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Abstract

The widespread availability of small-scale, off-the-shelf Unmanned Aerial Vehicles (UAVs) has opened various avenues for drone-
based photography and videography, where limited human expertise is needed to carry out drone flying and post-processing of the
acquired media. However, these off-the-shelf, closed-loop systems lack the flexibility and range of sensors/metadata to perform
specialized operations, such as accurate mapping for Geographical Information Systems (GIS) applications. To achieve survey-
grade precision, often larger UAV platforms are required, which can carry more sophisticated payloads leading to an increase in
the overall cost of the systems while introducing sensor calibration complexities. To address these issues, we present an efficient
approach using progressive, sequence-based feature matching and image alignment to generate high-quality, seamless, orthorectified
mosaics using low-cost UAVs equipped with general-purpose imaging and positioning sensors. Our proposed approach does not
require any prior knowledge of the environment or specific flight planning protocols. We validate the proposed approach through
real-world, outdoor experiments by collecting and processing flight data and generating geo-referenced orthomosaics. The results
showcase that our approach delivers operationally acceptable accuracy while achieving a mosaicking speed of 2.3 frames per second
using consumer-grade UAV platforms with minimal sensor data. The proposed solution aims to enable rapid and cost-effective,

UAV-based mapping for applications in forestry, hydrology, urban planning and disaster management.

1. Introduction and Related Works

In the past couple of decades, advancements in hardware man-
ufacturing technology have paved the way for miniaturized Un-
manned Aerial Vehicles (UAVs) commonly known as off-the-
shelf drones. These low-cost imaging platforms offer unpreced-
ented flexibility, spatial resolution, and temporal frequency for
capturing geospatial information. The integration of UAVs into
photogrammetry and remote sensing has facilitated the gener-
ation of high-resolution orthomosaics and geo-referenced data-
sets, vital for a variety of applications including precision agri-
culture, forestry (Remondino et al., 2011), infrastructure mon-
itoring, urban planning (Zhang and Zhu, 2023) and disaster as-
sessment (Mohd Daud et al., 2022).

Typically, UAVs fly at low altitudes compared to the Earth ob-
servation (EO) satellites which typically operate in the Low
Earth Orbit (LEO). Therefore, they have narrower swath widths
compared to their satellite counterparts. Due to less area cover-
age, a basic prerequisite for the utilization of drone-based im-
agery in mapping applications is the accurate orthomosaicing of
the image or video frames captured from the drone. Orthomo-
saicing refers to the process of generating geometrically cor-
rected, seamless composites that represent the Earth’s surface
without perspective distortions.

Another process that is commonly carried out before the im-
ages can be used in Geographical Information Systems (GIS)
applications is geo-referencing. This involves accurate know-
ledge of the geographical positioning of the UAV along with
the calibration of the imaging sensors. Various studies have
emphasized the necessity of careful calibration of imaging and
navigational sensors on UAV platforms for generating accurate
results. Some of the widely used techniques include Bundle
Block Adjustment (BBA) and lever-arm calibration (Turner et

al., 2014; Daakir et al., 2015). Camera calibration involves the
precise determination of intrinsic and extrinsic orientation para-
meters. Intrinsic parameters involve the internal characterist-
ics of the camera including focal length and lens distortions,
whereas extrinsic parameters are related to the external posi-
tioning and orientation of the camera in the 3D space (Abeho et
al., 2024; Pérez et al., 2011).

