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Abstract

Accurate diameter estimation from point cloud data allows for characterizing stem volume and shape without resorting to destructive
methods. Typically, circles are fitted at various stem heights using statistical techniques. However, these techniques are susceptible
to noise and occlusion in the point cloud, often caused by obstacles or weather phenomena. This susceptibility reduces the feasibility
of applying such methods to point clouds captured by low-cost sensors, which tend to be less precise and noisier. Photogrammetry,
however, can be used together with consumer-grade cameras and inexpensive UAVs to generate high-quality point clouds from
under-canopy data.

This study presents MACiF (Morphology-Aware Circle Fit), a novel method to accurately estimate diameters at various heights from
noisy point clouds. Our approach uses robust statistical methods and Monte Carlo simulation to filter the point cloud. We also
leverage how stems vary gradually to iteratively correct erroneous estimates. This iterative correction enables estimating diameters
with an error lower than -3.34 cm, even when data quality limits the use of other methods. These results support the use of under-

canopy low-cost photogrammetry as a viable source of data for automatic stem characterization.

1. Introduction

Effective forest resource management is essential for enhancing
carbon sequestration and securing a stable wood supply
(Daigneault et al, 2022; Barrette et al., 2023). Forest
inventorying serves as a fundamental component of sustainable
forest management by providing critical data for planning and
decision-making (Coops et al., 2023). Inventorying is typically
conducted at multiple spatial scales, including forest- and tree-
level assessments. Forest-scale surveys can assess the
distribution, area, species composition and health status of
regional forest resources, supporting management decisions and
policymaking at the macro level (McCullagh et al., 2017). Tree-
level inventories focus on capturing detailed structural and
morphological attributes of individual trees, enabling accurate
estimation of timber volume, biomass, and carbon storage, and
facilitating precise forest management (Yin and Wang, 2016).

Advances in remote sensing technology have revolutionized
forest resources characterization by generating detailed 3D
models, typically in the form of point clouds (Murtiyoso et al.,
2024). The use of point clouds has created new opportunities for
forest inventorying without the need for manual measurements
(Liang et al.,, 2016). These inventories typically involve
detecting trees within the point cloud and fitting circles along
each tree stem. This process allows not only volume estimation
but also analysis of stem shape and taper equations (Prendes et
al., 2023; Nurunnabi et al., 2024). For instance, Prendes et al.
(2023) used 3D data to estimate stem curvature for optimizing
log cutting.

Such 3D data can be generated by using active sensors such as
LiDAR (Light Detection and Ranging) scanners. By emitting

laser pulses and capturing reflections, LIDAR generates precise
3D point clouds while partially penetrating through canopy (Jia
et al.,, 2021). Terrestrial laser scanning (TLS) offers the best
results in terms of noisiness, but TLS sensors must remain static
when scanning, impeding their use for large-scale inventorying
(Bauwens et al., 2016). On the contrary, mobile laser scanners
(MLS) enable scanning larger areas quickly as they are not
fixed systems (Lin et al., 2022). However, MLS sensors
generally produce noisier and less accurate point clouds
(Bienert et al., 2018). Point clouds can also be generated using
data acquired by passive sensors such as optical cameras.
Although cameras are designed to obtain high-resolution 2D
images, they can be employed to create detailed 3D models
through photogrammetric techniques (Bonneval, 1972). Among
these techniques, Structure from Motion (SfM) generates dense
point clouds by tracking the location of objects in images
acquired from different view-points (Ullman, 1979). This
technique generates high-quality point clouds provided enough
images and with sufficient resolution are used (Acuna and Sosa,
2019).

