridge in conventional flight planning 
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3.3.2 NBV driven planning: The autonomous MACARONS 

approach completed the model using only 392 images, resulting 

in 88% total coverage. The GSD is calculated as 1.5cm. The tie 

point multiplicity is 4.7, and the RMS is 0.85 pixels. The 

waypoints of UAV are shown in Figure 15. 

 

 
Figure 15. truss bridge in NBV flight planning 

 

3.4 3D reconstruction quality evaluation parameters 

Three different parameters to evaluate the comparison between 

conventional and NBV planning using two bridges model are 

shown below in Table 1 and Table 2. Reconstruction is quantified 

using reprojection errors and average tie point multiplicity. A 

quantitative comparison performance reveals distinct differences 

between conventional and autonomous bridge reconstruction 

methods.  

BridgeA: Referring to reprojection errors, the autonomous 

method has a 10.3% increase in RMS error compared to the 

traditional method. It indicates that NBV planning has lower 

matching consistency in feature-sparse regions. When it comes 

to tie point Multiplicity, a 26.3% decrease in the autonomous 

method shows a sparser cross-view feature tracking in NBV 

planning, see Table 1. 

These error is mainly caused by the image decrease, which is 

strongly influenced by UAV efficiency. Despite all, the rise of 

the error  in NBV planning captured images are decreased by 37.5% 

with comparable reconstruction quality, see Figure 16. 
Conventional planning 

 
NBV driven planning 

 
Figure 16. Coverage comparison with ground truth (white spots 

uncovered) 

 

 

 

Bridge A 
Bridge 

coverage 

Images 

amount 

RMS 
reprojection 

error 

Average tie 
point 

multiplicity 

Conventional 97.5% 485 0.69 pix 5.7 

Autonomous 91.5% 303 0.84 pix 4.2 

 

Table 1. Bridge A evaluation parameters 

 

Bridge B:  The conventional approach achieves 6.0% greater 

coverage requiring 60% more images to accomplish. Precision 

metrics show the conventional method reduced RMS 

reprojection error by 17.9%. Network robustness differed 

substantially, with the conventional technique exhibiting 36% 

higher average tie point multiplicity, see Table 2.  

The lower coverage achieved in this experiment suggests that 

MACARONS had more difficulty handling self-occlusion within 

the lattice structure, potentially missing areas that are only visible 

through multiple indirect lines of sight. Nevertheless, the model 

quality remained visually acceptable, and the image count was 

reduced by nearly 65%, highlighting the method’s efficiency and 

potential scalability. See Figure 17. 
Conventional planning 

 
 

NBV driven planning 

 
Figure 17. Coverage comparison with ground truth (white spots 

uncovered) 

 

Bridge B 
Bridge 

coverage 
Images 
amount 

RMS 

reprojection 
error 

Average tie 

point 
multiplicity 

Conventional 99% 1106 0.89 pix 5.2 

Autonomous 88% 392 0.85 pix 4.7 

 

Table 2. Bridge B evaluation parameters 

 

4. Discussion 

Examining the differences between conventional flight planning 

and autonomous NBV planning using the MACARONS 

framework helped to have a thorough understanding in terms of 
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model accuracy, efficiency, and completeness of coverage in 3D 

bridge reconstruction scenarios.  

One of the first differences we noted is the marked decrease in 

the number of images needed with the autonomous planning 

method (37–65% reduction). In experiment one, we needed 303 

images with the autonomous method, compared to 485 for the 

conventional method. The difference was at its highest during 

experiment two, where a total of 392 images were required 

autonomously versus 1106 with the conventional method. This 

indicates that the autonomous flight planning significantly 

increases data acquisition efficiency by decreasing the total 

amount of images that were redundant or of little value. What we 

consider efficient data acquisition is wisely selecting camera 

locations rather than flying in a predefined, predictable required 

pattern, which the drone targets image areas that haven't already 

been taken. However, fewer images simply corresponded to 

fewer tie point multiplicity and fewer overlapping observations 

per feature. This change can impact the robustness of matching 

features in photogrammetric processing. 

The two planning methods generated similar RMS reprojection 

errors within each experiment. For the conventional flights, the 

RMS errors were approximately. 0.69-0.89 pixels, while the 

NBV autonomous method yielded RMS errors of approximately 

0.84 - 0.89 pixels. While RMS reprojection error is slightly 

higher with the autonomous approach, this is still at an acceptable 

variance considering there were more irregular and adaptive 

flight types which could contribute marginally to distortions in 

the image geometry.   

