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Abstract 
 
Accurate diameter estimation from point cloud data allows for characterizing stem volume and shape without resorting to destructive 
methods. Typically, circles are fitted at various stem heights using statistical techniques. However, these techniques are susceptible 
to noise and occlusion in the point cloud, often caused by obstacles or weather phenomena. This susceptibility reduces the feasibility 
of applying such methods to point clouds captured by low-cost sensors, which tend to be less precise and noisier. Photogrammetry, 
however, can be used together with consumer-grade cameras and inexpensive UAVs to generate high-quality point clouds from 
under-canopy data. 
 
This study presents MACiF (Morphology-Aware Circle Fit), a novel method to accurately estimate diameters at various heights from 
noisy point clouds. Our approach uses robust statistical methods and Monte Carlo simulation to filter the point cloud. We also 
leverage how stems vary gradually to iteratively correct erroneous estimates. This iterative correction enables estimating diameters 
with an error lower than -3.34 cm, even when data quality limits the use of other methods. These results support the use of under-
canopy low-cost photogrammetry as a viable source of data for automatic stem characterization. 
 
 

1. Introduction 

Effective forest resource management is essential for enhancing 
carbon sequestration and securing a stable wood supply 
(Daigneault et al., 2022; Barrette et al., 2023). Forest 
inventorying serves as a fundamental component of sustainable 
forest management by providing critical data for planning and 
decision-making (Coops et al., 2023). Inventorying is typically 
conducted at multiple spatial scales, including forest- and tree-
level assessments. Forest-scale surveys can assess the 
distribution, area, species composition and health status of 
regional forest resources, supporting management decisions and 
policymaking at the macro level (McCullagh et al., 2017). Tree-
level inventories focus on capturing detailed structural and 
morphological attributes of individual trees, enabling accurate 
estimation of timber volume, biomass, and carbon storage, and 
facilitating precise forest management (Yin and Wang, 2016). 
 
Advances in remote sensing technology have revolutionized 
forest resources characterization by generating detailed 3D 
models, typically in the form of point clouds (Murtiyoso et al., 
2024). The use of point clouds has created new opportunities for 
forest inventorying without the need for manual measurements 
(Liang et al., 2016). These inventories typically involve 
detecting trees within the point cloud and fitting circles along 
each tree stem. This process allows not only volume estimation 
but also analysis of stem shape and taper equations (Prendes et 
al., 2023; Nurunnabi et al., 2024). For instance, Prendes et al. 
(2023) used 3D data to estimate stem curvature for optimizing 
log cutting. 
 
Such 3D data can be generated by using active sensors such as 
LiDAR (Light Detection and Ranging) scanners. By emitting 

laser pulses and capturing reflections, LiDAR generates precise 
3D point clouds while partially penetrating through canopy (Jia 
et al., 2021). Terrestrial laser scanning (TLS) offers the best 
results in terms of noisiness, but TLS sensors must remain static 
when scanning, impeding their use for large-scale inventorying 
(Bauwens et al., 2016). On the contrary, mobile laser scanners 
(MLS) enable scanning larger areas quickly as they are not 
fixed systems (Lin et al., 2022). However, MLS sensors 
generally produce noisier and less accurate point clouds 
(Bienert et al., 2018). Point clouds can also be generated using 
data acquired by passive sensors such as optical cameras. 
Although cameras are designed to obtain high-resolution 2D 
images, they can be employed to create detailed 3D models 
through photogrammetric techniques (Bonneval, 1972). Among 
these techniques, Structure from Motion (SfM) generates dense 
point clouds by tracking the location of objects in images 
acquired from different view-points (Ullman, 1979). This 
technique generates high-quality point clouds provided enough 
images and with sufficient resolution are used (Acuna and Sosa, 
2019). 
 