While commercial UAVs are commonly used these days for
regular photography, they are generally equipped with low-
grade, closed-loop sensors to keep the cost and weight of the
UAV at relatively lower levels. Closed-loop UAV systems,
in the context of this work, refer to commercial, off-the-shelf
drone platforms in which the onboard sensors (e.g., GPS, IMU,
and camera) are tightly integrated and managed internally by
the flight controller, without providing direct access to raw
sensor data streams. As a result, users are restricted from in-
dependently accessing and processing the data and from pos-
sibly integrating other sensors with the platform, limiting the
system’s flexibility for advanced photogrammetric or georefer-
encing tasks. As a result, it is often difficult to generate reason-
able results with such systems. For the majority of the mapping
applications, UAV platforms with sophisticated payloads such
as Real Time Kinematics (RTK) based GNSS sensors, highly
sensitive Inertial Measurement Units (IMUs) and imaging sys-
tems with minimal distortions are used (Hutton et al., 2020;
Oliveira et al., 2018). This leads to an increase in the overall
cost of the UAV platforms as well as an addition to their size
and weight, making it difficult to operate them under varying
environmental conditions.

In this paper, we present a streamlined workflow for generat-
ing geo-referenced orthomosaics using sensor data from off-
the-shelf, low-cost UAVs. Our proposed approach is based on a
progressive image alignment pipeline, where we initially de-
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signed an in-door experimental setup to precisely determine
the angular field of view (AFoV) of the UAV camera. This
is used to determine and validate the intrinsic parameters of
the camera and for calculating the image swaths in the direct
geo-referencing approach. Once the parameters are established,
we integrate them with robust feature matching and image
alignment modules to generate the desired outputs. The main
contribution of the paper is the near real-time generation of
seamless orthomosaics using progressive sequence-based im-
age matching while without utilizing specialized sensors such
as RTK and IMU data. Unlike traditional commercial photo-
grammetry software (e.g., Pix4D, and Agisoft Metashape) that
rely on dense Structure-from-Motion (SfM), Multi-View Stereo
(MVS) reconstructions and Digital Surface Models (DSMs),
our approach avoids heavy computation by using a progress-
ive, sequence-aware matching and transformation pipeline. The
methodology is specifically optimized for off-the-shelf UAVs
without requiring RTK-GNSS or detailed flight planning, mak-
ing it more applicable to low-cost deployments.

1.1 Types of Geo-referencing

Geo-referencing techniques can be broadly categorized into two
types; direct and indirect methods. Direct geo-referencing in-
volves real-time onboard GNSS and IMU data to determine
image orientation and position (Mostafa and Schwarz, 2001).
While this method is efficient and scalable, its accuracy is often
limited by sensor calibration, synchronization issues, and envir-
onmental noise (Turner et al., 2014). Pfeifer et al. (2012) intro-
duced an integrated approach using a range of onboard sensors
and photogrammetric test field calibration. Hemerly (2014)
presented an automatic geo-referencing approach through pre-
cise estimation of the pixel positions of image corners in the
model plane. Khoramshahi et al. (2019) proposed a frame-
work for overcoming the synchronization and calibration issues
through the estimation of interior camera parameters and pre-
cise alignment of the imaging and navigational sensors for a
multi-projective camera system. Similarly, Zeybek et al. (2023)
proposed a methodology based on post-processing kinematic
(PPK) to improve the overall positional accuracy of the UAV
sensors contributing to improved geo-referencing results.

Indirect geo-referencing relies on the establishment of Ground
Control Points (GCPs), which serve as known reference loca-
tions in the imagery and ground space. Although typically more
accurate, it requires time-intensive fieldwork and becomes im-
practical in many operational contexts. J6Zkéw and Toth (2014)
compared the results of direct and in-direct geo-referencing
methods on UAV images and concluded that the in-direct meth-
ods provide better accuracy. To address these challenges, hy-
brid approaches combining direct measurements with image-
based tie-point matching using computer vision algorithms and
camera self-calibration techniques have emerged as promising
alternatives (Faraji et al., 2016; Haala et al., 2022).

