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Abstract

In the last decades, Uncrewed Aerial Vehicles (UAV) with Light Detection and Ranging (LiDAR) sensors have become very popular
for capturing high-resolution 3D-Point clouds, enabling the efficient measurement of large-scale objects in a short time. This is
realized by fusing data from multiple sensors, usually Inertial Measurement Unit (IMU) and Global Navigation Satellite System
(GNSS) to obtain the trajectory of the UAV and the LiDAR Scanner for point cloud generation.
A crucial part in this process is the absolute positioning with GNSS. Systematic errors can occur especially due to challenging GNSS
conditions, regarding the number of satellites, their distribution and site-dependent effects. These errors have a direct influence on
the point cloud quality.
The contribution of this paper is an extension of a UAV laser scanning system with a prism, that is continuously tracked using a
Robotic Total Station (RTS). A factor graph-based trajectory estimation technique is used to fuse IMU and RTS data for a high-
precise trajectory estimation to reduce systematic errors. The acquired data and a reference data set are used to evaluate our
approach. The results show that point cloud misalignments can be reduced by integrating RTS data in the UAV trajectory estimation
by up to 6 cm.

1. Introduction

Uncrewed Aerial Vehicles (UAVs) equipped with LiDAR
(Light Detection and Ranging) enable high-precision 3D point
cloud generation, ensuring efficient and accurate spatial data
acquisition. The most crucial part is to maintain accurate and
reliable UAV positions and orientations. The most common
approach to this challenge is to fuse observations from Global
Navigation Satellite Systems (GNSS) with data from an Inertial
Measurement Unit (IMU). GNSS positions can be affected by
systematic deviations, caused by site-dependent effects, that are
directly transferred to the point cloud, causing misalignments
between multiple flight strips (Dreier et al., 2021). High preci-
sion applications, especially based on multiple and epoch-wise
measurements, are highly affected by this problem.

One possible solution is to use strip adjustment methods
(Glira et al., 2016). These align multiple flight strip point
clouds to minimize systematic effects in the trajectory estim-
ation, also the ones which are not necessarily caused by GNSS
(Habib et al., 2008). However, multiple flight strips with suf-
ficient overlap are inevitable for these methods. Although the
different strips are adapted to be consistent to each other, sys-
tematic errors may still remain.Another approach is to extend
the trajectory estimation by directly using the acquired laser
scan data to reduce uncertainties within point clouds (Pöppl et
al., 2023). This approach is similar to the strip adjustment, but it
goes beyond point cloud level. The geometry of point clouds is
not only used to shift and rotate the individual strip point clouds
but also to improve the trajectory within the strips. This also al-
lows for the estimation of the calibration parameters to obtain a
more reliable solution.

A different approach is to directly improve the trajectory
estimation by adapting or adding hardware or optimizing al-
gorithms. One example, which is also the basis of this contribu-
tion, is to add a prism to the UAV set-up and use a Robotic Total
Station (RTS) to track it over time and generate accurate pos-
ition information with a potential higher accuracy than GNSS.

A comparable approach focuses on the angle measurement of
two RTS, which are used to determine the continuous posi-
tions of an mobile mapping system (Kerekes and Schwieger,
2018). The use of two angle measurements can be beneficial
over distance measurements because of a higher accuracy and
sampling rate. The challenge of time synchronization between
mobile mapping systems and RTS is addressed in Vogel and
Hake (2024), while investigating reference trajectories. Using
a prism that is tracked with high accuracy by a RTS, the GNSS
receiver could potentially be replaced, and the accuracy of the
resulting estimation can be improved, as shown in Thalmann
and Neuner (2024). There, the prism positions in a local frame
are fused with the IMU measurements using an error state Kal-
manfilter (EKF). This enables high precision position and ori-
entation estimation that outperforms GNSS/IMU fusion in mul-
tiple scenarios.
There are different methods to estimate a trajectory using mul-
tiple sensors. The most popular approaches are based on Kal-
man Filtering (Kalman, 1960) or Smoothing for offline pro-
cessing, recursively computing the state of a system consider-
ing all sensor readings and their uncertainties. These methods
are usually used in commercial GNSS/IMU processing soft-
ware packages. Another method with increasing popularity is
using factor graphs (Dellaert, 2012), in some communities also
known as Dynamic Networks (Cucci and Skaloud, 2019). They
consists of a graph-based structures which describes the func-
tional model between sensor measurements and the estimated
states, and they offer an effective way to formulate and solve
the estimation process as a least-squares problem. They are
very suitable for the integration of prism positions and are used
in the presented work.

