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Abstract 

 

While UAVs have revolutionized data collection for remote sensing, the practical application of Deep Learning remains severely 

limited by the scarcity of labelled training data, creating a stark contrast between laboratory successes and field performance. This 

research investigates whether transfer learning techniques can overcome this "small data problem" by enabling UAV-based deep 

learning models to generalize effectively across diverse environments without requiring prohibitive amounts of labelled examples. 

We present the use of an efficient self-supervised learning framework (FastSiam) tailored specifically for multispectral UAV 

imagery to overcome this generalization gap. Our approach enables effective feature learning without requiring extensive labelled 

data, bridging the gap between the potential of foundation models and the resource constraints of UAV remote sensing applications. 

We evaluate our method on a vineyard segmentation task across multiple geographic locations, demonstrating that models with 

FastSiam pretrained backbones significantly outperform their end-to-end trained counterparts, even with extremely limited labelled 

data. The most sophisticated architecture tested, Swin-T with a pretrained backbone, achieved an average F1 score of 0.80 across 

diverse test sites, showcasing robust generalization capabilities. Importantly, our results show that pretrained models benefit more 

from diversity in training samples than from sheer volume, suggesting new pathways for efficient model development in UAV 

applications. This work establishes that self-supervised pretraining serves as an effective regularizer for remote sensing tasks. 

Pretraining limits overfitting and improves generalization across varying environmental conditions, whilst requiring only modest 

computational resources, making advanced Deep Learning techniques more accessible for practical UAV applications. 

 

1. Introduction 

Uncrewed Aerial Vehicles (UAVs) have emerged as powerful 

tools for data collection across numerous applications within the 

remote sensing community (Toth & Jóźków, 2016). Their 

flexibility, relatively low operational costs, and ability to 

capture high-resolution, spectral imagery have made them 

invaluable for environmental monitoring, precision agriculture, 

infrastructure inspection, and disaster response (Doornbos et al., 

2024). 

Despite the ease of raw data that UAVs can collect, a significant 

challenge persists in the field: the "small data problem" 

(Safonova et al., 2023). While UAVs can generate substantial 

volumes of multispectral imagery, the labelled datasets required 

for supervised learning approaches are typically limited in size. 

This limitation stems from the resource-intensive nature of data 

annotation, which often requires domain expertise (Gao et al., 

2022), substantial time investments and cost (Elezi et al., 2022). 

The small data problem becomes particularly evident when 

implementing Deep Learning-based (DL) approaches for UAV-

based remote sensing applications. DL approaches, with their 

significant number of parameters, are inherently data hungry 

(Simonyan & Zisserman, 2014). When trained on limited 

supervised datasets, these models tend to overfit to the training 

examples rather than learning generalizable patterns. This 

results in models that perform well on the specific conditions 

represented in the training data but fail to maintain performance 

when applied to new scenarios or locations (Goldblum et al., 

2023). This generalization challenge substantially limits the 

practical utility of sophisticated UAV-based remote sensing 

applications. While academic publications may report 

impressive accuracy metrics, these results often do not translate 

to real-world implementations (Diez et al. 2021). Models 

trained in controlled research environments struggle to perform 

consistently across varying conditions, including changes in 

illumination, seasonality, geographic locations, or sensor 

characteristics (Doornbos et al., 2025).  

The popularity of DL however is exactly due to its ability of 

generalization. For example, the Segment Anything Model 

(SAM) from Meta AI (Kirillov et al., 2023) is trained on over 1 

billion masks across 11 million images, SAM demonstrates 

zero-shot transfer capabilities—it can segment objects in images 

without specific training on those particular objects or scenes. 

Similarly, text-to-image generative models like Stable Diffusion 

showcase DL’s capability to internalize visual concepts and 

generate novel images across an astounding range of styles and 

content. Diffusion models learn latent representations of visual 

information that capture both the structural and semantic 

properties of images. In another Meta AI model, DINOv2 

leverages a self-distillation approach with no labels to learn 

rich, transferable visual representations (Oquab et al., 2023). 

Trained on a diverse dataset of over 142 million images without 

any labels, DINOv2 demonstrates that DL models can develop 

sophisticated visual understanding through carefully designed 

self-supervision objectives. Whilst these examples from the 

broader computer vision domain can learn representations that 

generalize across domains, it also illustrates a need for sufficient 

data, architectural sophistication, and training methodologies.  