1.2 Orthomosaicing Techniques

Traditional orthomosaicing involves correcting each image for
lens distortion, terrain relief, and sensor orientation, then stitch-
ing them based on overlapping areas and matching features.
To enhance automation and robustness of the process, Faraji
et al. (2016) proposed a computer vision—based orthorecti-
fication pipeline that uses feature point detection and robust
matching. Similarly, Angel et al. (2020) proposed a com-
putationally efficient methodology to geo-rectify and mosaic

UAV-based hyper-spectral images using Speeded-Up Robust
Features (SURF) and Maximum Likelihood Estimator Sample
Consensus (MLESAC) algorithms.

Other Modern workflows integrate techniques such as SfM,
MYVS and DSMs to automate 3D scene reconstruction and im-
age alignment. However, these workflows are sensitive to cam-
era calibration, image overlap, lighting conditions, and surface
complexity. Ludwig et al. (2020) introduced a reproducible or-
thomosaic generation workflow incorporating automated point
cloud filtering to minimize checkpoint errors. Kern et al. (2020)
developed an open source framework for automatic orthomosa-
icing and geo-referencing of a continuous stream of UAV im-
ages with multiple options including 2D mosaicing and 3D re-
construction.

1.3 Machine Learning based Advancements

Recent studies have focused on multi-sensor fusion and deep
learning approaches to improve the results of orthomosaicing.
For instance, Park et al. (2022) introduced a deep learning
framework for image segmentation and inpainting to remove
transient objects (e.g., vehicles) to improve the results of or-
thorectification. Similarly, Kern et al. (2020); Fanta-Jende et
al. (2023) proposed techniques for integrating visual-inertial
odometry, GNSS data, and semantic segmentation to gener-
ate spatially accurate, context-rich maps. Recent studies have
demonstrated the generation of highly precise digital orthopho-
tos using Neural Radiance Fields (NeRF) (Chen et al., 2024;
Yue et al., 2025). NeRF is a fully connected neural network
model for 3D reconstruction of scenes based on the estimation
of volume density and emitted radiance at specific spatial posi-
tions and viewing angles. The downside of these deep learning
approaches is the requirement of training data and large com-
putational resources.

2. Methodology

The proposed seamless orthomosaic generation pipeline is de-
scribed in this section. It consists of various steps including ex-
perimental setup, robust feature detection and matching, calcu-
lation of intrinsic and extrinsic camera parameters, image trans-
formations, seamless mosaicing and geo-referencing. The fol-
lowing subsections provide detailed descriptions of each mod-
ule involved in the approach.

2.1 Determining the Camera AFoV

Since the UAV that is part of the study is a closed loop sys-
tem and the Angular Field of View (AFoV) of the camera is
undocumented, we initially design an indoor setup to precisely
determine the AFoV. Figure 1(a) shows the imaging geometry
of the drone. Here the UAV camera is pointing straight down at
the nadir angle which corresponds to a gimbal tilt of -90° and
a gimbal pan equal to 0°. Figure 1(b) shows the dimensions of
the corresponding image footprint on the ground. In this case,
the swath width of the frame is given by the following equation:

x=2xhXxtan(0/2) (N

where « is the swath width of the imaging frame at nadir view-
ing angle, h is the height of the UAV and 6 is the AFoV of the
camera. By fixing the height of the UAV and measuring the
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Figure 1. (a) UAV imaging geometry at Nadir view point, (b)
image footprint formed on the ground.

horizontal distance on the ground, we can calculate the AFoV
of the camera precisely. This is useful for the calculation of
intrinsic camera parameters as well as computing swath widths
and ground spatial distance (GSD) of the images. GSD is the
distance between the center of two consecutive image pixels as
measured on the ground and is an essential metric for quantify-
ing the spatial resolution of an image.