The contribution of this paper is the development and evaluation
of an improved UAV laser scanning system. It is based on a
prism attached to the platform. which is then tracked using an
RTS with high positional accuracy. The prism positions then
effectively replace GNSS data and thus the resulting systematic
errors typically associated with GNSS-based trajectory estima-
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tion. We use a factor graph approach to fuse the RTS data with
IMU to estimate a trajectory. This improvement is evaluated
at the trajectory and point cloud level. On trajectory level, we
compare the RTS based trajectory positions with a GNSS based
trajectory estimation. On point cloud level, we first focus on the
consistency between repeated UAV point cloud acquisitions of
the same area, and secondly on the comparison with an absolute
terrestrial laser scanner (TLS) reference.

2. Materials and Methods

The following Section describes in Subsection 2.1 the pipeline
for point cloud creation in UAV laser scanning. Subsection 2.2
presents the contribution of our work, the factor graph based
trajectory estimation with additional RTS positions. Section 2.3
presents the sensor setup used and the processing of the data.

2.1 Direct georeferencing

To generate point clouds, the laser scanner measurements are
combined with the trajectory parameters. This process is shown
in Figure 1. First, the 2D profile scanner on the UAV gener-
ates measurements xs in the sensor frame (s). Second, these
data are transformed into the body frame (b), using the sys-
tem calibration, which consists of the bore-sight angle matrix
Rb

s and the lever-arm vector tbs. Third, the trajectory paramet-
ers in the form of a translation teb and the three angles roll ϕ,
pitch θ and yaw ψ at the time t of each scanner measurement
are used to transform the scanner data to a global reference
frame. The corresponding functional model of direct georefer-
encing for the point in time t is shown in Equation 1. While
the system calibration is fixed, the other components are time
dependent.

xe(t) = teb(t) +Re
n(t)R

n
b (t)

(
tbs +Rb

sx
s(t)

)
(1)

2.2 Factor graph-based trajectory estimation

Creating consistent point clouds with the direct georeferencing
as shown in Figure 1 needs the trajectory of the UAV to be
estimated with high precision. The trajectory consists of i
navigation states ni containing the position, velocity, and
orientation of the system in a global reference frame e, defined
with
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To compensate for time-dependent systematic deviations in the
IMU observations, the estimation problem also contains the
acceleration and gyroscope bias of the IMU (Groves, 2013),
defined with

bj =
[
bax,j , bay,j baz,j bωx,j , bωy,j bωz,j

]T (3)

indexed with j. The set of all states to be estimated is summar-
ized by

VK =
{
X = {xe

i}Ni=0 ,B = {bj}Mj=0

}
(4)

where N and M highlight the total number of navigation states
and IMU bias variables. To estimate the variables of Equation
4, absolute position measurements are often fused with the re-
lative IMU observations using Kalman filter algorithms, but
modern methods such as factor graphs are also commonly used
(Dellaert, 2012). In this work, we use a factor graph-based ap-
proach, as it enables both a flexible integration of new sensor
observations and smooth trajectory estimates.

Factor graphs are an illustrative presentation of the state op-
timization problem and consist of nodes and factors. The
nodes represent the unknown variables of the trajectory and
the IMU bias, and the factors describe the functional relation-
ship between the sensor observations and unknown variables.
Figure 2 shows the factor graph of our estimation problem, in-
cluding factors for the sensor measurements of the RTS, GNSS
and IMU and the variables for the navigation states and bias
variables. Assuming the normal distribution for the sensor
observation, the parameter estimation problem can be writ-
ten as a least-squares optimization problem, see Eq. 5, where
the functions f are non-linear error functions of the sensor
measurements and unknown parameters VK . To obtain the
parameters in a least-squares adjustment, the Jacobians of the
error functions are computed to set up a normal equation system
that can be solved to estimate the unknown variables. In the fol-
lowing, the error functions of our factor graph are introduced,
followed by the description of the least-squares optimization.

The IMU factor fIMU
ij (ni,nj ,bq, z

IMU
i ) describes the error

function of the process model. It depends on the consecutive
trajectory states ni and nj , the bias bq and the IMU measure-
ments zIMU

i = {ai,ωi}. The measured specific force

Figure 1. Direct georeferencing pipeline, that transforms laser scan data into a global reference frame.
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Figure 2. Factor graph representation of the trajectory estimation.