The gap for DL in UAV remote sensing stems from two critical 

missing components: comprehensive multispectral UAV 

datasets and efficient self-supervised learning approaches 

tailored to UAV remote sensing imagery (Doornbos & Babur, 

2025).  

The contribution of this work is therefore as follows:  

• Showcasing efficient self-supervised pretraining 

on a large-scale, diverse UAV multispectral 

dataset; 

• Determining the effectiveness of the pretraining 

process on task-specific evaluation.  
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The paper is structured as follows: Section 2 will present the 

pretraining dataset, the self-supervised learning approach and 

task-specific evaluation. Section 3 will demonstrate the 

effectiveness of pretraining on a typical segmentation task. 

Section 4 will discuss the implications and limitations of the 

findings. Section 5 concludes with a pathway forward. 

 

2. Background 

There are many different vision DL architectures to choose 

from, as well as different techniques to train them. This 

background section introduces the concepts of pretraining, 

backbones and self-supervised learning. 

   

2.1 Pretraining backbones 

The best performing image-based DL architectures are 

constructed of a backbone and a head, sometimes denoted as 

encoder and decoder. The backbone serves to extract all the 

important features from the image, and the head serves to 

execute a specific task. Goldblum et al., (2023) conducted over 

1,500 training runs to evaluate a wide range of backbone 

architectures (including Convolutional Neural Networks, Vision 

Transformers, and hybrid models) with various pretraining 

methods (supervised learning, self-supervised learning, and 

vision-language training) across multiple tasks (classification, 

object detection, segmentation, retrieval, and out-of-distribution 

generalization). Their method involved standardized evaluation 

protocols with consistent hyperparameter optimization across all 

backbones to ensure fair comparisons. Key findings revealed 

that supervised ConvNeXt and SwinV2 architectures trained on 

large datasets performed the best overall, though self-supervised 

models showed competitive performance when compared on 

equal-sized pretraining datasets. The study also found that 

performance correlates strongly across different tasks, 

suggesting the emergence of universal vision backbones, and 

that transformers benefit more from increased scale than 

convolutional networks. Finally, when reducing to smaller 

models, more assumptions in the network architecture often 

increases accuracy, benefitting less from large amounts of data.  

 

2.2 Self-supervised learning 

The core idea behind self-supervised learning is to define a 

pretext task that the model can solve without external 

supervision (Chen et al., 2024). Common pretext tasks include 

predicting missing parts of an image, determining the relative 

position of image patches, or recognizing applied 

transformations like rotations, through a prediction and 

projection head. By solving these tasks, the model learns 

general features that can be transferred to downstream tasks like 

classification or segmentation.  

 

 

Figure 1. Methodology overview, with backbone 

pretraining using msuav100k, and the 

segmentation task finetuning.  
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2.2.1 Siamese Networks 

Siamese networks are a specific architecture used in self-

supervised learning that consists of two identical neural 

networks with shared weights. These twin networks process 

different views or transformations of the same input data and 

are trained to produce similar representations for related inputs 

and dissimilar representations for unrelated inputs. 

The original SimSiam (Chen & He, 2020) approach uses simple 

Siamese architecture without negative pairs. It takes two 

augmented views of the same image, processes them through 

the twin networks and applies a stop-gradient operation over the 

projection network to prevent representation collapse. This 

approach demonstrates that contrastive learning doesn't 

necessarily require negative samples or momentum encoders to 

learn meaningful representations. 

 

2.2.2 FastSiam:  

FastSiam (Pototzky et al., 2022) builds upon the SimSiam 

framework but introduces several optimizations to make it more 

efficient and effective, optimizing for small batch sizes and 

limited computational resources. FastSiam employs multiple 

views of the same image. This multi-view approach effectively 

samples from a distribution with the same mean but reduced 

variance, helping to avoid outliers in the training process. This 

stabilization leads to faster convergence—FastSiam typically 

requires only 25 epochs compared to SimSiam's 100+ epochs to 

achieve comparable performance. 

The fundamental insight of FastSiam is that averaging multiple 

samples reduces the standard error of the mean, creating more 

stable learning targets. This simple but effective modification 

allows for training with smaller datasets, fewer epochs, and 

limited computational resources while maintaining competitive 

performance compared to more resource-intensive approaches. 