2.2 Robust Feature Detection

The next step in the proposed workflow is the detection of use-
ful features in each image frame. Different algorithms exist in
the literature for the detection of key feature points in an image
including Scale Invariant Feature Transform (SIFT), Oriented
FAST and rBRIEF (ORB), Binary Robust Invariant Scalable
Keypoints (BRISK) and accelerated KAZE (AKAZE) (Tareen
and Saleem, 2018). For this particular study, we choose the
SIFT algorithm because it provides sufficient features in terms
of detection density as compared to ORB and AKAZE detect-
ors. The feature detections produced by BRISK algorithm are
too dense and thus have a relatively large computational over-
head for outlier removal. The SIFT algorithm basically con-
structs a scale space by convolving the given image with a
Gaussian blurring mask and then computing the difference of
Gaussians as given by the following equations, respectively:

S(x,y,0) = G(z,y,0) * I(z,y) 2
D(%yva)ZS(%%]CU)_S(%%U) (3)

where S is the scale-space image, I is the original image, G is
the Gaussian kernel, and k is a multiplicative constant between
scales. Finally, key-point localization is performed using Taylor
series expansion and orientation is assigned to each key point
using gradient evaluation. The final descriptor of each key point
includes its (x,y) coordinates with respect to the image frame,
its scale and orientation.

2.3 Precise Feature Matching

Next, we perform feature matching using the Best of Two
Nearest Neighbours (Bo2NN) approach. First, the L2 norm of
each descriptor is calculated using the following equation:

distance(d;, d;) = ||d; — dj]|, 4)

This is computed for every descriptor d; in image A against
every d; in a set of neighboring images Z, defined as:

Z={A+1,A+2 ... A+n} )

where A is the index of the current image in the acquisition
sequence, and n determines how many adjacent images (be-
fore and after A) are considered for matching. The value of n
depends on the expected overlap between consecutive images,
which is influenced by the UAV’s speed and the imaging rate.
Here, we empirically set n = 7, which provides a clear com-
putational advantage while retaining sufficient pairs of images
to generate high quality mosaicing results. This optimization
leverages sequential image capture to avoid matching distant,
non-overlapping frames thus reducing the computational costs.

For each descriptor in the frame A, we find the two closest
descriptors in the set of comparing images and perform Lowe’s
ratio test on them which is given by the following equation:

dh <r wherer ~0.75 6)
da

If the above ratio is greater than or equal to 0.75, we keep the
closest matched descriptor. The 0.75 threshold balances sensit-
ivity and specificity in Lowe’s ratio test, empirically maximiz-
ing accurate matches while suppressing outliers (Lowe, 2004).
The Bo2NN method provides high-quality stable matches while
reducing false positives in repetitive areas of the images. Next,
we estimate the homography matrix H to relate the coordinates
of two matching points between the images as given below:

T T
y| ~H\y ©)
1 1

where H is a 3 x 3 matrix. To compute the outliers, we use the
RANSAC algorithm which computes the Euclidean distance of
the reprojection errors using the homography matrix and if this
distance is greater than a certain threshold, we count the feature
as an outlier. A pairwise confidence matrix is also computed
to determine the confidence score corresponding to each pair of
images.

2.4 Camera Parameter Estimation

Two sets of camera parameters are computed, i.e., intrinsic and
extrinsic parameters. The intrinsic parameters are defined by
the following matrix:

fa s s
K=|0 fy, ¢ (8)
0o 0 1
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here, f5 and f, are the focal lengths on the x and y axes, s is
the skew coefficient and ¢, ¢, are coordinates of the principal
point. The intrinsic parameters were estimated using a com-
bination of UAV camera specifications and the empirically cal-
culated AFoV from the indoor setup. The extrinsic parameters
accommodate for the external orientation of the camera includ-
ing scaling, translation and rotation. These are defined by the
following equation:

Xecamera = A - (R . Xworld + T) (9)

where R € R3*3 is the rotation matrix, T € R3*? is the trans-
lation vector, Xyona € R3*! are the real World coordinates
and X is the scale factor. Extrinsic parameters were derived
by performing sequential image alignment, in conjunction with
GPS-derived UAV positions.

