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Abstract

While UAVs have revolutionized data collection for remote sensing, the practical application of Deep Learning remains severely
limited by the scarcity of labelled training data, creating a stark contrast between laboratory successes and field performance. This
research investigates whether transfer learning techniques can overcome this "small data problem" by enabling UAV-based deep
learning models to generalize effectively across diverse environments without requiring prohibitive amounts of labelled examples.
We present the use of an efficient self-supervised learning framework (FastSiam) tailored specifically for multispectral UAV
imagery to overcome this generalization gap. Our approach enables effective feature learning without requiring extensive labelled
data, bridging the gap between the potential of foundation models and the resource constraints of UAV remote sensing applications.
We evaluate our method on a vineyard segmentation task across multiple geographic locations, demonstrating that models with
FastSiam pretrained backbones significantly outperform their end-to-end trained counterparts, even with extremely limited labelled
data. The most sophisticated architecture tested, Swin-T with a pretrained backbone, achieved an average F1 score of 0.80 across
diverse test sites, showcasing robust generalization capabilities. Importantly, our results show that pretrained models benefit more
from diversity in training samples than from sheer volume, suggesting new pathways for efficient model development in UAV
applications. This work establishes that self-supervised pretraining serves as an effective regularizer for remote sensing tasks.
Pretraining limits overfitting and improves generalization across varying environmental conditions, whilst requiring only modest

computational resources, making advanced Deep Learning techniques more accessible for practical UAV applications.

1. Introduction

Uncrewed Aerial Vehicles (UAVs) have emerged as powerful
tools for data collection across numerous applications within the
remote sensing community (Toth & Jozkéw, 2016). Their
flexibility, relatively low operational costs, and ability to
capture high-resolution, spectral imagery have made them
invaluable for environmental monitoring, precision agriculture,
infrastructure inspection, and disaster response (Doornbos et al.,
2024).

Despite the ease of raw data that UAVs can collect, a significant
challenge persists in the field: the "small data problem"
(Safonova et al., 2023). While UAVs can generate substantial
volumes of multispectral imagery, the labelled datasets required
for supervised learning approaches are typically limited in size.
This limitation stems from the resource-intensive nature of data
annotation, which often requires domain expertise (Gao et al.,
2022), substantial time investments and cost (Elezi et al., 2022).
The small data problem becomes particularly evident when
implementing Deep Learning-based (DL) approaches for UAV-
based remote sensing applications. DL approaches, with their
significant number of parameters, are inherently data hungry
(Simonyan & Zisserman, 2014). When trained on limited
supervised datasets, these models tend to overfit to the training
examples rather than learning generalizable patterns. This
results in models that perform well on the specific conditions
represented in the training data but fail to maintain performance
when applied to new scenarios or locations (Goldblum et al.,
2023). This generalization challenge substantially limits the
practical utility of sophisticated UAV-based remote sensing
applications. While academic publications may report
impressive accuracy metrics, these results often do not translate
to real-world implementations (Diez et al. 2021). Models
trained in controlled research environments struggle to perform
consistently across varying conditions, including changes in

illumination, seasonality, geographic locations, or sensor
characteristics (Doornbos et al., 2025).

The popularity of DL however is exactly due to its ability of
generalization. For example, the Segment Anything Model
(SAM) from Meta Al (Kirillov et al., 2023) is trained on over 1
billion masks across 11 million images, SAM demonstrates
zero-shot transfer capabilities—it can segment objects in images
without specific training on those particular objects or scenes.
Similarly, text-to-image generative models like Stable Diffusion
showcase DL’s capability to internalize visual concepts and
generate novel images across an astounding range of styles and
content. Diffusion models learn latent representations of visual
information that capture both the structural and semantic
properties of images. In another Meta Al model, DINOv2
leverages a self-distillation approach with no labels to learn
rich, transferable visual representations (Oquab et al., 2023).
Trained on a diverse dataset of over 142 million images without
any labels, DINOv2 demonstrates that DL models can develop
sophisticated visual understanding through carefully designed
self-supervision objectives. Whilst these examples from the
broader computer vision domain can learn representations that
generalize across domains, it also illustrates a need for sufficient
data, architectural sophistication, and training methodologies.
The gap for DL in UAV remote sensing stems from two critical
missing components: comprehensive multispectral UAV
datasets and efficient self-supervised learning approaches
tailored to UAV remote sensing imagery (Doornbos & Babur,