Optical and MLS sensors can be carried by foot to acquire data 
under canopy, but they can also be installed on unmanned aerial 
vehicles (UAVs). Deploying UAVs is efficient as they can 
navigate autonomously once a route is scheduled, covering wide 
areas in a much lower time than ground-based, human operated 
systems (Hyyppä et al., 2020b). Because cameras are more 
energy-efficient than laser sensors, they are better suited to be 
installed on UAVs (Reddy Cenkeramaddi et al., 2020). 
Moreover, cameras installed on aerial drones can be used along 
SfM algorithms to generate point clouds with comparable 
quality to laser systems (Acuna and Sosa, 2019). 
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In SfM-based forest inventorying applications, UAVs are 
generally used above canopy given forests are complex and 
obstacle-rich environments. Such setups typically yield poor 
data on tree stems, as canopy occludes most under-canopy 
information (Hyyppä et al., 2020b). However, UAVs can also 
be deployed under canopy equipped with optical and depth 
sensors for SfM-based inventorying (Karjalainen et al., 2025). 
Provided they are integrated with obstacle detection algorithms, 
UAVs can move through forests autonomously while avoiding 
obstacles, as shown by Karjalainen et al. (2025). Nonetheless, 
branches, undergrowth, and weather conditions can introduce 
noise or partially occlude trunks (Wilkes et al., 2017). Thus, 
diameter estimation methods robust to noise and occlusion are 
needed. 
 
Several methods allow to estimate diameters from stem point 
clouds. The simplest approach to estimate diameters is least 
squares (LS) optimization, as used by Henning & Radtke 
(2006). This method reduces the algebraic distance of each 
point to the fitted circle through non-linear least squares 
optimisation. Alternatively, the geometric distance can be used 
as the objective function for an optimisation problem. In that 
case, steepest descent algorithms can be employed to fit the 
optimal circle, yielding higher precision than regular LS 
algorithms (Koreň et al., 2017). Hough Transform (HT) can be 
used to fit circles to point clouds (Hough, 1962), although it is 
computationally expensive. To deal with this limitation, Trochta 
et al. (2017) used Randomised Hough Transform (RHT) to 
speed the circle fitting process. Since these methods are 
sensitive to noise, Nurunnabi et al. (2024) used Monte Carlo 
simulation to generate candidate circles ignoring half the points. 
These circles are then ranked by their residual with respect to 
the points used and the best one is returned. To deal with noise, 
3DFin software (Laino et al., 2024) uses LS for an initial circle 
fit and checks its quality; they check whether there are parts of 
perimeter without nearby points and if there are points inside 
the circle. In case the circle is considered deficient, DBSCAN 
filtering is applied iteratively to remove noise. 
 
Even if some of the methods listed above integrate noise-
filtering mechanisms, they often produce inaccurate estimates in 
poor-quality stem sections. However, it can be safely assumed 
that accurate estimates in one section may help correct 
neighbouring ones, as stem shape and diameter change 
gradually with height. Given a sufficiently small distance 
between adjacent sections, diameters and circle centres should 
be similar. Therefore, we present Morphology-Aware Circle Fit 
(MACiF), an algorithm to correct erroneous predictions based 
on the natural morphology of stems. 
 

2. Objectives 

The main objective of this study is to develop and validate a 
new circle-fitting algorithm capable of correcting inaccurate 
estimates using data from adjacent stem sections. We also aim 
at providing insights into how inexpensive photogrammetric 
point cloud modelling can be a viable alternative to LiDAR 
scanning. Lastly, we intend to underscore the limitations of 
current diameter estimation algorithms, and the methods used to 
validate them. The specific objectives of our work are: 

1. Simulate high-density noise to test the limits of 
current diameter estimation methods. 

2. Integrate the stem shape continuity hypothesis to 
correct estimation errors in low-quality sections. 

3. Evaluate the accuracy and robustness of the proposed 
method compared to previous approaches under 
varying levels of noise. 

3. Materials and methods 

In the present study we followed a series of steps to validate the 
robustness of our method. Firstly, we measured diameter at 
breast height (DBH) of 18 trees within a 10 m radius plot, all 
pertaining to the same species. We then flew a drone under 
canopy to collect images where stems were clearly visible. 
These images served to reconstruct a point cloud, from which 
stems were later segmented and modified to simulate branches. 
These point clouds were used to estimate DBH, and results were 
compared to manual measurements (Figure 1). 
 

 
Figure 1. Overview of the workflow followed in this study. 

 
3.1 Data collection 

For this study, field data collection was divided into three 
phases: study area definition, manual marking and measuring of 
trees, and UAV data collection. Data collection was conducted 
approximately 3 km east of Hernansancho, in the province of 
Ávila (see Figure 2). A 20-meter measuring tape was employed 
to define a circular plot with 10 m radius, resulting in a total 
area of approximately 314 m2. The plot was located in an even-
aged homogeneous forest stand of adult Pinus pinaster Aiton 
managed for resin production. This stand has been previously 
subjected to thinning operations and presented a density of 513 
trees per hectare. 
 