2.5 Image Mosaicing

Once the transformation matrix of each image is computed, we
apply the transformations to bring the images to a common
plane before proceeding with the generation of mosaiced masks
along with the corresponding placement positions of each im-
age within the mosaiced mask. For seamless mosaicing of im-
ages, we precisely identify the areas of the images which relate
to their corresponding positions in the final mosaic.

3. Experimental Setup

The following subsections describe the hardware specifications
of the UAV along with the details of the indoor setup for camera
AFoV estimation and the outdoor experiments for the collection
of real-world imaging and positional data.

3.1 Drone and Camera Specifications

For the purpose of this study, we used the Autel Evo II Pro V2
drone which is a light-weight, off-the-shelf, commercial quad-
copter equipped with an RGB camera. Figure 2 shows the snap-
shot of the drone along with the laser rangefinder which is used
to determine the precise dimensions of the UAV footprint dur-
ing the indoor experiment.

 —
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Figure 2. Autel EVO II Pro V2 Imaging Drone along with Bosch
GLM 30 laser rangefinder

The specifications of the drone platform are summarized in
Table 1. Due to its small size, the UAV has limited take-off
weight capacity and flying time. It is equipped with a standard
GNSS receiver which can receive GPS signals for determining
the horizontal coordinates and the flight altitude. The GLM 30
laser rangefinder has a reported accuracy of +2mm. The cam-
era specifications are summarized in Table 2.

Table 1. Specifications of Autel EVO II Pro V2 Imaging Drone

Parameter Value
Dimensions 457%x558x 110 mm
Max take-off Weight 2000 g

Max Flying Altitude 7000 m

Max Flying Time 40 mins

Max Hovering Time 35 mins
Gimbal Tilt Range -90° to +30°
Gimbal Pan Range -90° to +90°

Table 2. Specifications of the builtin RGB Camera

Parameter Value
Sensor 1inch CMOS
Effective Megapixels 20MP

Lens Focal Length 28.6 mm
Aperture /2.8 - /11
Focus Range 1 m to infinity
Photo Resolution 5472 x 3076 (16:9)

3.2 Indoor Experiment

Figure 3 shows the indoor lab setup for calculation of the AFoV
of the UAV camera. We prepare the ground area by meas-
uring the horizontal distance (x = 2m) and vertical distance
(y = 1.125m) using a laser distance meter. y is calculated us-
ing the photo dimensions as mentioned in Table 2. The UAV
was flown on top of the ground setup with its camera tilted at
nadir viewing angle, pointing at the marked center point in the
figure 3. After that we measured the precise height of the UAV
using the laser distance meter. The vertical height (k) in Figure
1(a) is measured to be 1.56 meters. The AFoV is calculated
using the equation 1 which comes out to be 65.2°.

RS I 2

Yy

Figure 3. Visualization of ground area setup for calculating
AFoV of the UAV Camera.

3.3 Outdoor Study Area

The outdoor area selected for this study is located in the city
of Turku, in South-Western Finland. In Figure 4 (a), the map
shows the exact region of interest used for data collection. The
primary motivation for choosing this site was its diverse range
of surface features, including paved surfaces, a well-defined
river channel, patches of soft ground covered with grass, and
a pedestrian bridge. Additionally, the area’s ease of access and
relative distance from the densely populated city center made
it a practical and convenient choice for conducting UAV-based
experiments. Figure 4 (b) shows the flight trajectories of the
drone along with the corresponding imaging points. We per-
formed two sweeps of the study area; one from East to West
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and the second from West to East. The observed irregularities in
the flight trajectories are primarily attributed to manual piloting
and wind-induced drift during flight. The experiment was in-
tentionally conducted without the use of advanced autonomous
flight planning tools to simulate real-world, low-cost UAV op-
erations under minimal supervision or technical expertise. The
height of the UAV was fixed at a vertical altitude of 55 m above
ground level during the entire duration of the flight in which the
images were captured. Also, the camera was always pointed at
the nadir angle and hence looking vertically down at all times.