 

3. Methodology 

This section outlines our approach to addressing the “small data 

problem” in UAV-based remote sensing through self-supervised 

learning. Figure 1 showcases the employed methodology, 

starting with the pretraining dataset msuav100k, which is solely 

used for pretraining a feature extractor using the FastSiam 

method. This results in robust pretrained features. Using 

vineyard segmentation as a task, we trained a vineyard 

segmentation model using the pretrained backbone (kept frozen 

during training) and a randomly initialized backbone (not frozen 

during training). The models were compared using different 

training data regimes to assess generalization. The methodology 

is structured as follows: Section 3.1 covers the pretraining 

dataset msuav100k, Section 3.2 presents our implementation of 

FastSiam, Section 3.3 shows the vineyard segmentation dataset 

and training splits, Section 3.4 explains the design choices for 

the segmentation head. 

 

 

 

3.1 Pretraining dataset: msuav100k 

 

Figure 2. 25 sample false colour images from msuav100k. 

 

The pretraining dataset employed was msuav100k. This dataset 

was compiled from a systematic online search of open-access 

data repositories, this collection encompasses 28 diverse 

datasets with imagery containing at least four spectral bands 

(Green, Red, RedEdge, and Near-Infrared). The dataset 

incorporates multispectral imagery captured by various sensor 

types including DJI Mavic 3M, DJI Phantom 4 Multispectral, 

Parrot Sequoia, MicaSense RedEdge, and MicaSense Altum/PT. 

Included datasets feature diverse applications and settings, such 

as vineyards and blueberry fields, mining waste, olive groves, 

rivers and more. A summary of these datasets is presented in 

Appendix I The total of 63,000 included images were 

radiometrically corrected and aligned per band if needed, 

afterwards they were cut into 512×512 patches, resulting in a 

total of 104,840 image chips.1 Some examples of the chips are 

shown in false colour in Figure 2. 

 

3.2 FastSiam pretraining 

The intention of the FastSiam pretraining task is to train a 

robust feature extractor for downstream tasks. For this study, 

two different feature extractor architectures were selected: 

ResNet18 (He et al., 2015) and Swin Transformer (Liu et al., 

2021). ResNet18 is a lightweight convolutional neural network 

with 11.2M parameters that employ residual connections to 

mitigate the vanishing gradient problem. It consists of 18 layers 

organized into 4 major blocks with progressively increasing 

channel dimensions (64, 128, 256, 512) and decreasing spatial 

resolution. Each residual block contains two 3×3 convolutional 

layers with batch normalization and ReLU activations. 

ResNet18 offers a good balance between computational 

efficiency and performance, making it suitable for resource-

constrained environments while still providing strong feature 

extraction capabilities. Swin Transformer (Tiny) is a 

hierarchical vision transformer with 27.5M parameters that 

processes images using shifted windows of self-attention. It 

operates progressively by merging neighboring patches at each 

stage, creating a hierarchical representation with 4 stages of 

different feature resolutions. Each stage contains Swin 

 
1 This 100GB dataset is planned to be open source licensed, in 

the meantime, it is available upon request. 
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Transformer blocks with shifted window-based multi-head self-

attention and MLP layers. The "tiny" variant uses a base 

dimension of 96 channels which expands through the network 

(96, 192, 384, 768). Swin-T's window-based attention 

mechanism reduces computational complexity while 

maintaining the transformer's ability to model long-range 

dependencies. In theory, Swin-T provides stronger feature 

extraction than ResNet18 as there are more parameters and less 

convolutional assumptions. Larger backbone networks were out 

of scope for the available resources. 

 

Figure 3. Three of the same input images with combinations of 

the augments: flip, spectral shift, noise, blur and zoom. 

 

 

FastSiam uses augmentations for the projection and prediction 

heads. The selected augmentations for this study were randomly 

applied to the input images with a 50% chance. Augmentations 

included random resized crop, horizontal and vertical flip, 

gaussian blur, gaussian noise, brightness, and spectral increase 

or decrease, see Figure 3 for an example. Additional training 

parameters are shown in Table 1. Training was performed with 

an NVIDIA GTX1660Ti 6GB, for a duration of 5 hours for the 

ResNet18 model, and 52 hours for Swin-T-tiny2.  