V∗
K = argmin

VK

{
K∑
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∥f IMU
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h

}
. (5)

ai = [ax,i, ay,i, az,i]
T (6)

and the angular velocity

ωi = [ωx,i, ωy,i, ωz,i]
T (7)

are used to propagate the navigation state nj in time by integ-
ration. Since the update rate of IMU is typically very high,
so-called pre-integrated measurements are used as described
in Kaess et al. (2012) to reduce the computational cost. The
position factor fPos

i (ni, z
Pos
i ) computes the error between the

predicted and the observed position measurement, while tak-
ing into account the lever-arm between the GNSS antenna and
the body frame. The absolute position measurement zPos

i can
be both the GNSS measurement zgGNSS or RTS measurement
zRTS
h . This results in the GNSS factor fGNSS

g (ng, z
GNSS
g ) and

the RTS factor fRTS
h (nh, z

RTS
h ), where the indices g and h refer

to the specific time steps corresponding to their associated nav-
igation states. The IMU bias factor fbias

q (bq−1,bq) models
the temporal changes of the biases as a random walk process
between two time steps q − 1 and q. For more details about
the bias factor, we refer to Kaess et al. (2012). The prior factor
f prior contains start values for the navigation state n0 and the
priors on the bias variables b0. The factors are used to formu-
late the least squares optimization representation in Equation
5. For the optimization, the factor nodes are linearized, and
a system of normal equations is constructed. Using the error
functions, the pose and bias parameters are estimated through
global optimization. For parameter optimization, we use the
incremental smoothing and mapping algorithm (Kaess et al.,
2012) implemented in the ’GTSAM’ library (Dellaert, 2012),
as it efficiently optimizes the minimization problem of Eq. 5.

2.3 Measurement Platform and Data Processing

The UAV laser scanning system is manufactured by RIEGL
(RIEGL, 2021). The IMU (Applanix APX20-UAV) is micro-
electromechanical system (MEMS) based and consists of two
triaxial sensors: an accelerometer to measure acceleration and
a gyroscope to capture angular velocities. It has an update rate

Figure 3. Sensor setup with the additional Leica 360◦ prism.

of 200 Hz and is located behind the scanner, as shown in Fig-
ure 3. The raw IMU data is later used to estimate the trajectory.
The APX-20 UAV also includes a built-in GNSS receiver. The
antenna is located on top of the drone and mounted on a strut.
The GNSS observations are processed in the software Applanix
POSpac using data from a reference station for the baseline pro-
cessing, creating output with a rate of 1 Hz and the typical
accuracy of several centimeters. These positions are used for
comparison and evaluation purposes further below.

The LiDAR sensor is a RIEGL mini-VUX, which is a 2D light-
weight high-precision profile scanner. It measures on a 360◦

field of view with an accuracy of 1.5 cm at a distance of 50 m
(RIEGL, 2021). It is mounted on the front of the UAV.
A Leica 360◦-mini prism is attached to the bottom of the
IMU (see Figure 3) and is tracked by the RTS (Figure 5).
The RTS is a Leica TS60, which offers a tracking accur-
acy of 3 mm + 1 ppm (Leica Geosystems AG, 2016). In
addition, the accuracy of the prism has to be taken into ac-
count, which is at 1.5 mm (Leica Geosystems AG, 2025).
Empirical investigations indicate a standard deviation around
1.5mm of the RTS and prism combination.To successfully in-
tegrate the RTS measurements into trajectory estimation, all in-
volved sensors must be synchronized. The IMU and LiDAR
data are recorded on the drone itself and refer to UTC-time. For
the RTS data, we use a GPS-synchronized Raspberry Pi single
board computer, which has already been used in Tombrink et al.
(2025). This provides every RTS measurement with a GPS time
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stamp. Taking leap seconds into account, we convert these time
stamps to UTC-time, ensuring that all sensors involved refer to
the same time system.
The position and orientation of the RTS is georeferenced using
standard geodetic procedures such as resection. The local RTS
polar measurement angles and distances are thus transformed
into coordinates, which are given in the same coordinate sys-
tem as the GNSS. The RTS based prism coordinates are now
combined with the IMU data using the factor graph based al-
gorithm as described in section 2.2. The trajectory, the previ-
ously determined system calibration parameters and the scan-
ner data are then integrated to generate a georeferenced point
cloud as described in section 2.1, using the ’Orientation and
Processing of Airborne Laser Scanning data (OPALS)’ toolbox
(Pfeifer et al., 2014).

3. Experiments

We performed a measurement and evaluated the results to
demonstrate the general functionality of the system and its im-
proved performance with respect to a GNSS-based solution.