~ Finland

(b)

Figure 4. (a) Map of the outdoor study area on the Aura river
Finland (Coordinates: 60°27°56.59”N, 22°20°6.28”E), (b) Flight
trajectories of two passes: West to East and East to West.

4. Results and Analysis

To showcase the results and validate the outputs and effects of
each module in the pipeline, we take the working example of the
three images as depicted in Figure 5. As shown, there is a cer-
tain degree of overlap between the three images which is essen-
tial for the image matching and mosaicing process. It can also
be observed that apart from the pedestrian bridge, most parts
in the images do not have well-defined objects or features and
this could be challenging for the feature detection and matching
algorithms. These parts contain grass, snow and water.

The initial step involves the detection of good-quality features
in each image for mapping to subsequent images down the pro-
cessing pipeline. Figure 6 shows the output of the detected SIFT
features along with the exact number of features detected for
each input image. It can be seen that the SIFT algorithm effect-
ively identifies useful features across the images. Most of the
detected features lie over the bridge and towards the left side of
the images where there is more ground surface to present better
features as compared to the central parts of the images which
contain water.

Table 3 shows the confidence matrix generated as a result of the
feature matching process on the three input images. Based on

the information in the table, it can be seen that image 6 (a) has a
high matching confidence score with image 6 (b). Also, image
6 (b) has a high matching score with image 6 (c). However, the
corresponding confidence scores of images 6 (a) and 6 (c) are
quite low. This means that image 6 (b) has distinct overlapping
regions which are present separately in images 6 (a) and 6 (c).

Table 3. Pairwise, matching confidence matrix of Images as
shown in Figure 6.

Image 6 (a) Image6(b) Image 6(c)
Image 6 (a) 0.0 2.047 0.48
Image 6 (b) 2.047 0.0 2.086
Image 6 (c) 0.48 2.086 0.0

Figure 7 illustrates the output of the feature matching process
along with the number of inliers. Figure 7 (a) shows the feature
matching results of images 6 (a) and 6 (b). Similarly, figure 7 (b)
shows the feature matching of images 6 (b) and 6 (c), respect-
ively. Again, it can be seen that most of the feature matches
correspond to the left side of the images because it has a high
density of detected features. The algorithm was able to suc-
cessfully identify good feature matches across all three images,
despite visual variability.

Once the transformation process is carried out using the
matched features and the estimated camera parameters, the next
step generates the mosaiced masks of the three images on a
unified plane. This means that all the transformed images are
projected to a single frame while also retaining the initial spa-
tial positions such as corner coordinates as well as the width
and height of all individual frames involved in the final mosaic.
Figure 8 (a) shows the mosaiced mask of the images and Figure
8 (b) shows the corresponding positions of initial image frames
within the final mosaiced mask. Based on the positions of the
masks, it can be observed that there is a significant overlap (ap-
proximately 50%) in the consecutive image frames.

After that, the exact seam lines are extracted where the images
are to be stitched together to form the final mosaic. This de-
termines the actual areas of the individual images which will
form part of the final product. Figure 9 illustrates the output
of this step. It can be seen that the images were captured se-
quentially in the relative direction of the UAV flight. Therefore,
image 9 (a) has regions stripped off from the top whereas, 9 (c)
has regions cropped from the bottom. On the other hand, image
9 (b) has stripped areas from both the top and bottom because it
forms the center part of the final output.

To enhance the visual appearance of the mosaicing results, fig-
ure 10 (a) shows the cropped regions of the individual masks
within the final mosaic mask in color-coded form with three
colors pertaining to the three images. Figure 10 (b) shows the
final mosaic product of the three images under consideration
with the seam lines drawn in red color to demarcate the bound-
aries of each image frame.