Optical and MLS sensors can be carried by foot to acquire data
under canopy, but they can also be installed on unmanned aerial
vehicles (UAVs). Deploying UAVs is efficient as they can
navigate autonomously once a route is scheduled, covering wide
areas in a much lower time than ground-based, human operated
systems (Hyyppa et al., 2020b). Because cameras are more
energy-efficient than laser sensors, they are better suited to be
installed on UAVs (Reddy Cenkeramaddi et al., 2020).
Moreover, cameras installed on aerial drones can be used along
SftM algorithms to generate point clouds with comparable
quality to laser systems (Acuna and Sosa, 2019).
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In SfM-based forest inventorying applications, UAVs are
generally used above canopy given forests are complex and
obstacle-rich environments. Such setups typically yield poor
data on tree stems, as canopy occludes most under-canopy
information (Hyyppé et al., 2020b). However, UAVs can also
be deployed under canopy equipped with optical and depth
sensors for SfM-based inventorying (Karjalainen et al., 2025).
Provided they are integrated with obstacle detection algorithms,
UAVs can move through forests autonomously while avoiding
obstacles, as shown by Karjalainen et al. (2025). Nonetheless,
branches, undergrowth, and weather conditions can introduce
noise or partially occlude trunks (Wilkes et al., 2017). Thus,
diameter estimation methods robust to noise and occlusion are
needed.

Several methods allow to estimate diameters from stem point
clouds. The simplest approach to estimate diameters is least
squares (LS) optimization, as used by Henning & Radtke
(2006). This method reduces the algebraic distance of each
point to the fitted circle through non-linear least squares
optimisation. Alternatively, the geometric distance can be used
as the objective function for an optimisation problem. In that
case, steepest descent algorithms can be employed to fit the
optimal circle, yielding higher precision than regular LS
algorithms (Koreti et al., 2017). Hough Transform (HT) can be
used to fit circles to point clouds (Hough, 1962), although it is
computationally expensive. To deal with this limitation, Trochta
et al. (2017) used Randomised Hough Transform (RHT) to
speed the circle fitting process. Since these methods are
sensitive to noise, Nurunnabi et al. (2024) used Monte Carlo
simulation to generate candidate circles ignoring half the points.
These circles are then ranked by their residual with respect to
the points used and the best one is returned. To deal with noise,
3DFin software (Laino et al., 2024) uses LS for an initial circle
fit and checks its quality; they check whether there are parts of
perimeter without nearby points and if there are points inside
the circle. In case the circle is considered deficient, DBSCAN
filtering is applied iteratively to remove noise.

Even if some of the methods listed above integrate noise-
filtering mechanisms, they often produce inaccurate estimates in
poor-quality stem sections. However, it can be safely assumed
that accurate estimates in one section may help correct
neighbouring ones, as stem shape and diameter change
gradually with height. Given a sufficiently small distance
between adjacent sections, diameters and circle centres should
be similar. Therefore, we present Morphology-Aware Circle Fit
(MACIF), an algorithm to correct erroneous predictions based
on the natural morphology of stems.

2. Objectives

The main objective of this study is to develop and validate a
new circle-fitting algorithm capable of correcting inaccurate
estimates using data from adjacent stem sections. We also aim
at providing insights into how inexpensive photogrammetric
point cloud modelling can be a viable alternative to LiDAR
scanning. Lastly, we intend to underscore the limitations of
current diameter estimation algorithms, and the methods used to
validate them. The specific objectives of our work are:
1. Simulate high-density noise to test the limits of
current diameter estimation methods.
2. Integrate the stem shape continuity hypothesis to
correct estimation errors in low-quality sections.
3. Evaluate the accuracy and robustness of the proposed
method compared to previous approaches under
varying levels of noise.

3. Materials and methods

In the present study we followed a series of steps to validate the
robustness of our method. Firstly, we measured diameter at
breast height (DBH) of 18 trees within a 10 m radius plot, all
pertaining to the same species. We then flew a drone under
canopy to collect images where stems were clearly visible.
These images served to reconstruct a point cloud, from which
stems were later segmented and modified to simulate branches.
These point clouds were used to estimate DBH, and results were
compared to manual measurements (Figure 1).
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Figure 1. Overview of the workflow followed in this study.
3.1 Data collection

For this study, field data collection was divided into three
phases: study area definition, manual marking and measuring of
trees, and UAV data collection. Data collection was conducted
approximately 3 km east of Hernansancho, in the province of
Avila (see Figure 2). A 20-meter measuring tape was employed
to define a circular plot with 10 m radius, resulting in a total
area of approximately 314 m?. The plot was located in an even-
aged homogeneous forest stand of adult Pinus pinaster Aiton
managed for resin production. This stand has been previously
subjected to thinning operations and presented a density of 513
trees per hectare.