2025).
The contribution of this work is therefore as follows:
. Showcasing efficient self-supervised pretraining
on a large-scale, diverse UAV multispectral
dataset;

. Determining the effectiveness of the pretraining
process on task-specific evaluation.
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Figure 1. Methodology overview, with backbone
pretraining using msuavi 00k, and the
segmentation task finetuning.

The paper is structured as follows: Section 2 will present the
pretraining dataset, the self-supervised learning approach and
task-specific evaluation. Section 3 will demonstrate the
effectiveness of pretraining on a typical segmentation task.
Section 4 will discuss the implications and limitations of the
findings. Section 5 concludes with a pathway forward.

2. Background

There are many different vision DL architectures to choose
from, as well as different techniques to train them. This
background section introduces the concepts of pretraining,
backbones and self-supervised learning.

2.1 Pretraining backbones

The best performing image-based DL architectures are
constructed of a backbone and a head, sometimes denoted as
encoder and decoder. The backbone serves to extract all the
important features from the image, and the head serves to
execute a specific task. Goldblum et al., (2023) conducted over
1,500 training runs to evaluate a wide range of backbone
architectures (including Convolutional Neural Networks, Vision
Transformers, and hybrid models) with various pretraining
methods (supervised learning, self-supervised learning, and
vision-language training) across multiple tasks (classification,
object detection, segmentation, retrieval, and out-of-distribution

generalization). Their method involved standardized evaluation
protocols with consistent hyperparameter optimization across all
backbones to ensure fair comparisons. Key findings revealed
that supervised ConvNeXt and SwinV2 architectures trained on
large datasets performed the best overall, though self-supervised
models showed competitive performance when compared on
equal-sized pretraining datasets. The study also found that
performance correlates strongly across different tasks,
suggesting the emergence of universal vision backbones, and
that transformers benefit more from increased scale than
convolutional networks. Finally, when reducing to smaller
models, more assumptions in the network architecture often
increases accuracy, benefitting less from large amounts of data.

2.2 Self-supervised learning

The core idea behind self-supervised learning is to define a
pretext task that the model can solve without external
supervision (Chen et al., 2024). Common pretext tasks include
predicting missing parts of an image, determining the relative
position of image patches, or recognizing applied
transformations like rotations, through a prediction and
projection head. By solving these tasks, the model learns
general features that can be transferred to downstream tasks like
classification or segmentation.
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2.2.1  Siamese Networks

Siamese networks are a specific architecture used in self-
supervised learning that consists of two identical neural
networks with shared weights. These twin networks process
different views or transformations of the same input data and
are trained to produce similar representations for related inputs
and dissimilar representations for unrelated inputs.

The original SimSiam (Chen & He, 2020) approach uses simple
Siamese architecture without negative pairs. It takes two
augmented views of the same image, processes them through
the twin networks and applies a stop-gradient operation over the
projection network to prevent representation collapse. This
approach demonstrates that contrastive learning doesn't
necessarily require negative samples or momentum encoders to
learn meaningful representations.

2.2.2  FastSiam:

FastSiam (Pototzky et al., 2022) builds upon the SimSiam
framework but introduces several optimizations to make it more
efficient and effective, optimizing for small batch sizes and
limited computational resources. FastSiam employs multiple
views of the same image. This multi-view approach effectively
samples from a distribution with the same mean but reduced
variance, helping to avoid outliers in the training process. This
stabilization leads to faster convergence—FastSiam typically
requires only 25 epochs compared to SimSiam's 100+ epochs to
achieve comparable performance.