 

Table 1. FastSiam training settings. 

Parameter Setting 

Epochs 2 

Learning rate 0.02 

Optimizer SGD with Cosine 

Annealing learning rate 

decay 

Weight decay 0.0001 

Batch size 32 

Input channels 4 

Projection head 2048 → 256 

Prediction head 256 → 128 → 256 

Backbone ResNet18, Swin-T-tiny 

 

3.3 Vineyard segmentation dataset 

To evaluate the effectiveness of a pretrained backbone, the task 

of vineyard row segmentation was chosen. Vineyard row 

segmentation, while not the most challenging task in 

agricultural computer vision, serves as a good demonstrator for 

investigating vision DL model optimization and generalization 

characteristics for UAV applications. The dataset to support this 

task is from Barros et al (2022).  This dataset is based on three 

distinct vineyards located in the central region of Portugal: 

Valdoeiro, Quinta de Baixo (further referred to as QBaixo), and 

Esac (which is further divided into two plots: Esac1 and Esac2). 

This dataset was specifically created for multispectral vineyard 

segmentation research. This dataset is not part of msuav100k. 

The data was captured using a DJI drone equipped with a dual 

imaging sensor payload: a high-definition RGB camera (DJI 

Zenmuse X7 with 6016×4008 resolution) and a five-band 

 
2 All code and weights are available on 

https://github.com/jurriandoornbos/multi_ssl  

multispectral and thermal camera (Micasense Altum, capturing 

Red, Green, Blue, Red-Edge, and Near-Infrared bands at 

2064×1544 resolution, plus a thermal band at 57×44 resolution). 

Each vineyard was surveyed at different times and altitudes: 

• Esac1 & Esac2: Surveyed October 2022 at 120m 

altitude (2.5cm GSD) post-harvest. 2.3ha vineyard 

planted in 1999 on sloping terrain (2°-5°) at 28m 

elevation. Cultivars: Alfrocheiro, Aragonez, Touriga 

Nacional, Marselan. Density: 2,800-3,400 vines/ha. 

• Valdoeiro: Surveyed April 2022 at 60m altitude 

(1.25cm GSD) during early growth. 2.9ha vineyard 

planted in 2005 on flat terrain (<2°) at 99m elevation. 

Cultivar: Baga. Density: 3,200 vines/ha. 

• Quinta de Baixo: Surveyed July 2022 at 70m altitude 

(1.45cm GSD) during advanced growth. 3.2ha 

vineyard planted in 2002 on sloping terrain (2°-5°) at 

90m elevation. Cultivars: Syrah, Pinot, Baga. Density: 

4,400 vines/ha. 

 

 
Figure 4. False color sample imagery from Esac2, Valdoeiro 

and QBaixo respectively. The vineyards show different 

vegetation and soil structure and angle. 

 

The collected raw images were processed to generate 

orthomosaics and digital surface models (DSMs) for each 

vineyard. The HD images were used to create both HD 

orthomosaics and DSMs, while the multispectral images 

underwent radiometric corrections including vignetting, dark 

pixel offset, and conversion to reflectance space using 

calibration panels. 

The dataset includes annotated segmentation masks for binary 

classification, where pixels belonging to vine plants are labelled 

as positive class (1) and the rest as negative class (0). For the 

experiments, the orthomosaics were divided into 224×224 pixel 

sub-images (e.g. chips), see Figure 4 for some example chips.  

Esac1 was used for training. Esac2 was used for selecting the 

best model from training. Whilst for testing, Valdoeiro and 

Qbaixo were used. One chip of each set was also kept back for 

testing one-shot training performance. For an overview of splits 

and chips, table 2 is provided.  

• Train-all: The highest number of images, all from 

Esac1.  

• Train-1: Uses only a single image from Esac1 to 

evaluate single-shot learning performance under 

extremely limited data conditions.  

• Train-vary: Designed to investigate whether model 

performance benefits more from data quantity (Train-

all) or diversity, comparing results when trained on 

varying vineyard examples. 

 

Table 2. Dataset splits for vineyard segmentation task. 