Figure 2. Orthoimage of the study area.

Within the study area, 18 specimens of P. pinaster were
marked, and their diameter at breast height (DBH) was
measured. To do so, we used tape with an accuracy of 0.1 cm to
measure stem perimeter at 1.30 m height, after which we
computed its equivalent circle diameter as follows:

i=r
T, (M

where  p = circle perimeter
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Aerial imagery was captured using a DJI Mini 2 quadcopter
(DJI, Shenzhen, China), a compact UAV (Unmanned Aerial
Vehicle) with a take-off weight of 249 g and a retail price below
€500 (initial European market price). The drone features a
1/2.3" CMOS sensor capable of capturing 12 MP images. A
single flight was conducted under canopy conditions at an
average altitude of approximately 1.5 meters above the ground.
The environment had minimal low vegetation, making it
feasible and safe to operate the drone beneath the canopy.
Images were taken every 2 seconds along the tree planting lines.
The flight below canopy was performed manually, avoiding
obstacles and trees in the study area. Figure 3 shows the route
taken to collect data and the location of the inventoried trees.
The flights took place around 10:00 AM under sunny, windless
conditions. A total of 394 images were collected during a 13.3-
minutes flight. The route followed was devised so that all stems
where visible from all sides.
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Figure 3. Path followed by the UAV during data acquisition
(green), points from which pictures were taken (blue) and
location of the trees (brown).

3.2 Photogrammetric data processing

To process UAV data, we used Pix4Denterprise version 4.5.6
(Pix4D, 2020). This process was performed on a consumer-
grade MSI GL62M 7RD-056 (MSI) computer equipped with an
Intel® Core™ i7-7700HQ CPU @ 2.80 GHz, 16 GB of RAM,
and an NVIDIA GeForce® GTX1050 GPU, operating on
Windows 10 Pro 64-bit. For dense point cloud generation, a 1/2
image scale setting with optimal point density was selected.
This process yielded a point cloud comprised of 6,939,608 3D
points, corresponding to an average point density of 7,642.53
points per cubic meter. The result of this photogrammetric
processing can be seen in Figure 4.

3.3 Photogrammetric data processing

Once the dense point cloud was generated, we manually
cropped the region of interest containing the manually measured
trees. This cropped region was segmented using the Python

package 3DFin (Laino et al., 2024). This software first detected
ground points resorting to the cloth simulation filter (CSF)
algorithm (Zhang et al., 2016) with a height threshold of 0.1 m.
The ground served to normalize the point cloud, from which a 2
m wide stripe was extracted to detect and individualize tree
stems (Figure 5). The validity of the resulting stem detection
was visually inspected using the open-source CloudCompare
software (Girardeau-Montaut, 2024). We then aligned each tree
stem along the vertical Z-axis using principal Component
Analysis (PCA), standardizing point cloud orientation.

Figure 5. Individual trees detected and coloured by instance.

After inspecting the resulting point clouds, we noted stems were
lacking noise from branches or understory. Such noise is
expected to have little impact on our algorithm, as it uses good
quality sections of the stem to correct wrong predictions. Noise
can also be ignored by HyperRLTS, as it discards 50% of the
points when fitting circles. Nonetheless, if noise-to-signal ratio
is large enough, such mechanism might be rendered insufficient.
Therefore, we simulated branches by generating high-density
noise uniformly along lines of random length and orientation.
To do so, we used circles fitted on the original stems through
least squares to estimate where their surface was. Because the
original stem point clouds had little noise, these circles adjusted
tight enough to the real stem surface. Sprouting from circles’
perimeter, between one and six branches were generated at
different stem heights; branches were always generated at 1.3 m
height to assess their effect on DBH estimation. These branches
had a length ranging from 0.15 m to 1 m, along which points
were randomly scattered. Point-to-branch distance, however,
never exceeded 2 cm to prevent excessive noise. As a result,
two different datasets were used in the present study: original
and branches (Figure 6).