The fundamental insight of FastSiam is that averaging multiple
samples reduces the standard error of the mean, creating more
stable learning targets. This simple but effective modification
allows for training with smaller datasets, fewer epochs, and
limited computational resources while maintaining competitive
performance compared to more resource-intensive approaches.

3. Methodology

This section outlines our approach to addressing the “small data
problem” in UAV-based remote sensing through self-supervised
learning. Figure 1 showcases the employed methodology,
starting with the pretraining dataset msuav00k, which is solely
used for pretraining a feature extractor using the FastSiam
method. This results in robust pretrained features. Using
vineyard segmentation as a task, we trained a vineyard
segmentation model using the pretrained backbone (kept frozen
during training) and a randomly initialized backbone (not frozen
during training). The models were compared using different
training data regimes to assess generalization. The methodology
is structured as follows: Section 3.1 covers the pretraining
dataset msuavi00k, Section 3.2 presents our implementation of
FastSiam, Section 3.3 shows the vineyard segmentation dataset
and training splits, Section 3.4 explains the design choices for
the segmentation head.

3.1 Pretraining dataset: msuavl00k

Figure 2. 25 sample false colour images from msuav100k.

The pretraining dataset employed was msuav100k. This dataset
was compiled from a systematic online search of open-access
data repositories, this collection encompasses 28 diverse
datasets with imagery containing at least four spectral bands
(Green, Red, RedEdge, and Near-Infrared). The dataset
incorporates multispectral imagery captured by various sensor
types including DJI Mavic 3M, DJI Phantom 4 Multispectral,
Parrot Sequoia, MicaSense RedEdge, and MicaSense Altum/PT.
Included datasets feature diverse applications and settings, such
as vineyards and blueberry fields, mining waste, olive groves,
rivers and more. A summary of these datasets is presented in
Appendix I The total of 63,000 included images were
radiometrically corrected and aligned per band if needed,
afterwards they were cut into 512x512 patches, resulting in a
total of 104,840 image chips.! Some examples of the chips are
shown in false colour in Figure 2.

3.2 FastSiam pretraining

The intention of the FastSiam pretraining task is to train a
robust feature extractor for downstream tasks. For this study,
two different feature extractor architectures were selected:
ResNetl18 (He et al., 2015) and Swin Transformer (Liu et al.,
2021). ResNetl8 is a lightweight convolutional neural network
with 11.2M parameters that employ residual connections to
mitigate the vanishing gradient problem. It consists of 18 layers
organized into 4 major blocks with progressively increasing
channel dimensions (64, 128, 256, 512) and decreasing spatial
resolution. Each residual block contains two 3%3 convolutional
layers with batch normalization and ReLU activations.
ResNetl8 offers a good balance between computational
efficiency and performance, making it suitable for resource-
constrained environments while still providing strong feature
extraction capabilities. Swin Transformer (Tiny) is a
hierarchical vision transformer with 27.5M parameters that
processes images using shifted windows of self-attention. It
operates progressively by merging neighboring patches at each
stage, creating a hierarchical representation with 4 stages of
different feature resolutions. Each stage contains Swin

! This 100GB dataset is planned to be open source licensed, in
the meantime, it is available upon request.
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Transformer blocks with shifted window-based multi-head self-
attention and MLP layers. The "tiny" variant uses a base
dimension of 96 channels which expands through the network
(96, 192, 384, 768). Swin-T's window-based attention
mechanism  reduces computational complexity  while

maintaining the transformer's ability to model long-range
dependencies. In theory, Swin-T provides stronger feature
extraction than ResNet18 as there are more parameters and less
convolutional assumptions. Larger backbone networks were out
of scope for the available resources.

Figure 3. Three of the same input images with combinations of
the augments: flip, spectral shift, noise, blur and zoom.

FastSiam uses augmentations for the projection and prediction
heads. The selected augmentations for this study were randomly
applied to the input images with a 50% chance. Augmentations
included random resized crop, horizontal and vertical flip,
gaussian blur, gaussian noise, brightness, and spectral increase
or decrease, see Figure 3 for an example. Additional training
parameters are shown in Table 1. Training was performed with
an NVIDIA GTX1660Ti 6GB, for a duration of 5 hours for the
ResNet18 model, and 52 hours for Swin-T-tiny?.