 
Figure 2. Orthoimage of the study area. 

 
Within the study area, 18 specimens of P. pinaster were 
marked, and their diameter at breast height (DBH) was 
measured. To do so, we used tape with an accuracy of 0.1 cm to 
measure stem perimeter at 1.30 m height, after which we 
computed its equivalent circle diameter as follows: 

 

,   (1) 
 

where  p = circle perimeter 
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Aerial imagery was captured using a DJI Mini 2 quadcopter 
(DJI, Shenzhen, China), a compact UAV (Unmanned Aerial 
Vehicle) with a take-off weight of 249 g and a retail price below 
€500 (initial European market price). The drone features a 
1/2.3'' CMOS sensor capable of capturing 12 MP images. A 
single flight was conducted under canopy conditions at an 
average altitude of approximately 1.5 meters above the ground. 
The environment had minimal low vegetation, making it 
feasible and safe to operate the drone beneath the canopy. 
Images were taken every 2 seconds along the tree planting lines. 
The flight below canopy was performed manually, avoiding 
obstacles and trees in the study area. Figure 3 shows the route 
taken to collect data and the location of the inventoried trees. 
The flights took place around 10:00 AM under sunny, windless 
conditions. A total of 394 images were collected during a 13.3-
minutes flight. The route followed was devised so that all stems 
where visible from all sides. 
 

 
Figure 3. Path followed by the UAV during data acquisition 
(green), points from which pictures were taken (blue) and 

location of the trees (brown). 
 
3.2 Photogrammetric data processing 

To process UAV data, we used Pix4Denterprise version 4.5.6 
(Pix4D, 2020). This process was performed on a consumer-
grade MSI GL62M 7RD-056 (MSI) computer equipped with an 
Intel® Core™ i7-7700HQ CPU @ 2.80 GHz, 16 GB of RAM, 
and an NVIDIA GeForce® GTX1050 GPU, operating on 
Windows 10 Pro 64-bit. For dense point cloud generation, a 1/2 
image scale setting with optimal point density was selected. 
This process yielded a point cloud comprised of 6,939,608 3D 
points, corresponding to an average point density of 7,642.53 
points per cubic meter. The result of this photogrammetric 
processing can be seen in Figure 4. 
 

 
Figure 4. Dense point cloud obtained from SfM reconstruction. 

 
3.3 Photogrammetric data processing 

Once the dense point cloud was generated, we manually 
cropped the region of interest containing the manually measured 
trees. This cropped region was segmented using the Python 

package 3DFin (Laino et al., 2024). This software first detected 
ground points resorting to the cloth simulation filter (CSF) 
algorithm (Zhang et al., 2016) with a height threshold of 0.1 m. 
The ground served to normalize the point cloud, from which a 2 
m wide stripe was extracted to detect and individualize tree 
stems (Figure 5). The validity of the resulting stem detection 
was visually inspected using the open-source CloudCompare 
software (Girardeau-Montaut, 2024). We then aligned each tree 
stem along the vertical Z-axis using principal Component 
Analysis (PCA), standardizing point cloud orientation. 
 

 
Figure 5. Individual trees detected and coloured by instance. 

 
After inspecting the resulting point clouds, we noted stems were 
lacking noise from branches or understory. Such noise is 
expected to have little impact on our algorithm, as it uses good 
quality sections of the stem to correct wrong predictions. Noise 
can also be ignored by HyperRLTS, as it discards 50% of the 
points when fitting circles. Nonetheless, if noise-to-signal ratio 
is large enough, such mechanism might be rendered insufficient. 
Therefore, we simulated branches by generating high-density 
noise uniformly along lines of random length and orientation. 
To do so, we used circles fitted on the original stems through 
least squares to estimate where their surface was. Because the 
original stem point clouds had little noise, these circles adjusted 
tight enough to the real stem surface. Sprouting from circles’ 
perimeter, between one and six branches were generated at 
different stem heights; branches were always generated at 1.3 m 
height to assess their effect on DBH estimation. These branches 
had a length ranging from 0.15 m to 1 m, along which points 
were randomly scattered. Point-to-branch distance, however, 
never exceeded 2 cm to prevent excessive noise. As a result, 
two different datasets were used in the present study: original 
and branches (Figure 6). 
 

 
Figure 6. Original point cloud (left) and point cloud with 

simulated branches. Stem points are depicted in green; branches 
are depicted in red (right). 