Figure 6. Original point cloud (left) and point cloud with
simulated branches. Stem points are depicted in green; branches
are depicted in red (right).

For each of the trees comprising both datasets, a 7 cm thick
section centred at 1.30 m was extracted and projected onto the
XY plane. These projected points served to fit circles and
estimate the trunk’s centre and diameter using different circle
fitting methods. To characterize the full stem, the cloud was
divided into 7 cm thick slices with a step size of 3.5 cm,
producing a detailed stem profile.
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3.4 Morphology-Aware Circle Fit (MACiF)

Our method, MACIF, builds on the circle fitting algorithm
HyperRLTS, which was developed by Nurunnabi et al. (2024).
HyperRLTS defines a circle by randomly selecting three points
from a 2D-projected slice, running the process 69 times as per
Nurunnabi et al. (2015). For each candidate circle, the distance
of all points in the cloud to its perimeter are calculated and
ranked in descending order. The 50% of points closest to the
perimeter are then used to fit a refined new circle using the
Hyper method (Kanatani and Rangarajan, 2011). Among the 69
refined circles fitted, the one with the lowest mean squared error
(MSE) is returned.

MACIF uses HyperRLTS as baseline to fit initial circles along
the stem, which are then corrected based on stem’s shape. To
correct circles, we integrated an iterative correction module
based on the assumption that stems change gradually both in
diameter size and core location (Figure 7). The iterative
correction module first runs a sliding window algorithm to
extract 7 cm-thick slices along the stem as described in the
preprocessing step. Each slice was then used to fit a circle by
employing HyperRLTS. Next, sections and their corresponding
fitted circles were grouped using a sliding window of 10
sections. The 10-sections window was then moved along the
entire stem with a step size of one section. Among all the 10-
sections groups, the one with the least variability was assumed
to be of higher quality.

Variability was assessed using three linear regression models,
one for each of the dependent variables used: fitted circle’s
centroid X-coordinate, Y-coordinate, and radius. These
regression models were adjusted from the circles fitted across
the entire stem using height as independent variable. For each
10-sections group, the regression models were applied to predict
circles’ centroid coordinates and radius from section height.
These group predictions were then used to compute the relative
mean squared error and averaged as follows:

=%§:Z#Mn Finz)

m=1n=1 (ymn - ym) (2)

RelMSE

M = number of models use
N = number of samples

= index of the variable predicted by each model
ymn = ground truth value for variable m and sample n
Ymn = value of value m predicted by the regression
model for sample n
Vm = average ground truth value for variable m

where

In turn, the relative mean squared error of a group measures its
deviation from a perfectly straight stem with diameters
changing linearly with height. Therefore, the group that scores
the best is the one closest to a perfect stem; such section group
was regarded as the reference group, which served to correct all
fitted circles along the stem. To avoid including outliers in the
reference group, the robust Z-value (Rz) for each circle’s X and
Y coordinates, and circle radius was computed as described in
Nurunnabi et al. (2015). Anomalous values (Rz > 2.5) were
replaced by linear interpolation, and the resulting 10-section
group became the reference.
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Figure 7. Fitted circles fitted before correctlon on a branches
dataset sample and its corrected version next to it (left side);
corrected version of the same sample before branch simulation
(right side). Fitted circles are depicted in magenta.

Once we identified the reference group, the overlap between its
last fitted circle and the immediately adjacent non-reference one
was evaluated using the Jaccard’s index (1901), referred to as
IoU hereafter:

Sk NS,
Sz US,
b

IoUg, =

(©)

Sk = surface of the last reference circle
S4 = surface of the adjacent circle

where

If the JoUr4 was greater or equal than 0.75, the adjacent circle
was considered as correct and added to the reference group.
Otherwise, the 2D-projected section used to fit the adjacent
circle was cropped using the last reference circle as kernel.
Three cropping radii were tested, each radius spanning between
1.1 and 1.5 times the radius of the last reference circle. Section
cropping was done as part of a Monte Carlo simulation process,
in which newly cropped sections were fit a circle using
HyperRLTS. The resulting fitted circles were ranked by their
MSE and their JoUrs with respect to the reference circle were
computed. Among the five fitted circles with the least MSE, the
one with the highest JoUr4 was added to the reference group.