Table 1. FastSiam training settings.

Parameter Setting

Epochs 2

Learning rate 0.02

Optimizer SGD with Cosine
Annealing learning rate

decay

Weight decay 0.0001

Batch size 32

Input channels 4

Projection head 2048 — 256

Prediction head 256 — 128 — 256

Backbone ResNet18, Swin-T-tiny

3.3 Vineyard segmentation dataset

To evaluate the effectiveness of a pretrained backbone, the task
of vineyard row segmentation was chosen. Vineyard row
segmentation, while not the most challenging task in
agricultural computer vision, serves as a good demonstrator for
investigating vision DL model optimization and generalization
characteristics for UAV applications. The dataset to support this
task is from Barros et al (2022). This dataset is based on three
distinct vineyards located in the central region of Portugal:
Valdoeiro, Quinta de Baixo (further referred to as QBaixo), and
Esac (which is further divided into two plots: Esacl and Esac2).
This dataset was specifically created for multispectral vineyard
segmentation research. This dataset is not part of msuavi00k.

The data was captured using a DJI drone equipped with a dual
imaging sensor payload: a high-definition RGB camera (DJI
Zenmuse X7 with 6016x4008 resolution) and a five-band

2 Al code and weights are available on

https://github.com/jurriandoornbos/multi_ssl

multispectral and thermal camera (Micasense Altum, capturing
Red, Green, Blue, Red-Edge, and Near-Infrared bands at
2064%1544 resolution, plus a thermal band at 57x44 resolution).
Each vineyard was surveyed at different times and altitudes:

e FEsacl & Esac2: Surveyed October 2022 at 120m
altitude (2.5cm GSD) post-harvest. 2.3ha vineyard
planted in 1999 on sloping terrain (2°-5°) at 28m
elevation. Cultivars: Alfrocheiro, Aragonez, Touriga
Nacional, Marselan. Density: 2,800-3,400 vines/ha.

e Valdoeiro: Surveyed April 2022 at 60m altitude
(1.25cm GSD) during early growth. 2.9ha vineyard
planted in 2005 on flat terrain (<2°) at 99m elevation.
Cultivar: Baga. Density: 3,200 vines/ha.

e Quinta de Baixo: Surveyed July 2022 at 70m altitude
(1.45cm GSD) during advanced growth. 3.2ha
vineyard planted in 2002 on sloping terrain (2°-5°) at
90m elevation. Cultivars: Syrah, Pinot, Baga. Density:
4,400 vines/ha.

Figure 4. False color sample imagery from Esac2, Valdoeiro
and QBaixo respectively. The vineyards show different
vegetation and soil structure and angle.

The collected raw images were processed to generate
orthomosaics and digital surface models (DSMs) for each
vineyard. The HD images were used to create both HD
orthomosaics and DSMs, while the multispectral images
underwent radiometric corrections including vignetting, dark
pixel offset, and conversion to reflectance space using
calibration panels.

The dataset includes annotated segmentation masks for binary
classification, where pixels belonging to vine plants are labelled
as positive class (1) and the rest as negative class (0). For the
experiments, the orthomosaics were divided into 224x224 pixel
sub-images (e.g. chips), see Figure 4 for some example chips.
Esacl was used for training. Esac2 was used for selecting the
best model from training. Whilst for testing, Valdoeiro and
Qbaixo were used. One chip of each set was also kept back for
testing one-shot training performance. For an overview of splits
and chips, table 2 is provided.

e Train-all: The highest number of images, all from
Esacl.

e Train-1: Uses only a single image from Esacl to
evaluate single-shot learning performance under
extremely limited data conditions.

e Train-vary: Designed to investigate whether model
performance benefits more from data quantity (7rain-
all) or diversity, comparing results when trained on
varying vineyard examples.

Table 2. Dataset splits for vineyard segmentation task.