 Esac1 Esac2 Valdoeiro QBaixo 

Total chips 96 97 157 141 

Train-1 1 0 0 0 

Train-all 96 0 0 0 

Train-vary 1 0 1 1 

Validation 0 97 0 0 

Test-V 0 0 156 0 

Test-Q 0 0 0 140 
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3.4 Segmentation task head design 

The architecture employed for this segmentation task followed 

an encoder-decoder ‘U-Net’ structure with skip connections 

between corresponding encoder and decoder layers (purple and 

blue sections in Figure 5 respectively). These skip connections 

are vital as they allow the model to preserve fine spatial details 

that might otherwise be lost during downsampling.  

Despite sharing the same segmentation head design, the 

implementation varies between the two backbone models. The 

ResNet18-based model features a segmentation head with 3.9 

million parameters, while the Swin Transformer version has a 

larger head comprising 8.5 million parameters. This difference 

in parameter count reflects the size in output feature dimensions 

inside the respective backbone layers.  

For different experiments on the effectiveness of pretraining, 

the weights from the pretrained backbone were used in the 

encoder and the whole backbone was kept frozen, or the 

backbone was randomly initialized with full end-to-end updates 

of the weights during training. 

 

 

 

Figure 5. Segmentation head architecture diagram. A 4-channel 

multispectral image is passed into the encoder backbone, and 

through every feature dimension is decoded into a segmentation 

mask. Backbone encoder in purple dotted block, whereas the 

decoder head is in the blue dotted block. 

Task training was performed on the same machine as FastSiam. 

Different experiments were performed: varying the training 

dataset between Train-1, Train-all and Train-vary, varying the 

backbone between ResNet18 and Swin-T-tiny, and varying 

between a frozen, pretrained FastSiam backbone, and a 

randomly initialized fully trainable backbone. Additional 

training settings are presented in Table 3. Every trained model 

was evaluated on the same test-sets: Test-V and Test-Q, with 

F1-scores being tracked for each image, calculating the mean 

and standard error over the test set. Using these metrics, a t-

statistic and p-value was measured between the pretrained and 

end-to-end model, assuming a normal distribution. Finally, like 

Barros et al. (2022), a RandomForest was trained on the same 

dataset as a baseline comparison. 

 

 

 

 

  Table 3. Segmentation head training settings. 

Parameter Setting 

Epochs 300 

Learning rate 0.0003 

Optimizer SGD 

Weight decay 0.0001 

Batch size 8 

Input channels 4 

Backbone ResNet18, Swin-T-tiny 

 

4. Results 

The results contain the accuracy scores for two different 

backbone architectures: ResNet18 and Swin-T-Tiny. These 

backbones were pretrained or randomly initialized. For self-

supervised pretraining, FastSiam was used. In FastSiam, the aim 

of the model is to make augmented images close in feature 

space to their source image. As the name suggests, the 

msuav100k contains 100,000 images. These images were used 

to train the backbone. Two full epochs on the data resulted in 

around 6400 training steps. The negative cosine similarity loss 

is shown in Figure 6. After half the training time: 3200 steps 

(one epoch), both the backbones have already achieved their 

optimum. This indicates that even though it is the most 

comprehensive multispectral dataset, the models can capture the 

variance quickly, many of the images in msuav100k look very 

similar.  

 

 

Figure 6. Train loss FastSiam over training steps (time), green 

line is ResNet18, orange line is Swin-T-tiny. ResNet18 drops 

significantly quicker to below -0.8 negative cosine similarity. 

 

We evaluated these models across three distinct training 

regimes to understand performance patterns when applied to 

different vineyard test sites. 

Our experimental design incorporated varying training datasets: 

Train-all (comprehensive dataset), Train-1 (single image 

training), and Train-vary (diverse samples), enabling direct 

comparison between dataset size and variety effects. We 

examine end-to-end trained models against those using 

pretrained FastSiam backbones, while also including Random 

Forest as a traditional machine learning baseline. 

The following results demonstrate how model performance 

varies across different vineyard conditions, highlighting the 

impact of pretraining as well as data characteristics on 

segmentation accuracy. Importantly, we find that variety of data 
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is more important than dataset size, especially when the 

backbone is already pretrained. 

 

4.1 Evaluation on Train-all 

Table 4. Model F1 score results for Train-all subset. ‘ee’ 

denotes an end-to-end trained model, ‘bb’ denotes a pretrained 

FastSiam backbone. 