3.5 Method validation

To validate the performance of our algorithm, we applied four
other circle fitting methods to estimate DBH on both datasets,
original and branches. These estimates were then compared to
manually measured diameters at breast height. We applied least
squares (LS), random hough transform (RHT) (Trochta et al.,
2017), 3DFin (Laino et al., 2024), and HyperRLTS (Nurunnabi
et al., 2024). It must be noted that 3DFin can assess circle fit
quality based on the number of points within the circle and
along its perimeter. In this comparison, however, all predictions
were included regardless of their quality.

4. Results

When evaluated on the original dataset, all the tested methods
performed similarly, presenting a tendency towards
underestimation (see Table 1). RHT yielded the highest average
error (-3.78 cm) and absolute error (4.06 cm), although standard
deviation was the lowest. On the contrary, our method provided
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the best DBH estimates across all metrics, only bested by
HyperRLTS when comparing least squared error. All in all,
differences were small; error ranged from -14.50% (RHT) to -
12.48% (Ours), and absolute error ranged from 15.50% (RHT)
to 14.87% (Ours).

Error Abs. error Squared
cm % cm % error
LSQ (_33.?33) (_11553) (;:gi) (1;'2907) 2417 (45.99)
wr | @ R e
3DFin (33.';33) (ll(i 4942) (ggi) (1;'2907) 24.17 (45.99)
HyperRLTS (33.'5338) (110% 6895) (;‘S;) (17520; 23.83 (44.12)
R A

Table 1. Average error (cm), absolute error (cm), and mean
squared error (cm?) for DBH estimation methods tested on the
original dataset; standard deviation in parentheses.

Point clouds in the branches dataset resulted on average 3.89
times denser than in the original dataset. Because branches were
simulated in variable numbers and with length and girth, point
cloud size in the branches dataset ranged from 1.91 to 5.46
times the size of their corresponding original sample. When
evaluated on the branches dataset, MACIF outperformed all
other methods in every metric (Table 2). Furthermore, our
algorithm performed similarly on both original and branches
datasets; in the latter, the unsigned average error was only 0.06
cm greater than in the former, whereas the absolute error
increase only by 0.02 cm. Standard deviation was also similar to
the original case, hence suggesting low variance in the DBH
estimation error. Notably, after applying our iterative correction
algorithm the HyperRLTS baseline improved considerably; the
average relative error reduced from 217.54% to -12.98%.

Error Abs. error Squared
cm % cm % error
LS 10.59 42.39 11.47 44.72 387.61
Q (16.60)  (57.69) | (16.00)  (55.90) | (1302.57)
RHT 31.00 135.38 34.59 147.04 4663.82
(60.85)  (289.94) | (58.88)  (284.20) | (15123.75)
3DFi 14.57 64.69 16.32 69.33 784.99
mn (23.93)  (11221) | (22.77)  (109.40) | (1974.76)
51.50 217.54 53.32 223.08 5871.30
HyperRLTS (56.73)  (239.12) | (55.03)  (233.96) | (9460.18)
. 337 -12.79 4.02 15.05 23.34
MACGF (3.46) (10.36) (2.68) (6.67) (41.89)

Table 2. Average error (cm), absolute error (cm), and mean
squared error (cm?) for DBH estimation methods tested on the
branches dataset; standard deviation in parentheses.