Figure 11 showcases the result of seamless orthomosaic gen-
erated from a set of sixty consecutive image frames captured
from the UAV flight trajectories as shown in Figure 4 (b). The
average number of SIFT features detected across all the images
is 3176.26. Similarly, the average number of inliers retained
after progressive matching and RANSAC filtering across dif-
ferent image pairs is 214.59. The total time taken to process
sixty image frames was 26.3 seconds which provided an aver-
age mosaicing speed of 2.3 frames per second (fps). Careful
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Figure 6. Features detected through SIFT algorithm on three selected images.

¥ No. of Inliers: 165

No. of Inliers: 227

Figure 7. (a) Feature matching (top row) images 6 (a) and 6 (b),
(bottom row) images 6 (b) and 6 (c)

() (b)

Figure 8. (a) Mosaiced mask in unified plane (b) Corresponding
positions of individual image frames.

inspection of the final orthomosaic leads to the observation that
the central and eastern parts of the product are very well aligned
and almost perfectly mosaiced. However, the western parts of
the mosaic contain some inconsistencies around the bank of the
river as well as the portion that comprises of very thin power
lines. This is because there are not sufficient distinct features
present in these areas and the corresponding image-matching

Figure 9. Extraction of exact seam positions to perform final
stitching of images.

pairs have relatively low confidence scores.

Figure 12 illustrates the final result of the geo-referenced ortho-
mosaic. For comparison of geo-spatial positioning and orient-
ation, the orthomosaics are overlaid on the Open Steet Maps
(OSM) base layer. Figure 12 (a) shows the geo-referencing
result of the orthomosaic generated using the proposed meth-
odology. Four visually identified GCPs were used to carry
out the process. Figure 12 (b) shows the result of direct geo-
referencing with no orthorectification of each image frame us-
ing the GPS coordinates and calculation of the image footprints
through equation 1. By comparing the two figures, it is evid-
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Figure 10. Results of mosaicing: (a) Color coded cropped
masks. (b) Final mosaic with seam lines.

ent that the accuracy of the final product generated through the
proposed methodology, shown in Figure 12 (a) is notably better.

The entire pipeline was implemented in Python within an
Anaconda environment and executed on a local machine
equipped with an Intel Core Ultra 9 185H 2.50 GHz CPU,
32GB RAM, and a 1TB SSD, without any discrete GPU ac-
celeration. The reported mosaicking speed of 2.3 frames
per second was achieved under these conditions using single-
threaded processing.

5. Conclusion

Developing highly accurate photogrammetric products using
off-the-shelf, small-scale UAVs remains a significant challenge
due to the reliance on general-purpose, low-grade imaging and
positioning sensors aimed at minimizing cost and size. In this
paper, we proposed a streamlined approach for generation of
seamless geo-referenced orthomosaics with images obtained
with low-cost UAVs and limited sensor data. We empirically
calculate the AFoV of the UAV camera and perform image mo-
saicing through progressive feature matching and image trans-
formations while reducing the computational overhead by re-
stricting matches to relevant consecutive images only. Using
the proposed approach, we achieved seamless, near real-time
mosaicing at a speed of 2.3 fps with minimal sensor data. The
final orthomosaic is geo-referenced using a minimal set of visu-
ally identified GCPs, enabling its integration into GIS mapping
workflows. While traditional photogrammetric workflows with
RTK, GCPs, and SfM pipelines may still offer superior pre-
cision, our method provides a viable, low-cost alternative for
rapid mapping where such infrastructure is unavailable. Cer-
tain limitations exist in our work which include some inconsist-
encies in the mosaicing process in areas where the input im-
ages do not contain sufficient quality descriptors and the use of
GCPs for generating the final geo-referenced product. Future
work will focus on addressing these challenges by developing
more robust feature matching and image transformation tech-
niques, as well as incorporating quantitative quality assessment
methods. These may include Root Mean Square Error (RMSE)
analysis against surveyed Ground Control Points (GCPs), and
computation of reprojection errors from homography estima-
tion to benchmark the geometric accuracy of the generated or-
thomosaics.
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