 Esac2 Valdoeiro QBaixo Mean 

ResNet18-ee 0.44 0.61 0.46 0.53 

ResNet18-bb 0.75* 0.85* 0.59* 0.72* 

Swin-T-ee 0.49 0.69 0.52 0.60 

Swin-T-bb 0.56* 0.83* 0.42 0.63* 

RandomForest 0.81 0.8 0.06 0.43 

 ‘*’ Indicates a statistically significant (p-value < 0.01) 

improvement of using the pretrained backbone. 

 

Table 4 presents the F1 scores for models trained on the Train-

all subset and tested across three vineyard sites. The results 

demonstrate a clear performance advantage when using 

pretrained FastSiam backbones compared to end-to-end training 

approaches. 

For ResNet18, the pretrained backbone ('bb') achieved 

significantly higher F1 scores across all testing sets, with an 

average improvement of 19 percentage points over its end-to-

end ('ee') counterpart. Similarly, the Swin-T architecture 

showed statistically significant improvements with pretraining 

on two of the three test sites. 

It's particularly noteworthy that while Esac2 comes from the 

same flight mission as the training data (Esac1), the pretrained 

backbones still delivered substantial performance gains even in 

this scenario where domain shift is minimal. This suggests that 

the self-supervised pretraining captures fundamental vineyard 

features that benefit segmentation regardless of data similarity 

to the training set. 

The conventional RandomForest classifier performed 

competitively on the Esac2 and Valdoeiro sites but failed 

dramatically on Quinta de Baixo, highlighting its poor 

generalization to more distinct vineyard conditions. 

 

4.2 Evaluation on Train-1 

Table 5. Model F1 score results for Train-1 subset. ‘ee’ denotes 

an end-to-end trained model, ‘bb’ denotes a pretrained FastSiam 

backbone. 

 Esac2 Valdoeiro QBaixo Mean 

ResNet18-ee 0.78 0.44 0.17 0.33 

ResNet18-bb 0.74 0.49* 0.26* 0.38* 

Swin-T-ee 0.63 0.77 0.36 0.57 

Swin-T-bb 0.8* 0.70 0.39* 0.55 

RandomForest 0.76 0.73 0.62 0.67 

 ‘*’ Indicates a statistically significant improvement of using the 

pretrained backbone. 

 

Table 5 shows the F1 scores for models trained using only a 

single image from Esac1. This extremely limited training 

scenario reveals that just one labelled image is only sufficient 

when the application target (Esac2) comes from a very similar 

domain as the training data. Both ResNet18 and Swin-T 

architectures achieve relatively high F1 scores (0.74-0.80) on 

Esac2, but their performance degrades substantially when tested 

on the more distinct Valdoeiro and Quinta de Baixo vineyards. 

Interestingly, the pretrained FastSiam backbones ('bb') show 

statistically significant improvements over end-to-end training 

('ee') on the more challenging test sites, particularly for 

ResNet18 on both Valdoeiro and Quinta de Baixo. This 

suggests that self-supervised pretraining provides valuable 

knowledge transfer that helps mitigate the severe data 

limitation. Even though pretrained is shown to be better, the 

model outputs are not useable at F1-scores well under 0.7.  

4.3 Evaluation on Train-vary 

Table 6. Model F1 score results for Train-vary subset. ‘ee’ 

denotes an end-to-end trained model, ‘bb’ denotes a pretrained 

FastSiam backbone. 

 Esac2 Valdoeiro QBaixo Mean 

ResNet18-ee 0.59 0.67 0.26 0.47 

ResNet18-bb 0.57 0.76* 0.68* 0.72* 

Swin-T-ee 0.80 0.75 0.62 0.69 

Swin-T-bb 0.79 0.82* 0.78* 0.80* 

RandomForest 0.42 0.86 0.72 0.79 

 ‘*’ Indicates a statistically significant (p-value < 0.01) 

improvement of using the pretrained backbone. 

 

Table 6 presents the F1 scores for models trained on the Train-

vary subset, confirming the previous patterns observed across 

different training regimes.  Pretrained FastSiam backbones ('bb') 

consistently outperform their end-to-end ('ee') counterparts, with 

statistically significant improvements on the more challenging 

Valdoeiro and Quinta de Baixo test sites. This pattern holds true 

regardless of the amount of training data, reinforcing that the 

diversity and similarity to application data are more important 

than sheer volume of training examples. 