Esacl Esac2 Valdoeiro  QBaixo
Total chips 96 97 157 141
Train-1 1 0 0 0
Train-all 96 0 0 0
Train-vary 1 0 1 1
Validation 0 97 0 0
Test-V 0 0 156 0
Test-Q 0 0 0 140
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3.4 Segmentation task head design

The architecture employed for this segmentation task followed
an encoder-decoder ‘U-Net’ structure with skip connections
between corresponding encoder and decoder layers (purple and
blue sections in Figure 5 respectively). These skip connections
are vital as they allow the model to preserve fine spatial details
that might otherwise be lost during downsampling.

Despite sharing the same segmentation head design, the
implementation varies between the two backbone models. The
ResNet18-based model features a segmentation head with 3.9
million parameters, while the Swin Transformer version has a
larger head comprising 8.5 million parameters. This difference
in parameter count reflects the size in output feature dimensions
inside the respective backbone layers.

For different experiments on the effectiveness of pretraining,
the weights from the pretrained backbone were used in the
encoder and the whole backbone was kept frozen, or the
backbone was randomly initialized with full end-to-end updates
of the weights during training.
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Figure 5. Segmentation head architecture diagram. A 4-channel
multispectral image is passed into the encoder backbone, and
through every feature dimension is decoded into a segmentation
mask. Backbone encoder in purple dotted block, whereas the
decoder head is in the blue dotted block.

Task training was performed on the same machine as FastSiam.
Different experiments were performed: varying the training
dataset between Train-1, Train-all and Train-vary, varying the
backbone between ResNetl8 and Swin-T-tiny, and varying
between a frozen, pretrained FastSiam backbone, and a
randomly initialized fully trainable backbone. Additional
training settings are presented in Table 3. Every trained model
was evaluated on the same test-sets: Test-V and Test-Q, with
F1-scores being tracked for each image, calculating the mean
and standard error over the test set. Using these metrics, a t-
statistic and p-value was measured between the pretrained and
end-to-end model, assuming a normal distribution. Finally, like

Barros et al. (2022), a RandomForest was trained on the same
dataset as a baseline comparison.

Table 3. Segmentation head training settings.

Parameter Setting

Epochs 300

Learning rate 0.0003
Optimizer SGD

Weight decay 0.0001

Batch size 8

Input channels 4

Backbone ResNet18, Swin-T-tiny

4. Results

The results contain the accuracy scores for two different
backbone architectures: ResNetl8 and Swin-T-Tiny. These
backbones were pretrained or randomly initialized. For self-
supervised pretraining, FastSiam was used. In FastSiam, the aim
of the model is to make augmented images close in feature
space to their source image. As the name suggests, the
msuavl00k contains 100,000 images. These images were used
to train the backbone. Two full epochs on the data resulted in
around 6400 training steps. The negative cosine similarity loss
is shown in Figure 6. After half the training time: 3200 steps
(one epoch), both the backbones have already achieved their
optimum. This indicates that even though it is the most
comprehensive multispectral dataset, the models can capture the
variance quickly, many of the images in msuav100k look very
similar.

3k 4k

Figure 6. Train loss FastSiam over training steps (time), green
line is ResNet18, orange line is Swin-T-tiny. ResNet18 drops
significantly quicker to below -0.8 negative cosine similarity.

We evaluated these models across three distinct training
regimes to understand performance patterns when applied to
different vineyard test sites.

Our experimental design incorporated varying training datasets:
Train-all (comprehensive dataset), Train-1 (single image
training), and Train-vary (diverse samples), enabling direct
comparison between dataset size and variety effects. We
examine end-to-end trained models against those using
pretrained FastSiam backbones, while also including Random
Forest as a traditional machine learning baseline.

The following results demonstrate how model performance
varies across different vineyard conditions, highlighting the
impact of pretraining as well as data characteristics on
segmentation accuracy. Importantly, we find that variety of data
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is more important than dataset size, especially when the
backbone is already pretrained.