The conventional flights consistently had the strongest advantage 

in overall coverage. In both tests, conventional planning achieved 

97% and 99% coverage, while the autonomous system achieved 

91.5% and 88% coverage. This highlights a possible challenge of 

NBV approaches in constrained settings like bridges. The fact 

that uncovered white spots remained in the autonomous coverage 

maps under structural elements was also evidence of this 

possibility. It seems to confirm that current NBV plans like 

MACARONS could benefit from hybrid integration with manual 

guidance or predefined safety margins to guarantee full scene 

completeness in mission-critical applications. 

In summary, these findings indicate that although conventional 

planning still involves better coverage and slightly better 

accuracy, autonomous NBV-based planning also possesses 

considerable potential for data-efficient and valuable solutions 

for bridge inspection, particularly under time constraints or any 

storage limitations. As autonomous method systems continue to 

improve, particularly their ability to reason about occlusions and 

the use of scene priors, the current gap in coverage may not be an 

issue. 

While MACARONS computes Next Best Views using depth 

maps generated from a learned depth estimation model, our 

evaluation pipeline relies on conventional photogrammetric 

reconstruction methods based on multi-view image matching 

with roughly same GSD metioned in Experiment section. 

Specifically, we use the orientations given by MACARONS to 

run the dense reconstruction in Metashape. This difference 

introduces a key limitation in our evaluation: the quality of the 

reconstructed 3D model is highly dependent on successful feature 

matching across views. 

In practice, certain surfaces such as textureless regions, repeating 

patterns, or areas with intense illumination changes can cause 

classical feature matching to fail. As a result, even if a camera 

viewpoint selected by MACARONS is theoretically optimal 

based on its internal depth predictions, the corresponding real-

world or simulated RGB images may not yield sufficient 3D 

points using conventional photogrammetric methods. Due to the 

lack of cameras marked in red as shown in Figure 18 , this 

mismatch can lead to underestimating the true potential of the 

NBV strategy in our evaluation and should be considered when 

interpreting the results  

 
Figure 18.  Mismatching using MACARONS 

 

5. Conclusion 

In this study, we set out to evaluate whether a prediction-based 

Next-Best-View (NBV) method specifically the MACARONS 

framework can perform effectively during online exploration for 

3D reconstruction of complex infrastructure objects such as 

bridges. Our central research question asked whether this 

autonomous planning strategy could ensure sufficient coverage 

and high reconstruction quality comparable to conventional flight 

planning. 

Based on the two controlled experiments, the autonomous 

method demonstrated strong potential. It was significantly more 

efficient in terms of image acquisition, reducing the number of 

images by more than half in both experiments while maintaining 

comparable RMS reprojection errors. The findings suggest that 

prediction-based NBV strategies such as MACARONS are able 

to assist accurate, efficient, and scalable 3D reconstruction for 

real-time UAV mapping. Our results did, however, highlight 

some important disadvantages: the autonomous method had 

consistently worse coverage percentages (91.5% and 88%) than 

conventional approaches (97.8% and 99%) and maximum 

reprojection errors were also found to be higher in specific areas. 

This may point to issues with occlusions and achieving consistent 

coverage, in particular in areas that are hard to see and lack 

distinctive texture. Thus, although consequently capable in-

principle, MACARONS implementation in (or without) any 

additional strategies is unlikely to be acceptable in safety-critical 

or highly-complex inspection tasks. In order to further improve 

the performance and robustness of autonomous NBV methods in 

infrastructure mapping we suggest that further work should 

examine the incorporation of efficient path planning, real-time 

occlusion detection, and semantic scene understanding to assist 

more effectively with guiding the NBV selection process. 

Providing MACARONS with visibility prediction models or 

hybrid approaches that rely on guidance from the operator 

alongside, or instead of, autonomous decision making may also 

improve coverage in problematic areas. 

Furthermore, it would be beneficial to investigate how 

MACARONS compares to other learning-based NBV 

techniques, whether they employ reinforcement learning, or 

uncertainty modelling. Such comparisons could help illuminate 

the trade-offs between planning speed, reconstruction quality, 

and computational complexity, potentially furthering the 

development of autonomously deployable photogrammetry 

systems capable of operating in a diverse set of real-world 

infrastructures. Path planning and further investigation is also 

critical aspects in drone navigation in MACARONS to increase 

the efficiency. 

 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2/W2-2025 
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10–12 September 2025, Espoo, Finland

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-2-W2-2025-207-2025 | © Author(s) 2025. CC BY 4.0 License.

