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Abstract

Hyperspectral cameras have recently been miniaturized for operation on lightweight airborne platforms such as UAV or small
aircraft. Unlike frame cameras (RGB or Multispectral), many hyperspectral sensors use a linear array or ’push-broom’ scanning
design. This design makes image rectification and the calibration of intrinsic and extrinsic camera parameters significantly more
challenging. Standard methods employed to address such tasks rely on precise GPS/INS estimates of the airborne platform trajectory
and a detailed terrain model. However, inaccuracies in the trajectory or surface model can introduce systematic errors and complicate
geometric modeling, which ultimately degrade the quality of the image rectification. To overcome these challenges, we propose a
method for tie point extraction and camera calibration for *push-broom’, hyperspectral sensors using only raw spectral imagery and
a raw, possibly low quality, GPS/INS trajectory. We demonstrate that our approach allows for the automatic calibration of airborne
systems with push-broom, hyperspectral cameras, outperforms other state-of-the-art automatic rectification methods and reaches an

accuracy on par with manual calibration methods.

1. Introduction

Until recently, hyperspectral sensors (HS) have not been prac-
tical to use as payloads for light airborne platforms (e.g. UAVs)
(Nex et al., 2022), unlike frame cameras. Lightweight HS of-
fer many advantages over larger, aircraft based sensors. They
offer higher image resolution, greater deployment flexibility
and lower cost. These aspects make them highly useful for
a wide range of applications, such as snow-cover characteriz-
ation (Ding et al., 2022), crop and forest monitoring (Asner,
1998), and more. To maximize the achievable spatial and spec-
tral resolution, most light-weight Airborne Imaging Spectro-
meters (AIS) operate as push-broom cameras (Nex et al., 2022).
This makes georectifying their data challenging, as the solu-
tion is heavily reliant on the GPS/INS solution associated with
the imagery. Orientation determination with inertial measure-
ments remains an especially challenging task for low-end iner-
tial sensors (Sharma et al., 2024). There are two major types of
distortions which affect the output of push-broom sensors and
lead to the aforementioned georeferencing inaccuracy (Fang
et al., 2017): high frequency perturbations caused by non-
stabilized platforms on multirotor drones and low frequency at-
titude drift caused by GPS/INS imprecision. In general, roll
motion causes horizontal shift between successive lines in the
image, while pitch and speed variation cause along-track de-
formation (see Figure 1).

Imprecision of the georeferenced data becomes particularly
problematic when multiple data modalities are to be considered
together, e.g., point cloud and HS images for surface charac-
terization (Liu et al., 2017), or when a time series of the data
must be considered, e.g., for snow cover monitoring (Dozier
and Painter, 2004). Another challenge arises when the GPS/INS
sensor is attached to the airborne platform rather than to the hy-
perspectral sensor. In this configuration, the boresight and lever
arm between the camera projective center and the IMU center,
must be frequently re-calibrated. In fact, most hyperspectral
cameras integrate an internal GPS/INS sensor to solve this is-
sue. This makes the payload heavier, requiring larger, more
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Figure 1. Overview of our proposed process for tie-point
extraction in push-broom hyperspectral imagery

expensive drones and limits the capability of the camera to be
operated jointly with other payloads. In addition, this often only
reduces the amplitude of the boresight, leaving precise calibra-
tion of the sensor to the user (Sankararao et al., 2020).

Computer vision methods such as bundle adjustment can be
used to mitigate errors in the trajectory and mounting offsets
and rectify the image orientation (Barbieux et al., 2016). How-
ever, the processing methodologies for push-broom imagery re-
main much more complex than the equivalent process for frame
imagery, widely available in commercial software suites such
as Agisoft Metashape (Agisoft, 2024) or Pix4D (SA, 2024).
There are two main reasons for this additional complexity. First,
the motion of the airborne platform can cause misalignments
between pushbroom scan line, complicating the automatic ex-
traction of accurate tie points from the data. Second, in push-
broom imagery, each line has a different pose, which dramat-
ically increases the number of parameters considered in the
bundle adjustment, and introduces certain limits on the geomet-
ric constraints that can be used when filtering the data (e.g.,
epipolar constraints (Zhang, 2021)). These limitations prevent
the use of algorithms commonly used for frame images, such
as the 8-point algorithm (Hartley, 1997), to align push-broom
imagery.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-2-W2-2025-7-2025 | © Author(s) 2025. CC BY 4.0 License. 7



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2/W2-2025
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10—12 September 2025, Espoo, Finland

T A g

e
W gt 3

Figure 2. Pika-L. HS camera mounted on a DJI M350

In this work, we contribute a new method for automatic tie point
extraction from push-broom, HS images without the require-
ment of additional data (i.e., terrain model or GPS/INS data):

1. We propose a probabilistic model of push-broom im-
age formation to rectify high-frequency distortion caused
mainly by roll motion in the image data. This approach
yields subpixel accurate estimates of the shift between im-
age lines, and does so without access to a terrain model or
GPS/INS data.