Although centroid deviation from the trunk axis remained
unquantified, results were visually evaluated. Figure 8 shows
that our method aligned well with true stem positions, even
when branches were included, while other methods suffered
from interference. Circle fitting along the stem was also visually
assessed. MACIF yielded good results along stems on both
datasets, including curved and crooked stems. Nonetheless, we
noted errors increased at the upper parts of the stem, as severe
occlusion and point cloud sparsity prevented reliable correction
in these areas.
5. Discussion

5.1 UAYV photogrammetry for forest inventorying
The results of this study are consistent with those of previous

research on SfM-based diameter estimation (Krisanski et al.,
2020; Shimabuku et al., 2023; Karjalainen et al., 2025). These

results underscore the potential of UAV-based photogrammetry
as a viable low-cost alternative to laser technologies for
generating detailed three-dimensional models of forests.
Furthermore, they stress the potential of under-canopy UAV
data acquisition, as above-canopy UAV laser scanning data
typically exhibits lower surface density and noisier point clouds
compared to terrestrial data (Kuzelka et al., 2020). Above-
canopy laser-based trunk detection methods are also susceptible
to noise, occlusion, presence of branches and ground vegetation,
cross-section scattering, and uneven point densities (Kuzelka et
al., 2020; Dersch et al., 2021). For instance, Zhang et al. (2023)
demonstrated that understory vegetation and branches can be
erroneously identified as tree trunks, leading to over-detection.
On the contrary, under-canopy data provides a high-quality
description of tree stems (Hyyppd et al., 2020b).

~~ 3DFin
HyperRLTS
& == MAGIF (Ours)

~~ 3DFin
HyperRLTS
004 == MACIF (ours)

0.0 01 0.2 0.3 0.4 05 0.6
Figure 8. Circle fitting using different methods on the original
(top row) and on the branches (bottom row) datasets; X and ¥
coordinates displayed in meters.

Other ground-based low-cost technologies such as modern
LiDAR-enabled smart devices can serve to estimate tree
diameter. Nonetheless, they are limited in range and so their use
is restricted to small plots were only data from the lower parts
of the stems is needed (Tatsumi et al., 2023). Moreover, using
UAV drones presents distinct advantages over such
technologies. Because they hover over understory, they are
unaffected by rugged terrain or low shrubs, covering large areas
efficiently (Hyyppé et al., 2020b). In addition, they typically
integrate gimbal stabilizers to ensure steady image acquisition.
Lastly, they can fly autonomously if they integrate proper
perception and navigation systems, and the right forest
conditions are given (Karjalainen et al., 2025). In contrast to
ground-based robots, drones offer agility and versatility in data
acquisition, although they remain hindered by understory
vegetation density (Hyyppa et al., 2020a).

Many lightweight UAV models are more affordable than
modern LiDAR-equipped smart devices. Furthermore, drones
weighing under 250 grams benefit from more flexible
regulatory frameworks (European Union Aviation Safety
Agency, 2024), potentially simplifying their deployment for
automated  forest  monitoring  systems.  Open-source
photogrammetry tools further lower barriers by eliminating
costly software licenses, making them economically viable for
forestry applications. To fully integrate these technologies into
forest planning and decision-making processes, however, more
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efficient algorithms capable of handling large data volumes are
needed. Such algorithms must also be capable of accurately
reconstructing large, complex, and dynamic scenes. Crucially,
recent advances in three-dimensional modelling from images
are bridging this gap: neural-based rendering and Gaussian
splatting have reduced computation time required to obtain 3D
models (Mildenhall et al.,, 2021; Kerbl et al., 2023), while
improving model quality.

5.2 Circle fitting evaluation

Error in DBH estimation when using the original, clean dataset
was consistent among all methods and never exceeded 4 cm in
absolute terms. This consistency is likely because
photogrammetric point clouds presented little noise on the stem
surface. Despite all methods yielding similar results, our method
outperformed all the others, including HyperRLTS. HyperRLTS
was used by MACIF to fit initial circles, which were corrected
only when they were deficient. Given original dataset’s quality,
the correction module remained unused, hence differences with
HyperRLTS were small and possibly caused by its randomized
nature. We also found error to be consistently caused by
diameter underestimation, averaging close to -3 cm for all
methods. A plausible explanation for this bias is the natural
morphology of P. pinaster, which normally grows thick, rugged
bark with deep, longitudinal cracks (Blanco Castro, 2005). Bark
plates’ crests cause manual measurement to overestimate the
stem diameter, hence the negatively signed error of circles fitted
to crack valleys. This phenomenon underscores the importance
of validating MACIF on a dataset comprised of several tree
species, which will be accounted for in future studies.