 
213



 

References 

Alsadik, B., Spreeuwers, L., Dadrass Javan, F., Manterola, N., 

2023. Mathematical Camera Array Optimization for 

Face 3D Modeling Application. Sensors 23, 9776. 

https://doi.org/10.3390/s23249776 

Duchoň, F., Babinec, A., Kajan, M., Beňo, P., Florek, M., Fico, 

T., Jurišica, L., 2014. Path Planning with Modified a 

Star Algorithm for a Mobile Robot. Procedia Eng., 

Modelling of Mechanical and Mechatronic Systems 96, 

59–69. https://doi.org/10.1016/j.proeng.2014.12.098 

Felipe-García, B., Hernández-López, D., Lerma, J.L., 2012. 

Analysis of the ground sample distance on large 

photogrammetric surveys. Appl. Geomat. 4, 231–244. 

https://doi.org/10.1007/s12518-012-0084-2 

Godard, C., Aodha, O.M., Brostow, G.J., 2017. Unsupervised 

Monocular Depth Estimation with Left-Right 

Consistency. 

https://doi.org/10.48550/arXiv.1609.03677 

Guédon, A., Monasse, P., Lepetit, V., 2022. SCONE: Surface 

Coverage Optimization in Unknown Environments by 

Volumetric Integration. 

Guédon, A., Monnier, T., Monasse, P., Lepetit, V., 2023. 

MACARONS: Mapping And Coverage Anticipation 

with RGB Online Self-Supervision. 

Heise, P., Klose, S., Jensen, B., Knoll, A., 2013. PM-Huber: 

PatchMatch with Huber Regularization for Stereo 

Matching, in: 2013 IEEE International Conference on 

Computer Vision. Presented at the 2013 IEEE 

International Conference on Computer Vision (ICCV), 

IEEE, Sydney, Australia, pp. 2360–2367. 

https://doi.org/10.1109/ICCV.2013.293 

Hepp, B., Dey, D., Sinha, S.N., Kapoor, A., Joshi, N., Hilliges, 

O., 2018. Learn-to-Score: Efficient 3D Scene 

Exploration by Predicting View Utility. 

Ilie, A., 2003. Computing a View Frustum to Maximize an 

Object&#39;s Image Area. 

Kuwata, Y., Teo, J., Fiore, G., Karaman, S., Frazzoli, E., How, 

J.P., 2009. Real-Time Motion Planning With 

Applications to Autonomous Urban Driving. IEEE 

Trans. Control Syst. Technol. 17, 1105–1118. 

https://doi.org/10.1109/TCST.2008.2012116 

Li, C., Yu, L., Fei, S., 2020. Large-Scale, Real-Time 3D Scene 

Reconstruction Using Visual and IMU Sensors. IEEE 

Sens. J. 20, 5597–5605. 

https://doi.org/10.1109/JSEN.2020.2971521 

Li, S., Guédon, A., Boittiaux, C., Chen, S., Lepetit, V., 2025. 

NextBestPath: Efficient 3D Mapping of Unseen 

Environments. 

https://doi.org/10.48550/arXiv.2502.05378 

Liu, L., Xia, X., Sun, H., Shen, Q., Xu, J., Chen, B., Huang, H., 

Xu, K., 2018. Object-aware guidance for autonomous 

scene reconstruction. ACM Trans. Graph. 37, 1–12. 

https://doi.org/10.1145/3197517.3201295 

López, D., Felipe, B., González-Aguilera, D., Arias-Pérez, B., 

2013. An Automatic Approach to UAV Flight 

Planning and Control for Photogrammetric 

Applications: A Test Case in the Asturias Region 

(Spain). Photogramm. Eng. Remote Sens. Volume 79, 

Pages 87-98. https://doi.org/10.14358/PERS.79.1.87 

Mendoza, M., Vasquez-Gomez, J.I., Taud, H., Sucar, L.E., Reta, 

C., 2020. Supervised Learning of the Next-Best-View 

for 3D Object Reconstruction. Pattern Recognit. Lett. 

133, 224–231. 

https://doi.org/10.1016/j.patrec.2020.02.024 

Mousavi, V., Varshosaz, M., Remondino, F., 2021. 

EVALUATING TIE POINTS DISTRIBUTION, 

MULTIPLICITY AND NUMBER ON THE 

ACCURACY OF UAV PHOTOGRAMMETRY 

BLOCKS. Int. Arch. Photogramm. Remote Sens. Spat. 

Inf. Sci. XLIII-B2-2021, 39–46. 

https://doi.org/10.5194/isprs-archives-XLIII-B2-

2021-39-2021 

Santamaria, E., Pastor, E., Barrado, C., Prats, X., Royo, P., Perez, 

M., 2012. Flight Plan Specification and Management 

for Unmanned Aircraft Systems. J. Intell. Robot. Syst. 