 
For each of the trees comprising both datasets, a 7 cm thick 
section centred at 1.30 m was extracted and projected onto the 
XY plane. These projected points served to fit circles and 
estimate the trunk’s centre and diameter using different circle 
fitting methods. To characterize the full stem, the cloud was 
divided into 7 cm thick slices with a step size of 3.5 cm, 
producing a detailed stem profile. 
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3.4 Morphology-Aware Circle Fit (MACiF) 

Our method, MACiF, builds on the circle fitting algorithm 
HyperRLTS, which was developed by Nurunnabi et al. (2024). 
HyperRLTS defines a circle by randomly selecting three points 
from a 2D-projected slice, running the process 69 times as per 
Nurunnabi et al. (2015). For each candidate circle, the distance 
of all points in the cloud to its perimeter are calculated and 
ranked in descending order. The 50% of points closest to the 
perimeter are then used to fit a refined new circle using the 
Hyper method (Kanatani and Rangarajan, 2011). Among the 69 
refined circles fitted, the one with the lowest mean squared error 
(MSE) is returned. 
 
MACiF uses HyperRLTS as baseline to fit initial circles along 
the stem, which are then corrected based on stem’s shape. To 
correct circles, we integrated an iterative correction module 
based on the assumption that stems change gradually both in 
diameter size and core location (Figure 7). The iterative 
correction module first runs a sliding window algorithm to 
extract 7 cm-thick slices along the stem as described in the 
preprocessing step. Each slice was then used to fit a circle by 
employing HyperRLTS. Next, sections and their corresponding 
fitted circles were grouped using a sliding window of 10 
sections. The 10-sections window was then moved along the 
entire stem with a step size of one section. Among all the 10-
sections groups, the one with the least variability was assumed 
to be of higher quality. 
 
Variability was assessed using three linear regression models, 
one for each of the dependent variables used: fitted circle’s 
centroid X-coordinate, Y-coordinate, and radius. These 
regression models were adjusted from the circles fitted across 
the entire stem using height as independent variable. For each 
10-sections group, the regression models were applied to predict 
circles’ centroid coordinates and radius from section height. 
These group predictions were then used to compute the relative 
mean squared error and averaged as follows: 
 

 ,   (2) 
 
where  M = number of models use 
 N = number of samples 
 m = index of the variable predicted by each model 
 ym,n = ground truth value for variable m and sample n 

ŷm,n = value of value m predicted by the regression 
model for sample n 
ȳm = average ground truth value for variable m 

 
In turn, the relative mean squared error of a group measures its 
deviation from a perfectly straight stem with diameters 
changing linearly with height. Therefore, the group that scores 
the best is the one closest to a perfect stem; such section group 
was regarded as the reference group, which served to correct all 
fitted circles along the stem. To avoid including outliers in the 
reference group, the robust Z-value (Rz) for each circle’s X and 
Y coordinates, and circle radius was computed as described in 
Nurunnabi et al. (2015). Anomalous values (Rz > 2.5) were 
replaced by linear interpolation, and the resulting 10-section 
group became the reference. 
 

 
Figure 7. Fitted circles fitted before correction on a branches 
dataset sample and its corrected version next to it (left side); 

corrected version of the same sample before branch simulation 
(right side). Fitted circles are depicted in magenta. 

 
Once we identified the reference group, the overlap between its 
last fitted circle and the immediately adjacent non-reference one 
was evaluated using the Jaccard’s index (1901), referred to as 
IoU hereafter: 

 

 ,   (3) 
 
where  SR = surface of the last reference circle 
 SA = surface of the adjacent circle 
 
If the IoURA was greater or equal than 0.75, the adjacent circle 
was considered as correct and added to the reference group. 
Otherwise, the 2D-projected section used to fit the adjacent 
circle was cropped using the last reference circle as kernel. 
Three cropping radii were tested, each radius spanning between 
1.1 and 1.5 times the radius of the last reference circle. Section 
cropping was done as part of a Monte Carlo simulation process, 
in which newly cropped sections were fit a circle using 
HyperRLTS. The resulting fitted circles were ranked by their 
MSE and their IoURA with respect to the reference circle were 
computed. Among the five fitted circles with the least MSE, the 
one with the highest IoURA was added to the reference group. 
 