2. We propose a y-scale invariant matching-scheme to re-
solve distortions caused by pitch motions and speed dif-
ferences when matching push-broom images. We show
that this significantly increases the number of matches and
inlier ratio.

3. We then show a practical use of the proposed methods by
evaluating the quality of boresight calibration of AIS cam-
eras using the proposed visual matches. Tie points gener-
ated with our algorithm, coupled with a robust algorithm
for boresight estimation, provide an orientation accuracy
of approximately 0.2°, employing a low cost IMU (SBG
Ellipse-N), compared to 0.3° for state-of-the-art tie point
generation methods.

Next, in section 2 we review related works in the literature. In
section 3 we review the proposed model. In section 4 we present
the experimental methodology we used to evaluate our model,
as well as the results we obtained. We conclude in section 5.

2. Related works

Processing pipelines for push-broom AIS imagery usually rely
only on the GPS/INS solution to georectify image lines from
the camera (Sankararao et al., 2020, Nex et al., 2022). To limit
the impact of high frequency vibrations, stabilization gimbals
can be used (Hueni et al., 2025, Turner et al., 2017) but they
pose other issues (i.e., additional weight and size, time varying
boresight and lever arm between the GPS/INS sensor and the
camera).

Historically, strong straight features (e.g. roads) had to be
manually identified to correct for distortion caused by aircraft
motion (mostly roll motion) (Jensen et al., 2008), but such
methods are not feasible in the absence of a straight, linear pat-
tern/object in the image, and are complex to automate. In addi-
tion to linear features, Ground Control Points (GCPs), marked
with recognizable patterns that can be identified in the images
and for which spatial coordinates are measured on the terrain,
can also be used as constraints (Ryan R. Jensen and Jensen,

2011). Alternatively to GCPs, which require an intervention in
the terrain, image correspondences or tie points can be extracted
from overlapping image regions. Tie points have been widely
used for HS sensor calibration, either extracted from overlap-
ping HS cubes (Berveglieri and Tommaselli, 2019), or between
HS cubes and frame images (Barbieux et al., 2016). However,
the reliable extraction of tie points can be challenging in the
presence of distortion in HS imagery. This presents a conun-
drum when such tie points are required to rectify these deform-
ations in the first place. In such cases, the image can be pre-
rectified using only the raw solution from the GPS/INS sensor.
However, artifacts can be generated in the image during the rec-
tification process, if there is no prior boresight calibration, the
GPS solution is noisy, or there is a time offset between the cam-
eras and the GPS/INS sensor (Habib et al., 2018).

It has been shown that the cross-correlation of pixels between
successive scan lines can be used to correct the horizontal dis-
placement caused by aircraft roll motion (Fang et al., 2017).
This makes it possible to extract tie-points from the partially
rectified hyperspectral cubes, without any form of direct geo-
referencing of the data or boresight calibration. We propose
a similar approach for horizontal displacement correction, but
we replace the cross-correlation with a Bayesian probabil-
istic model (Section 3.2), which has multiple benefits over the
state of the art. The Bayesian model better characterizes the
stochastic properties of the image, enabling sub-pixel accuracy
in predicting the horizontal shift between consecutive image
scan lines. Additionally, it incorporates a prior which regular-
izes the solution for improved stability.

For tie point extraction in HS imagery, spatial/spectral variants
of popular descriptors such as SIFT have been proposed (Yu
et al., 2021), but in practice, it has been observed that tradi-
tional descriptors yield reliable results without the need to be
adapted (Berveglieri and Tommaselli, 2019). In this work, we
used the standard A-KAZE matching pipeline (Alcantarilla and
Solutions, 2011) to detect tie points after image rectification.

3. Methodology

The proposed method aims to obtain tie points for HS, push-
broom imagery in the presence of either a non-stabilized plat-
form, inaccurate GPS/INS measurements, time tagging offset
w.r.t GPS time and/or unknown boresight between the GPS/INS
system and the camera. We split the main problem into three: 1)
horizontal shift correction due to roll motion, 2) removing the
ambiguity in vertical scaling due to pitch motion and variable
speed and finally 3) tie point extraction.