4.1 Evaluation on Train-all

Table 4. Model F1 score results for Train-all subset. ‘ee’
denotes an end-to-end trained model, ‘bb’ denotes a pretrained
FastSiam backbone.

knowledge transfer that helps mitigate the severe data
limitation. Even though pretrained is shown to be better, the
model outputs are not useable at F1-scores well under 0.7.

4.3 Evaluation on Train-vary

Table 6. Model F1 score results for Train-vary subset. ‘ee’
denotes an end-to-end trained model, ‘bb’ denotes a pretrained
FastSiam backbone.

Esac2 Valdoeiro QBaixo Mean Esac2 | Valdoeiro QBaixo Mean
ResNet18-ee 0.44 0.61 0.46 0.53 ResNet18-ee 0.59 0.67 0.26 0.47
ResNet18-bb 0.75%* 0.85* 0.59* 0.72%* ResNet18-bb 0.57 0.76* 0.68* 0.72*
Swin-T-ee 0.49 0.69 0.52 0.60 Swin-T-ee 0.80 0.75 0.62 0.69
Swin-T-bb 0.56* 0.83* 0.42 0.63* Swin-T-bb 0.79 0.82* 0.78* 0.80*
RandomForest 0.81 0.8 0.06 0.43 RandomForest | 0.42 0.86 0.72 0.79

“*’ Indicates a statistically significant (p-value < 0.01)
improvement of using the pretrained backbone.

Table 4 presents the F1 scores for models trained on the Train-
all subset and tested across three vineyard sites. The results
demonstrate a clear performance advantage when using
pretrained FastSiam backbones compared to end-to-end training
approaches.

For ResNetl8, the pretrained backbone ('bb') achieved
significantly higher F1 scores across all testing sets, with an
average improvement of 19 percentage points over its end-to-
end (‘ee') counterpart. Similarly, the Swin-T architecture
showed statistically significant improvements with pretraining
on two of the three test sites.

It's particularly noteworthy that while Esac2 comes from the
same flight mission as the training data (Esacl), the pretrained
backbones still delivered substantial performance gains even in
this scenario where domain shift is minimal. This suggests that
the self-supervised pretraining captures fundamental vineyard
features that benefit segmentation regardless of data similarity
to the training set.

The conventional RandomForest classifier performed
competitively on the Esac2 and Valdoeiro sites but failed
dramatically on Quinta de Baixo, highlighting its poor
generalization to more distinct vineyard conditions.

4.2 Evaluation on Train-1

Table 5. Model F1 score results for Train-1 subset. ‘ee’ denotes
an end-to-end trained model, ‘bb’ denotes a pretrained FastSiam

backbone.
Esac2 | Valdoeiro QBaixo Mean
ResNet18-ee 0.78 0.44 0.17 0.33
ResNet18-bb 0.74 0.49* 0.26%* 0.38%*
Swin-T-ee 0.63 0.77 0.36 0.57
Swin-T-bb 0.8* 0.70 0.39%* 0.55
RandomForest | 0.76 0.73 0.62 0.67

“*? Indicates a statistically significant improvement of using the
pretrained backbone.

Table 5 shows the F1 scores for models trained using only a
single image from Esacl. This extremely limited training
scenario reveals that just one labelled image is only sufficient
when the application target (Esac2) comes from a very similar
domain as the training data. Both ResNetl8 and Swin-T
architectures achieve relatively high F1 scores (0.74-0.80) on
Esac2, but their performance degrades substantially when tested
on the more distinct Valdoeiro and Quinta de Baixo vineyards.

Interestingly, the pretrained FastSiam backbones ('bb') show
statistically significant improvements over end-to-end training
(‘ee’) on the more challenging test sites, particularly for
ResNetl8 on both Valdoeiro and Quinta de Baixo. This
suggests that self-supervised pretraining provides valuable

“*? Indicates a statistically significant (p-value < 0.01)
improvement of using the pretrained backbone.