3.5 Method validation 

To validate the performance of our algorithm, we applied four 
other circle fitting methods to estimate DBH on both datasets, 
original and branches. These estimates were then compared to 
manually measured diameters at breast height. We applied least 
squares (LS), random hough transform (RHT) (Trochta et al., 
2017), 3DFin (Laino et al., 2024), and HyperRLTS (Nurunnabi 
et al., 2024). It must be noted that 3DFin can assess circle fit 
quality based on the number of points within the circle and 
along its perimeter. In this comparison, however, all predictions 
were included regardless of their quality. 
 

4. Results 

When evaluated on the original dataset, all the tested methods 
performed similarly, presenting a tendency towards 
underestimation (see Table 1). RHT yielded the highest average 
error (-3.78 cm) and absolute error (4.06 cm), although standard 
deviation was the lowest. On the contrary, our method provided 
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the best DBH estimates across all metrics, only bested by 
HyperRLTS when comparing least squared error. All in all, 
differences were small; error ranged from -14.50% (RHT) to -
12.48% (Ours), and absolute error ranged from 15.50% (RHT) 
to 14.87% (Ours). 
 

 Error Abs. error Squared 
error  cm % cm % 

LSQ 
-3.43 
(3.53) 

-12.92 
(10.44) 

4.01 
(2.84) 

14.97 
(7.20) 

24.17 (45.99) 

RHT 
-3.78 
(3.25) 

-14.50 
(9.55) 

4.06 
(2.89) 

15.50 
(7.82) 

24.84 (46.81) 

3DFin 
-3.43 
(3.53) 

-12.92 
(10.44) 

4.01 
(2.84) 

14.97 
(7.20) 

24.17 (45.99) 

HyperRLTS 
-3.38 
(3.53) 

-12.85 
(10.69) 

4.01 
(2.79) 

15.04 
(7.28) 

23.83 (44.12) 

MACiF 
-3.31 
(3.70) 

-12.48 
(11.29) 

4.00 
(2.94) 

14.87 
(7.89) 

24.64 (45.26) 

Table 1. Average error (cm), absolute error (cm), and mean 
squared error (cm²) for DBH estimation methods tested on the 

original dataset; standard deviation in parentheses. 
 

Point clouds in the branches dataset resulted on average 3.89 
times denser than in the original dataset. Because branches were 
simulated in variable numbers and with length and girth, point 
cloud size in the branches dataset ranged from 1.91 to 5.46 
times the size of their corresponding original sample. When 
evaluated on the branches dataset, MACiF outperformed all 
other methods in every metric (Table 2). Furthermore, our 
algorithm performed similarly on both original and branches 
datasets; in the latter, the unsigned average error was only 0.06 
cm greater than in the former, whereas the absolute error 
increase only by 0.02 cm. Standard deviation was also similar to 
the original case, hence suggesting low variance in the DBH 
estimation error. Notably, after applying our iterative correction 
algorithm the HyperRLTS baseline improved considerably; the 
average relative error reduced from 217.54% to -12.98%. 
 

 Error Abs. error Squared 
error  cm % cm % 

LSQ 
10.59 

(16.60) 
42.39 

(57.69) 
11.47 

(16.00) 
44.72 

(55.90) 
387.61 

(1302.57) 

RHT 
31.00 

(60.85) 
135.38 

(289.94) 
34.59 

(58.88) 
147.04 

(284.20) 
4663.82 

(15123.75) 

3DFin 
14.57 

(23.93) 
64.69 

(112.21) 
16.32 

(22.77) 
69.33 

(109.40) 
784.99 

(1974.76) 

HyperRLTS 
51.50 

(56.73) 
217.54 

(239.12) 
53.32 

(55.03) 
223.08 

(233.96) 
5871.30 

(9460.18) 

MACiF 
-3.37 
(3.46) 

-12.79 
(10.36) 

4.02 
(2.68) 

15.05 
(6.67) 

23.34 
(41.89) 

Table 2. Average error (cm), absolute error (cm), and mean 
squared error (cm²) for DBH estimation methods tested on the 

branches dataset; standard deviation in parentheses. 
 
Although centroid deviation from the trunk axis remained 
unquantified, results were visually evaluated. Figure 8 shows 
that our method aligned well with true stem positions, even 
when branches were included, while other methods suffered 
from interference. Circle fitting along the stem was also visually 
assessed. MACiF yielded good results along stems on both 
datasets, including curved and crooked stems. Nonetheless, we 
noted errors increased at the upper parts of the stem, as severe 
occlusion and point cloud sparsity prevented reliable correction 
in these areas. 