3.1 Measurement Setup

The measurement data were collected at a geodetic research
campus. The site contains a reference environment for mo-
bile sensing systems (Heinz et al., 2020), which includes a
very accurate geodetic network, several concrete pillars, a set
of ground and wall mounted target points, as well as several
buildings and structures, which are accurately scanned using
terrestrial static scanners. As shown in Figure 5, the RTS is at-
tached to a pillar with known coordinates. It is connected to a
Raspberry Pi computer for control, data readout and data syn-
chronization. It is very important to operate the drone in the line
of sight between RTS and prisms, to receive continuous reliable
data. This of course limits the flexibility of UAV laser scanning
and the usability of this approach and must be taken into ac-
count. We performed four times the same flight line, parallel
to the long wall of a building, two times in each direction. The
resulting point cloud can be seen in Figure 4. We calculated two
different trajectory solutions, both using the factor graph based
estimation algorithm as described in section 2.2. One solution
uses the GNSS positions from the antenna on the UAV in com-
bination with the IMU data, and the other ones uses the prism
positions and the IMU. These trajectory solutions are then fed

into OPALS to generate two different point clouds of the test
environment.

Figure 5. Leica TS 60 (left), on a precisely coordinated pillar
tracking the UAV(right).

3.2 Evaluation

We evaluate the results on three ways. One is by comparing
the two trajectories directly, a second by analyzing the inner
consistency between the different flight lines, and a third is by
comparing the resulting point cloud with previously recorded
reference cloud.

3.2.1 Trajectory Level To evaluate the trajectories we show
the position differences between the GNSS-based and the RTS-
based trajectory in Figure 6. The differences for all directions
are in a the range of ±5 cm. However, the deviations in North
and East are between −2 and 2 cm and clearly smaller than
in the height direction.It is not clear, where exactly the devi-
ations come from and which of the two options is correct. How-
ever, we can already see that the height component has more
systematic deviations, which is also what we expect generally
from GNSS-based position measurements. We also see, that the
North and East deviations are less systematic and also within
the range of the expected GNSS deviations. For all directions,
possible system calibration uncertainties, for example in the
lever arm between the antenna or the prism and the IMU, have
an influence on the result. To further analyze the differences
we use the point clouds, generated with the trajectories and the
scanner readings. Due to clear significance of the height com-
ponent, we also focus on this during the following evaluation.

Figure 4. Point cloud calculated using the RTS positions, colored by intensity. The white arrows show the flight lines and the
approximate position of the RTS is marked.
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Figure 6. Position differences between the GNSS based and the
RTS based trajectory, the dotted vertical line separates single

flight strips.

3.2.2 Point Cloud Level The following paragraphs focus
on the evaluation on the point cloud level. They are divided
into the analysis of the consistency of the different flight strips
and the absolute accuracy using a reference TLS scan.
Consistency We generated a digital height model of the envir-

onment for each of the eight flight lines using OPALS (Pfeifer
et al., 2014) and plottet the differences between the models in a
single plot (see Figure 7). The differences are color-coded on a
scale from −10 to 10 cm. The area of interest is the area in front
of the building. The left part of the Figure is the GNSS-based
point cloud and the right part is the RTS-based point cloud dif-
ference map. The height differences on the left in Figure 7 show
that the GNSS based flight strips point clouds differ by a differ-
ent but constant offsets. This offset changes with every flight
strip between −6 and 8 cm on the ground.
We also see differences in the vegetated roofs and the green
verge, because the vegetation distorts the results. These effects
therefore also occur in the RTS-based point cloud. However,
in non-vegetation areas there are no systematic offsets between
the flight strips visible for the RTS-based clouds. The visual
results are supported by the histograms in Figure 8, that show
the distribution of height differences in the point clouds occur-
ring between the flight strips. Especially the standard deviation
of the RTS based point cloud, which is smaller than the accur-
acy of the scanner, shows the significant improvement of the
consistency when using RTS positions.

(a)

(b)

Figure 8. Histogram of point cloud height differences between
different flight strips. a) GNSS-based trajectory, b) RTS-based

trajectory.

Figure 9 shows the differences between individual flight strip
for the case of the GNSS-based point clouds. Although it is
very difficult to analyze the exact origin of the offsets, which is
also beyond the scope of this paper, it is interesting to observe,
that the offset remains somewhat constant during every flight
strip and that the flight strips with the same flight direction also
have a similar offset (see b and e). This is also consistent with
the trajectory level evaluation in Figure 6.