Table 6 presents the F1 scores for models trained on the Train-
vary subset, confirming the previous patterns observed across
different training regimes. Pretrained FastSiam backbones ('bb')
consistently outperform their end-to-end (‘ee') counterparts, with
statistically significant improvements on the more challenging
Valdoeiro and Quinta de Baixo test sites. This pattern holds true
regardless of the amount of training data, reinforcing that the
diversity and similarity to application data are more important
than sheer volume of training examples.

Most notably, the Swin-T architecture with pretrained backbone
achieves the highest mean F1 score (0.80) across all test sites,
outperforming all other models. The superior performance of
the most complex pretrained backbone is consistent across all
training regimes, highlighting that in low-data scenarios,
transformer-based architectures with self-supervised pretraining
can effectively leverage their representational power without
overfitting.

The RandomForest classifier shows strong performance on
Valdoeiro and Quinta de Baixo but struggles significantly on
Esac2, indicating that the increase in diversity of the training
dataset is too much for the model to capture.

5. Discussion

The results from Train-all and Train-vary demonstrate that
models with a frozen backbone obtained through FastSiam
pretraining  exhibit superior generalization capabilities
compared to those with random initialization. Additionally, the
largest model has the best performing scores.

5.1 Pretraining as a regularizer

During the segmentation training task, only the model head
receives gradient updates while the pretrained backbone
remains fixed. The pretrained backbone has already developed
robust feature representations from a much larger dataset,
allowing it to identify key patterns. Consequently, similar
features such as vineyard rows trigger consistent outputs from
the segmentation head, suggesting that vineyard-row detection
represents a learnable concept across different locations.
Therefore, the pretrained backbone acts as a strong regularizer
during training. This approach aligns with findings from
Goldblum et al. (2023). In which they demonstrate and compare
pretrained backbones and end-to-end trained backbones for
generic computer vision tasks and benchmarks.

However, our findings reveal an important nuance: while
abundant training data produces strong results on samples
resembling the training distribution, a pretrained backbone
significantly enhances generalization compared to end-to-end
training approaches.
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The most substantial improvement, however, lies in reducing
the quantity of labels needed for effective model performance.
In the Train-vary dataset, pretrained backbones achieved
optimal scores, indicating that performance depends less on the
volume of similar training samples and more on the diversity of
samples used to optimize the downstream task on a pretrained
backbone. This efficiency in label utilization parallels Goldblum
et al. (2023) for self-supervised and vision-language pretrained
models often excel with limited labelled data, suggesting that
the representations learned during pretraining effectively
compress the knowledge needed for downstream tasks.

Despite these promising outcomes, we have not yet reached the
point where a single label suffices for learning tasks that
generalize across diverse environments. The Train-I dataset
failed to produce usable results, highlighting current limitations.
This limitation reflects the boundary conditions identified in
Goldblum et al. (2023), which shows that while pretraining
significantly reduces data requirements, there remains a
minimum threshold of task-specific data needed for effective
transfer learning. Further research incorporating semi-
supervised learning approaches will be necessary to develop DL
models for UAV applications that generalize effectively across
various conditions.

5.2 Model size and task complexity

The largest backbone in our study, Swin-T-Tiny with 27.5M
parameters, demonstrated the strongest generalization
capabilities across varied conditions (7rain-vary). This raises
the question whether scaling to even larger models would yield
further improvements in performance. Goldblum et al. (2023)
provide intriguing insights here, observing that "ViTs benefit
more from scale than CNNs" with significantly higher
correlation between parameter count and performance for
transformer architectures. This suggests that scaling Swin
Transformer architectures might indeed yield further
improvements for complex, varied datasets.

However, the Train-all section also indicates that the smaller
ResNet18 architecture can still outperform the larger models
despite having fewer parameters, suggesting that the
relationship between model size and performance is not strictly
linear.

This apparent contradiction highlights the complex interplay
between model architecture, parameter count, generalization
ability and task complexity. The superior performance of
ResNet18 in the data-rich Train-all scenario may indicate that
certain architectural properties, such as residual connections and
convolutional filters, provide particular advantages for the
relatively simple vineyard segmentation tasks when sufficient
training data is available. This is also suggested in Goldblum et
al. (2023): "convolutional networks excel under linear probing,"
suggesting that CNN architectures may form more immediately
useful representations for straightforward visual tasks without
extensive fine-tuning.