5. Discussion 

5.1 UAV photogrammetry for forest inventorying 

The results of this study are consistent with those of previous 
research on SfM-based diameter estimation (Krisanski et al., 
2020; Shimabuku et al., 2023; Karjalainen et al., 2025). These 

results underscore the potential of UAV-based photogrammetry 
as a viable low-cost alternative to laser technologies for 
generating detailed three-dimensional models of forests. 
Furthermore, they stress the potential of under-canopy UAV 
data acquisition, as above-canopy UAV laser scanning data 
typically exhibits lower surface density and noisier point clouds 
compared to terrestrial data (Kuželka et al., 2020). Above-
canopy laser-based trunk detection methods are also susceptible 
to noise, occlusion, presence of branches and ground vegetation, 
cross-section scattering, and uneven point densities (Kuželka et 
al., 2020; Dersch et al., 2021). For instance, Zhang et al. (2023) 
demonstrated that understory vegetation and branches can be 
erroneously identified as tree trunks, leading to over-detection. 
On the contrary, under-canopy data provides a high-quality 
description of tree stems (Hyyppä et al., 2020b). 
 

 
Figure 8. Circle fitting using different methods on the original 
(top row) and on the branches (bottom row) datasets; X and Y 

coordinates displayed in meters. 
 
Other ground-based low-cost technologies such as modern 
LiDAR-enabled smart devices can serve to estimate tree 
diameter. Nonetheless, they are limited in range and so their use 
is restricted to small plots were only data from the lower parts 
of the stems is needed (Tatsumi et al., 2023). Moreover, using 
UAV drones presents distinct advantages over such 
technologies. Because they hover over understory, they are 
unaffected by rugged terrain or low shrubs, covering large areas 
efficiently (Hyyppä et al., 2020b). In addition, they typically 
integrate gimbal stabilizers to ensure steady image acquisition. 
Lastly, they can fly autonomously if they integrate proper 
perception and navigation systems, and the right forest 
conditions are given (Karjalainen et al., 2025). In contrast to 
ground-based robots, drones offer agility and versatility in data 
acquisition, although they remain hindered by understory 
vegetation density (Hyyppä et al., 2020a). 
 
Many lightweight UAV models are more affordable than 
modern LiDAR-equipped smart devices. Furthermore, drones 
weighing under 250 grams benefit from more flexible 
regulatory frameworks (European Union Aviation Safety 
Agency, 2024), potentially simplifying their deployment for 
automated forest monitoring systems. Open-source 
photogrammetry tools further lower barriers by eliminating 
costly software licenses, making them economically viable for 
forestry applications. To fully integrate these technologies into 
forest planning and decision-making processes, however, more 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2/W2-2025 
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10–12 September 2025, Espoo, Finland

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-2-W2-2025-49-2025 | © Author(s) 2025. CC BY 4.0 License.

 
53



 

efficient algorithms capable of handling large data volumes are 
needed. Such algorithms must also be capable of accurately 
reconstructing large, complex, and dynamic scenes. Crucially, 
recent advances in three-dimensional modelling from images 
are bridging this gap: neural-based rendering and Gaussian 
splatting have reduced computation time required to obtain 3D 
models (Mildenhall et al., 2021; Kerbl et al., 2023), while 
improving model quality. 
 
5.2 Circle fitting evaluation 

Error in DBH estimation when using the original, clean dataset 
was consistent among all methods and never exceeded 4 cm in 
absolute terms. This consistency is likely because 
photogrammetric point clouds presented little noise on the stem 
surface. Despite all methods yielding similar results, our method 
outperformed all the others, including HyperRLTS. HyperRLTS 
was used by MACiF to fit initial circles, which were corrected 
only when they were deficient. Given original dataset’s quality, 
the correction module remained unused, hence differences with 
HyperRLTS were small and possibly caused by its randomized 
nature. We also found error to be consistently caused by 
diameter underestimation, averaging close to -3 cm for all 
methods. A plausible explanation for this bias is the natural 
morphology of P. pinaster, which normally grows thick, rugged 
bark with deep, longitudinal cracks (Blanco Castro, 2005). Bark 
plates’ crests cause manual measurement to overestimate the 
stem diameter, hence the negatively signed error of circles fitted 
to crack valleys. This phenomenon underscores the importance 
of validating MACiF on a dataset comprised of several tree 
species, which will be accounted for in future studies. 
 