Most notably, the Swin-T architecture with pretrained backbone 

achieves the highest mean F1 score (0.80) across all test sites, 

outperforming all other models. The superior performance of 

the most complex pretrained backbone is consistent across all 

training regimes, highlighting that in low-data scenarios, 

transformer-based architectures with self-supervised pretraining 

can effectively leverage their representational power without 

overfitting. 

The RandomForest classifier shows strong performance on 

Valdoeiro and Quinta de Baixo but struggles significantly on 

Esac2, indicating that the increase in diversity of the training 

dataset is too much for the model to capture. 

 

5. Discussion 

The results from Train-all and Train-vary demonstrate that 

models with a frozen backbone obtained through FastSiam 

pretraining exhibit superior generalization capabilities 

compared to those with random initialization. Additionally, the 

largest model has the best performing scores.  

 

5.1 Pretraining as a regularizer  

During the segmentation training task, only the model head 

receives gradient updates while the pretrained backbone 

remains fixed. The pretrained backbone has already developed 

robust feature representations from a much larger dataset, 

allowing it to identify key patterns. Consequently, similar 

features such as vineyard rows trigger consistent outputs from 

the segmentation head, suggesting that vineyard-row detection 

represents a learnable concept across different locations. 

Therefore, the pretrained backbone acts as a strong regularizer 

during training. This approach aligns with findings from 

Goldblum et al. (2023). In which they demonstrate and compare 

pretrained backbones and end-to-end trained backbones for 

generic computer vision tasks and benchmarks.  

However, our findings reveal an important nuance: while 

abundant training data produces strong results on samples 

resembling the training distribution, a pretrained backbone 

significantly enhances generalization compared to end-to-end 

training approaches.  
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The most substantial improvement, however, lies in reducing 

the quantity of labels needed for effective model performance. 

In the Train-vary dataset, pretrained backbones achieved 

optimal scores, indicating that performance depends less on the 

volume of similar training samples and more on the diversity of 

samples used to optimize the downstream task on a pretrained 

backbone. This efficiency in label utilization parallels Goldblum 

et al. (2023) for self-supervised and vision-language pretrained 

models often excel with limited labelled data, suggesting that 

the representations learned during pretraining effectively 

compress the knowledge needed for downstream tasks. 

 

Despite these promising outcomes, we have not yet reached the 

point where a single label suffices for learning tasks that 

generalize across diverse environments. The Train-1 dataset 

failed to produce usable results, highlighting current limitations. 

This limitation reflects the boundary conditions identified in 

Goldblum et al. (2023), which shows that while pretraining 

significantly reduces data requirements, there remains a 

minimum threshold of task-specific data needed for effective 

transfer learning. Further research incorporating semi-

supervised learning approaches will be necessary to develop DL 

models for UAV applications that generalize effectively across 

various conditions. 

 

5.2 Model size and task complexity  

The largest backbone in our study, Swin-T-Tiny with 27.5M 

parameters, demonstrated the strongest generalization 

capabilities across varied conditions (Train-vary). This raises 

the question whether scaling to even larger models would yield 

further improvements in performance. Goldblum et al. (2023) 

provide intriguing insights here, observing that "ViTs benefit 

more from scale than CNNs" with significantly higher 

correlation between parameter count and performance for 

transformer architectures. This suggests that scaling Swin 

Transformer architectures might indeed yield further 

improvements for complex, varied datasets. 

However, the Train-all section also indicates that the smaller 

ResNet18 architecture can still outperform the larger models 

despite having fewer parameters, suggesting that the 

relationship between model size and performance is not strictly 

linear.  

This apparent contradiction highlights the complex interplay 

between model architecture, parameter count, generalization 

ability and task complexity. The superior performance of 

ResNet18 in the data-rich Train-all scenario may indicate that 

certain architectural properties, such as residual connections and 

convolutional filters, provide particular advantages for the 

relatively simple vineyard segmentation tasks when sufficient 

training data is available. This is also suggested in Goldblum et 

al. (2023): "convolutional networks excel under linear probing," 

suggesting that CNN architectures may form more immediately 

useful representations for straightforward visual tasks without 

extensive fine-tuning. 