Additionally, it remains uncertain whether significantly larger
models, beyond the scale tested in our experiments, would
continue to improve performance or simply introduce
unnecessary computational overhead without proportional
gains. Perhaps pretraining datasets with more variance could be
introduced to increase the difficulty for DL models.
Furthermore, the benefits of larger models only show with more
complex tasks, such as multi-task or more fine-detailed or
nuanced objectives (such as disease prediction from leaves).
Future work could explore even smaller and larger backbone
architectures to understand what type of task and dataset size
would demand what type of model size for UAV-based

applications. Although Goldblum et al. (2023) provides some
guidance here, suggesting that modern hybrid architectures like
Swin might offer the best compromise between the spatial
inductive biases of CNNs and the scaling advantages of
transformers for real-world deployment scenarios.

6. Conclusion and future work

The growing adoption of UAVs in remote sensing has created a
paradoxical challenge: while data collection capabilities have
expanded dramatically, our ability to extract meaningful
insights remains constrained by the "small data problem" - the
scarcity of labelled examples needed for supervised learning
approaches. Current DL models for UAV applications often fail
to generalize beyond their training environments, creating a
significant gap between impressive laboratory results and
disappointing field performance. This research investigated
whether pretraining backbones, which have revolutionized
general computer vision tasks, can bridge this critical gap for
UAV-based environmental monitoring without requiring
prohibitive amounts of labelled data. Our investigation
demonstrates that pretrained backbones significantly enhance
model performance in UAV-based segmentation tasks,
primarily by constraining overfitting. The FastSiam pretraining
approach functions as an excellent regularization mechanism,
effectively limiting the backbone's tendency to overfit to
training data while substantially improving generalization
capabilities across diverse test scenarios. This finding aligns
with the growing recognition that self-supervised pretraining
offers considerable advantages for downstream tasks with
limited labelled data.

The strong performance observed with pretrained backbones
suggests that the challenge in UAV remote sensing applications
may not necessarily lie in feature extraction capabilities, but
rather in the availability and diversity of labelled data. The
feature extractors developed through our pretraining approach
appear robust enough to capture relevant patterns across varying
conditions, indicating that the primary bottleneck has shifted
toward label efficiency.

To further validate the effectiveness of our approach, future
work should test these pretrained models on additional
applications and datasets. The Multispectral UAV benchmark
(UAVM) introduced by Li et al. (2024) represents a particularly
promising avenue for evaluating the transferability of our
findings across different remote sensing contexts and sensor
modalities.

Building on these promising results, several research directions
merit exploration. Semi-supervised learning approaches could
leverage the strong representations from our pretrained models
while requiring fewer labelled examples (Gao et al., 2022).
Similarly, active learning strategies might help identify the most
informative samples for labelling, further improving label
efficiency (Elezi et al., 2022). These approaches could address
the current limitations in label availability while capitalizing on
the robust feature extraction capabilities we have developed.
Finally, proper model selection remains an open issue and
guidelines should be assembled, considering model task, model
architecture and training dataset size.
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7. Appendix
msuavl00k overview.
Sensor Topic GSD (cm) Chips
platform
DJI  Mavic Mining-waste 2 6390
3M
Nitrogen 1 1232
Olivegrove 1 15166
Portugal Vineyard 1.5 9084
UK Vineyard 2 45035
DJI Phantom Cacao 4.2 7642
4M
Tropical 4.2 1172
MicaSense Beechforest 3 324
Altum
Macroalgae 1.5 600
MicaSense Blueberry Variable 341
RedEdge
Botrytis 1 6530
Contamination 5 1855
Forestfuel Variable 4444
Potato Variable 368
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Rivers 25 37
Parrot Cherry Variable 18
Sequoia
Diurnal 7.5 62
Localization Variable 449
Nature Variable 2010
Subtropical Variable 1951
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