On the contrary, when evaluated on the branches dataset,
MACGIF outcompeted all other methods, including HyperRLTS.
Under such conditions, simulated noise caused previous
methods to fail, hence MACIF’s initial fit required correction.
The iterative correction module then allowed removing enough
noise so that HyperRLTS dealt with remaining noise
effectively. This claim is supported by MACIF results differing
little between the original and the branches dataset; in fact,
such difference is small enough to be considered as an effect of
algorithmic randomisation. Both numerical results and visual
assessment support the claim that iterative correction based on
stem continuity improves diameter estimation accuracy.
Furthermore, visual inspection of MACiF’s predictions along
stems indicates it has potential for tree structure modelling; our
method accounts for natural stems’ morphology, hence yielding
accurate stem shape models. Although, forked stems pose an
important challenge, as MACIF is compelled to follow either of
the branches when correcting predictions.

In the light of these results, we hypothesize MACIF only
requires a good reference section group and enough signal
points along stems’ surface to perform well. However, the effect
of random noise and occlusion on our algorithm remains
untested: if the reference group includes failed fits or later
corrections fail due to random noise or occlusion, errors may
propagate. Besides, MACIF could also benefit from other noise
filtering techniques. For example, 3DFin uses DBSCAN for
noise removal and evaluates circle fit quality via point density.
Therefore, future versions of our algorithm will test integrating
such enhancements.

Yet, the main limitation of this study is the lack of data. We
only used a sample of 18 trees, from which we obtained point
clouds using a single 3D modelling technique; MACIF should
be tested on LiDAR data, as point distribution and density can

vary greatly with respect to SfM point clouds. Furthermore, we
lack tree diameter measurements above and below 1.3 m, which
is crucial to validate the robustness of our method when applied
along the stem. We also stress a key limitation of studies
assessing stem diameters using point clouds: stem core location
is rarely accounted for. In some cases, circle fitting methods
yield good results in terms of diameter estimation, yet circle
centroid location is displaced. Centroid location is crucial for
applications such as optimal bucking (Prendes et al., 2023),
hence the need for better circle fitting validation strategies. Last,
we also note that circle fitting methods do not account for the
actual shape of stem cross-sections, ignoring the natural
complexity of tree stems and incurring in estimation errors
(Kuzelka and Surovy, 2024). Cross-sectional stem shape is
important for timber market value assessment, as it is often
assessed using gauging methods such as Japanese Agricultural
Standard (JAS) (Ellis et al., 1996).

As for data scarcity, a possible solution is using simulation
methods. In the present study, we used a simple, yet effective
strategy to assess the impact of high-density noise on circle
fitting methods by generating branches. Other noise generation
strategies might enable testing circle fitting methods on point
clouds with greater point dispersion and random noise
(Nurunnabi et al, 2015). More sophisticated methods,
nonetheless, allow generating realistic tree point clouds for
which diameter at different heights and stem core locations
would be perfectly known (Bornand et al., 2024). Therefore,
future research will focus on testing the robustness of different
circle fitting methods to various degrees of noise using complex
three-dimensional tree modelling.

6. Conclusion

In this study we developed and evaluated MACiF (Morphology-
Aware Circle Fit), a new algorithm for estimating stem
diameters from point clouds. The method integrates robust
statistical fitting with an iterative correction process that
leverages stem shape continuity. This approach significantly
improves accuracy in noisy or occluded point clouds,
outperforming existing methods in both clean and simulated-
noise scenarios. Our results demonstrate that low-cost UAV
photogrammetry, when combined with morphology-aware
processing, can provide reliable stem measurements for forest
inventory applications.

Despite these promising results, several limitations remain.
Validation was limited to 18 trees and to diameter at breast
height; further testing on larger datasets acquired with different
sensors, other stem heights, and from tree species is needed.
Additionally, incorporating advanced noise filtering techniques
could further enhance robustness. Notwithstanding, MACiF
represents a step forward in precise tree diameter and stem
shape estimation, contributing to the broader goal of Forestry
4.0.
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