On the contrary, when evaluated on the branches dataset, 
MACiF outcompeted all other methods, including HyperRLTS. 
Under such conditions, simulated noise caused previous 
methods to fail, hence MACiF’s initial fit required correction. 
The iterative correction module then allowed removing enough 
noise so that HyperRLTS dealt with remaining noise 
effectively. This claim is supported by MACiF results differing 
little between the original and the branches dataset; in fact, 
such difference is small enough to be considered as an effect of 
algorithmic randomisation. Both numerical results and visual 
assessment support the claim that iterative correction based on 
stem continuity improves diameter estimation accuracy. 
Furthermore, visual inspection of MACiF’s predictions along 
stems indicates it has potential for tree structure modelling; our 
method accounts for natural stems’ morphology, hence yielding 
accurate stem shape models. Although, forked stems pose an 
important challenge, as MACiF is compelled to follow either of 
the branches when correcting predictions.  
 
In the light of these results, we hypothesize MACiF only 
requires a good reference section group and enough signal 
points along stems’ surface to perform well. However, the effect 
of random noise and occlusion on our algorithm remains 
untested: if the reference group includes failed fits or later 
corrections fail due to random noise or occlusion, errors may 
propagate. Besides, MACiF could also benefit from other noise 
filtering techniques. For example, 3DFin uses DBSCAN for 
noise removal and evaluates circle fit quality via point density. 
Therefore, future versions of our algorithm will test integrating 
such enhancements. 
 
Yet, the main limitation of this study is the lack of data. We 
only used a sample of 18 trees, from which we obtained point 
clouds using a single 3D modelling technique; MACiF should 
be tested on LiDAR data, as point distribution and density can 

vary greatly with respect to SfM point clouds. Furthermore, we 
lack tree diameter measurements above and below 1.3 m, which 
is crucial to validate the robustness of our method when applied 
along the stem. We also stress a key limitation of studies 
assessing stem diameters using point clouds: stem core location 
is rarely accounted for. In some cases, circle fitting methods 
yield good results in terms of diameter estimation, yet circle 
centroid location is displaced. Centroid location is crucial for 
applications such as optimal bucking (Prendes et al., 2023), 
hence the need for better circle fitting validation strategies. Last, 
we also note that circle fitting methods do not account for the 
actual shape of stem cross-sections, ignoring the natural 
complexity of tree stems and incurring in estimation errors 
(Kuželka and Surový, 2024). Cross-sectional stem shape is 
important for timber market value assessment, as it is often 
assessed using gauging methods such as Japanese Agricultural 
Standard (JAS) (Ellis et al., 1996). 
 
As for data scarcity, a possible solution is using simulation 
methods. In the present study, we used a simple, yet effective 
strategy to assess the impact of high-density noise on circle 
fitting methods by generating branches. Other noise generation 
strategies might enable testing circle fitting methods on point 
clouds with greater point dispersion and random noise 
(Nurunnabi et al., 2015). More sophisticated methods, 
nonetheless, allow generating realistic tree point clouds for 
which diameter at different heights and stem core locations 
would be perfectly known (Bornand et al., 2024). Therefore, 
future research will focus on testing the robustness of different 
circle fitting methods to various degrees of noise using complex 
three-dimensional tree modelling.  
 

6. Conclusion 

In this study we developed and evaluated MACiF (Morphology-
Aware Circle Fit), a new algorithm for estimating stem 
diameters from point clouds. The method integrates robust 
statistical fitting with an iterative correction process that 
leverages stem shape continuity. This approach significantly 
improves accuracy in noisy or occluded point clouds, 
outperforming existing methods in both clean and simulated-
noise scenarios. Our results demonstrate that low-cost UAV 
photogrammetry, when combined with morphology-aware 
processing, can provide reliable stem measurements for forest 
inventory applications. 
 
Despite these promising results, several limitations remain. 
Validation was limited to 18 trees and to diameter at breast 
height; further testing on larger datasets acquired with different 
sensors, other stem heights, and from tree species is needed. 
Additionally, incorporating advanced noise filtering techniques 
could further enhance robustness. Notwithstanding, MACiF 
represents a step forward in precise tree diameter and stem 
shape estimation, contributing to the broader goal of Forestry 
4.0. 
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