Section 3.1 presents the dataset used in our experiments. Sec-
tion 3.2 presents our method for horizontal shift correction,
based on a probabilistic model. Section 3.3 presents our ap-
proach for dealing with the ambiguity in vertical scaling of the
raw AIS data. Finally, Section 3.4 presents our approach for
tie-point extraction.

3.1 Datasets

The dataset for this work was acquired in the region of Delem-
ont, in Switzerland. A Resonon Pika-LL HS camera was used to
acquire the data. With a total payload weight of approximately
1kg, this camera is ideal to be flown on certain UAVs, such as
the DJI M350, see Figure 2. For this experiment, the camera
was mounted on a helicopter, alongside a reference navigation
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(b) Flight path above Delemont
with area of interest and flight

(a) Camera and navigation
system placed on the side of a
helicopter path

Figure 3. Dataset acquisition in Delemont (CH), map
background © OpenStreetMap contributors

grade GPS/INS system comprised of a Javad GNSS receiver
and iXblue AirINS inertial platform, see Figure 3. The Pika-L
comes bundled with a GPS-INS system, SBG Ellipse-N, which
is representative of the quality one could expect by flying the
camera on a UAV, while the output of the AirINS was used as a
ground truth reference. The flight lasted approximately 1 hour
and was conducted at an altitude of 150 m above ground level,
with a flight speed of 14 m/s. The Pika-L, with a field of view
of 36.5° and 900 spatial pixels per scan-line, was operated at a
sampling frequency of 200 Hz. The resulting ground sampling
distance of the HS data was approximately 10 cm/px.

A hardware output pulse triggered for each exposure by the
Pika-L was used to time-tag scan-lines with absolute GPS time.
Within this configuration, more pulses sent from the Pika-L
were registered by the GNSS receiver than scan-lines were re-
corded. This is likely due to hardware limitations and sens-
itivity to noise of the acquisition setup. Nonetheless, since
our method for horizontal shift rectification, presented in Sec-
tion 3.2, does not require GPS/INS data, but the horizontal shift
is correlated with roll, we were able to recover the correct time
offsets between the captured HS scan-lines and the absolute
GPS-time of the pulses.

3.2 Horizontal shifts and image formation model

At the core of our approach, we consider that the value of two
successive lines in the push-broom images, represented here as
a vector I, follow approximately a normal distribution whose
covariance is a function of the relative pose AT between two
lines:

I~N (1, (AL)). (1)

This derives from the assumption that the image generation can
be approximated by a Gaussian Process, an assumption, while
not perfect, has been shown to be sufficiently accurate in prac-
tice when correct covariance functions are used (He and Siu,
2011). If we have a prior on how different pixels are correlated
based on the relative poses of the camera between the two lines,
then observing I yields insight about the relative orientation of
the camera between two lines by inverting the conditional prob-
ability distribution p (I|AT") to obtain p (ATL'|I). A straightfor-
ward way of doing so is to use the Bayesian formalism and
probabilistic graphical models (Buntine, 1994).

In practice, a model based on the full 6-DOF relative pose AT
will be ambiguous, as the posterior p (AT'|I) can be a com-
plex multi-modal distribution in which effects such as change
in pitch or forward motion can be highly correlated. To remove

A

Figure 4. Probabilistic graphical model of our approach

the ambiguity, we only consider the resulting horizontal (cross-
path) shift Ax and vertical (along-path) shift Ay, as these are
sufficient to pre-rectify the push-broom data and find tie points.
With the Pika-L optics, the relative error of approximating the
effect of roll motion with horizontal shifts is on average 0.03
pixels, which is lower than our target estimation accuracy of
0.1px.

We build our probabilistic graphical model, see (Buntine, 1994)
for more details, as shown in Figure 4. We set the prior such
that p(Az) is a normal distribution with mean equal to 0 px
and standard deviation equal to 0.5 px and p(Ay) is an expo-
nential distribution with rate parameter equal to 1. The values
of the standard deviation and rate were chosen empirically by
analyzing the raw IMU data.

The likelihood model is given, following Equation 1, by:

p(I|Ax, Ay) = N (p, B(Az, Ay)) , ®)

where p is the mean of the pixel value intensity, and the func-
tion X(Ax, Ay) is computed using a Matérn covariance kernel
(Genton, 2002). With this model, the covariance between two
pixels separated by a horizontal distance d is given by:

)

V3y/ (Az+d)2+Ay2
Nezrar Y e s
02<1+\[(I—’Z_)+y>e '

3

with o2 the variance of the image pixel intensity and [ a length
factor that can be calibrated by evaluating the covariance of
pixels on the same row (thus without distortion). We set
Az = Ay = 0 for pixels on the same row. The Matérn
covariance function ensures that the covariance between two
pixels decreases effectively with distance, while ensuring that
3 (Ax, Ay) remains positive definite for all values of Az and
Ay, which an arbitrary covariance function cannot guarantee.