Additionally, it remains uncertain whether significantly larger 

models, beyond the scale tested in our experiments, would 

continue to improve performance or simply introduce 

unnecessary computational overhead without proportional 

gains. Perhaps pretraining datasets with more variance could be 

introduced to increase the difficulty for DL models.  

Furthermore, the benefits of larger models only show with more 

complex tasks, such as multi-task or more fine-detailed or 

nuanced objectives (such as disease prediction from leaves).  

Future work could explore even smaller and larger backbone 

architectures to understand what type of task and dataset size 

would demand what type of model size for UAV-based 

applications. Although Goldblum et al. (2023) provides some 

guidance here, suggesting that modern hybrid architectures like 

Swin might offer the best compromise between the spatial 

inductive biases of CNNs and the scaling advantages of 

transformers for real-world deployment scenarios.  

 

6. Conclusion and future work 

The growing adoption of UAVs in remote sensing has created a 

paradoxical challenge: while data collection capabilities have 

expanded dramatically, our ability to extract meaningful 

insights remains constrained by the "small data problem" - the 

scarcity of labelled examples needed for supervised learning 

approaches. Current DL  models for UAV applications often fail 

to generalize beyond their training environments, creating a 

significant gap between impressive laboratory results and 

disappointing field performance. This research investigated 

whether pretraining backbones, which have revolutionized 

general computer vision tasks, can bridge this critical gap for 

UAV-based environmental monitoring without requiring 

prohibitive amounts of labelled data. Our investigation 

demonstrates that pretrained backbones significantly enhance 

model performance in UAV-based segmentation tasks, 

primarily by constraining overfitting. The FastSiam pretraining 

approach functions as an excellent regularization mechanism, 

effectively limiting the backbone's tendency to overfit to 

training data while substantially improving generalization 

capabilities across diverse test scenarios. This finding aligns 

with the growing recognition that self-supervised pretraining 

offers considerable advantages for downstream tasks with 

limited labelled data. 

The strong performance observed with pretrained backbones 

suggests that the challenge in UAV remote sensing applications 

may not necessarily lie in feature extraction capabilities, but 

rather in the availability and diversity of labelled data. The 

feature extractors developed through our pretraining approach 

appear robust enough to capture relevant patterns across varying 

conditions, indicating that the primary bottleneck has shifted 

toward label efficiency. 

To further validate the effectiveness of our approach, future 

work should test these pretrained models on additional 

applications and datasets. The Multispectral UAV benchmark 

(UAVM) introduced by Li et al. (2024) represents a particularly 

promising avenue for evaluating the transferability of our 

findings across different remote sensing contexts and sensor 

modalities.  

Building on these promising results, several research directions 

merit exploration. Semi-supervised learning approaches could 

leverage the strong representations from our pretrained models 

while requiring fewer labelled examples (Gao et al., 2022). 

Similarly, active learning strategies might help identify the most 

informative samples for labelling, further improving label 

efficiency (Elezi et al., 2022). These approaches could address 

the current limitations in label availability while capitalizing on 

the robust feature extraction capabilities we have developed. 

Finally, proper model selection remains an open issue and 

guidelines should be assembled, considering model task, model 

architecture and training dataset size.  
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7. Appendix  

 msuav100k overview. 

 

Sensor 

platform 

Topic GSD (cm) Chips 

DJI Mavic 

3M 

Mining-waste 

Nitrogen 

Olivegrove 

Portugal Vineyard 

UK Vineyard 

2 

1 

1 

1.5 

2 

6390 

1232 

15166 

9084 

45035 

DJI Phantom 

4M 

Cacao 

Tropical 

4.2 

4.2 

7642 

1172 

MicaSense 

Altum 

Beechforest 

Macroalgae 

3 

1.5 

324 

600 

MicaSense 

RedEdge 

Blueberry 

Botrytis 

Contamination 

Forestfuel 

Potato 

Variable 

1 

5 

Variable 

Variable 

341 

6530 

1855 

4444 

368 
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Rivers 25 37 

Parrot 

Sequoia 

Cherry 

Diurnal 

Localization 

Nature 

Subtropical 

Variable 

7.5 

Variable 

Variable 

Variable 

18 

62 

449 

2010 

1951 
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