67, 155–181. https://doi.org/10.1007/s10846-011-

9648-3 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., 

Gomez, A.N., Kaiser, L., Polosukhin, I., 2023. 

Attention Is All You Need. 

https://doi.org/10.48550/arXiv.1706.03762 

Watson, J., Aodha, O.M., Prisacariu, V., Brostow, G., Firman, 

M., 2021. The Temporal Opportunist: Self-Supervised 

Multi-Frame Monocular Depth. 

https://doi.org/10.48550/arXiv.2104.14540 

Yuan, S., Yang, B., Fang, H., n.d. Direct Root-Mean-Square 

Error for Surface Accuracy Evaluation of Large 

Deployable Mesh Reflectors, in: AIAA Scitech 2020 

Forum. American Institute of Aeronautics and 

Astronautics. https://doi.org/10.2514/6.2020-0935 

Zeng, R., Zhao, W., Liu, Y.-J., 2020. PC-NBV: A Point Cloud 

Based Deep Network for Efficient Next Best View 

Planning, in: 2020 IEEE/RSJ International Conference 

on Intelligent Robots and Systems (IROS). Presented 

at the 2020 IEEE/RSJ International Conference on 

Intelligent Robots and Systems (IROS), IEEE, Las 

Vegas, NV, USA, pp. 7050–7057. 

https://doi.org/10.1109/IROS45743.2020.9340916 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2/W2-2025 
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10–12 September 2025, Espoo, Finland

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-2-W2-2025-207-2025 | © Author(s) 2025. CC BY 4.0 License.

 
214


	Autonomous UAV 3D Reconstruction using Prediction-Based Next Best View
	1. Introduction
	2. Methodology
	2.1 Prediction-Based NBV with MACARONS
	2.1.1 Depth module: This module (Watson et al., 2021) is aimed at online surface point reconstruction by depth prediction. During the exploration camera will capture a sequence of images ,𝐼-𝑡.,, 𝐼-𝑡−1.,  ,𝐼-𝑡−2., ...,𝐼-𝑡−𝑚.. These images and ...
	2.1.2 Volume occupancy module: This module can derive a “volume occupancy field” ,𝜎-𝑡. from the predicted depth maps. It provides a basis for sample points for visibility integration of all the sampled points in the next step. ,𝜎-𝑡. ,𝑝. = 0 demon...
	2.1.3 Surface coverage gain module: The number of new visible surface points is defined as the surface coverage gain. Given any camera pose 𝑐 based on the predicted occupancy field ,𝑉-𝑐., the results of visibility integration ,𝐺-𝑡.,𝑐. of the sam...

	2.2 Evaluation pipeline
	2.2.1 Camera poses Conversion:  The goal of the conversion is to get the same camera pose in Blender as in MACARONS to render the correct images. As one of the most important outputs from MACARONS, camera poses in ,𝑐-𝑖.=(,,𝑐-𝑖.-𝑝𝑜𝑠.,,,𝑐-𝑖.-𝑟...
	2.2.2 3D reconstruction:   The 3D reconstruction alignment of the rendered frames is applied in Agisoft Metashape with the initial camera poses exported from MACARONS.
	2.2.3 Multiplicity check: After transformation, rendering, image alignment, and 3D reconstruction, the coverage percentage of the images generated by MACARONS is also computed (Mousavi et al., 2021). An illustration of the principle of coverage comput...


	3. Experiment
	3.1 Experiment setup
	3.2 Experiment 1: Bridge A
	3.2.1 Conventional flight planning: This planning is designed as a grid-based flight path. The GSD is calculated as 2.0cm. 485 images were captured during the flight. Coverage is 97.5%. The average tie point multiplicity is 5.7, and the RMS (root mean...
	3.2.2 NBV driven flight planning: The flight path is dynamically online adjusted in MACARONS using  NBV planning. The GSD is calculated around 1.8cm. This approach completes the reconstruction with only 303 images, achieving 91.5% coverage. The tie po...

	3.3 Experiment 2 – Bridge B
	3.3.1 Conventional planning: Camera path settings are the same as the Bridge A. The GSD is calculated as 1.5cm. 1106 images are captured, covering 99% of the model, with an average tie point multiplicity of 5.2. The RMS reprojection error is 0.89 pixe...
	3.3.2 NBV driven planning: The autonomous MACARONS approach completed the model using only 392 images, resulting in 88% total coverage. The GSD is calculated as 1.5cm. The tie point multiplicity is 4.7, and the RMS is 0.85 pixels. The waypoints of UAV...

	3.4 3D reconstruction quality evaluation parameters

	4. Discussion
	5. Conclusion
	References