Figure 7. Pairwise height differences between multiple measured GNSS trajectory based point clouds (left, symbol: satellite) and
multiple RTS trajectory based point clouds (right, symbol: total station).
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(a) (b) (c)

(d) (e) (f)

Figure 9. Differences between GNSS based flight strips: (a)
Strip 1 vs. 2, (b) Strip 1 vs. 3, (c) Strip 1 vs. 4, (d) Strip 2 vs. 3,

(e) Strip 2 vs. 4, (f) Strip 3 vs. 4, scale in Figure 7.

Absolute Accuracy Figure 10 shows the M3C2 (Lague et al.,
2013) differences between a TLS point cloud and two UAV
point clouds. A Leica ScanStation P50 was used to record a
reference TLS point cloud. It was georeferenced using scan tar-
gets, whose coordinates where very accurately determined us-
ing a geodetic network. Therefore, we expect a significantly
higher accuracy compared to a kinematically recorded point
cloud. The reference TLS point cloud is now compared to both
UAV point clouds of the first single flight strip.

The point cloud on the left is based on the trajectory estimated
with GNSS positions, and the point cloud on the right is based
on RTS positions. The slightly blue colored front of the build-
ing has been added to generate the context for the data, but has
not been considered in the comparison. The area of interest
for the comparison is shown as the dark blue area in front of
the building in figure 11 Some parts are cut out, because the
TLS point cloud was staggered in time to the UAV point cloud,
which led to the appearance of moving vehicles in the invest-
igated area, which were not in both point clouds. The M3C2
differences are colored in the point cloud according to the scale
on the right to each point cloud, ranging from 0 and 8 cm. We
chose to only show a single flight strip in this analysis, because
the difference between the strips has been already shown before
and too many inconsistent data would have made an interpreta-
tion of the results more difficult.

The differences computed with the GNSS based point cloud
vary between 2.5 and 7.5 cm. A maximum can be seen around
6.3 cm. More peaks appear around 4.5cm. That shows an un-
steady distribution, which can also be seen in the point cloud on
the left, where variations in the differences along the direction
of flight are visible. Of course, the differences would look dif-
ferent, when choosing a different flight strip.

The same scan data were used in the right part of the Fig-

Figure 11. Measurement environment. Blue area shows M3C2
comparison location.

ure, this time using the RTS-based trajectory. The deviations
are in a smaller range between 1.3 and 4 cm with the most
differences around 2.5 cm is visible. Contrary to the GNSS-
based point cloud, there are no variations along the flight line.
A very slight gradient is visible in the bottom right area per-
pendicular to the flight direction, which might be result of a
boresight angle error or a systematic error in the roll angle of
the trajectory estimation. The constant offset between the UAV
based point clouds and the TLS based point clouds could have
several reasons.An error in the z-component of the lever-arm
between the scanner and the IMU or the prism influence the ab-
solute height of the point cloud directly and cannot be detected
by multiple measurements. In principle also other offsets in the
geodetic network, the georeferencing of the RTS or in general
the height system used here are possible. However, as this off-
set is constant and small over the whole measurement we do
not consider it as a result of the method presented in this work.
The results show the benefit of the use of RTS positions for
UAV laser scanning. This benefit even occurs in environments
with good GNSS conditions, like at our research site. Higher
reliability of the trajectory and the point clouds with respect to
absolute positions is confirmed, and smoother point clouds with
fewer variations are created.

Figure 10. M3C2 distances from a single GNSS(left)- and a single RTS(right)-based point cloud strip to the TLS reference.
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4. Conclusion

In this paper, we presented an approach to increase the
reliability of the trajectory estimation for UAV-based laser scan-
ning. Our method extends the UAV platform by attaching a
prism that can be precisely tracked using a ground-based RTS.
This allows us to successfully increase the point cloud’s inner
and absolute accuracy. In comparison to a GNSS based ap-
proach, the inner consistency improved by up to 6 cm.

We implemented and evaluated our approach on trajectory and
point cloud level and provided a comparison to a reference TLS
point cloud. The experiments suggest that using an RTS is
promising, especially in challenging GNSS environments such
as a water dams and for applications where high-precision data
are required.
Further research can improve the approach by using the Prism
in combination with GNSS to support the estimation of the yaw.
It is also possible to add another prism to the system, which
is tracked by a different RTS to further optimize the yaw’s
accuracy. A case study in an environment with challenging
GNSS conditions can further confirm the benefit of our ap-
proach.
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