In the end, we select the estimator for Az and Ay to be:

Az, Ay = argmax p(I|Az, Ay)p(Az)p(Ay). 4)

Azx,Ay

A closed form expression for log (p(I|Az, Ay)p(Ax)p(Ay))
and its derivative exists, however solving for the minima is not
feasible, thus we rely on the I-BGFS (Liu and Nocedal, 1989)
numerical solver to compute AZ and Ag.

3.3 Vertical scale invariance

It was observed that AZ yields a good estimate of the horizontal
shift and is very correlated with the roll motion of the airborne
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(a) Parallel crossing

(b) Perpendicular crossing

Figure 5. The effect of y-scaling, where the aspect ratio of the
image changes when the airborne platform flies parallel (a) or
perpendicular (b) to the road.

platform. On the other hand, Ay is usually less predictable and
yields very little information about the local distortion along the
direction of motion. This is because when sharp transitions in
the landscape occur (e.g., the plane crosses the edge of a build-
ing along the axis of travel), the local correlation hypothesis is
no longer valid. In that case, AZ is only marginally affected, as
the transition occurs for only a single pixel in the across-track
direction, while, since multiple pixels can be part of the trans-
ition in the along-track direction, Ay is strongly affected. For
our intended application, we need a different method to treat
vertical distortion in the HS data.

This is because, for crossing flight lines, i.e., when tie points
are the most useful for calibration purposes, the variable speed
of the aircraft can lead to distortion in the push-broom pixels
along the direction of travel, see Figure 5. These distortions, in
turn, complicate the process of matching keypoints as they act
in opposite directions in the two crossing flight lines.

To deal with possible distortions in the y direction, we modified
the A-KAZE scale invariant feature pyramid, such that the scale
in the = and y directions are now explored independently. This
anisotropic scale pyramid trades speed and complexity of the
algorithm for invariance against y scaling. Nonetheless, in aer-
ial imaging, the aircraft usually flies at constant height above
the ground, so very few levels in the x direction need to be
considered. Generally a single level and rarely more than 2 dif-
ferent levels are sufficient. In our study we only considered a
single scale level in the = direction, as the whole feature pyr-
amid is meant to deal with the y scaling of the data.

3.4 Tie point extraction and filtering

Once the image is rectified as described in Section 3.2, it be-
comes possible to use a traditional pipeline to extract match-
ing tie points. We used the A-KAZE method (Alcantarilla and
Solutions, 2011), which is known to yield fast and accurate res-
ults (Ordonez et al., 2018), and is open source. Initial testing
on our data hinted that A-KAZE is a better alternative to SIFT
as it yields more matches and a similar proportion of inliers.
We also compared with ORB (Rublee et al., 2011), (Tareen and
Saleem, 2018). While ORB yields more matches, more of them
are outliers, which complicates downstream tasks.

Once the tie point matches are produced, a significant por-
tion can still be incorrect (i.e. the algorithm matches two

pixels representing different elements in the scene). In the case
of frame images, geometric constraints and the RANSAC al-
gorithm (Lacey et al., 2000), commonly epipolar constraints,
can be used to detect and remove outliers. In the case of un-
calibrated pushbroom cameras, assuming the GPS/INS meas-
urement is either unreliable or imprecise, this is not feasible.
Instead, we consider two rectified chunks of the pushbroom HS
data and assume that a generic homography exists between the
points in chunk 1 and chunk 2. In other words, we assume the
existence of a unique matrix H such that:

pt,; < Hpt,,, (®)]

where pt, ; and pt, ; are matching points in chunks 1, respect-
ively 2, in homogeneous coordinates. The assumption here is
that there exists a perspective transformation between the sets
of inlier points in the two respective chunks.

The coefficients of H can be estimated with at least 4 points us-
ing Equation 5 and the direct linear transform algorithm (Abdel-
Aziz et al., 2015). Based on this model, a RANSAC loop can
be built. In the RANSAC loop, we consider a point to be an
inlier if it lies at a distance of at most 60 pixels, which is very
tolerant to account for the fact that our homography model is
only an approximation.

3.5 Hyperspectral camera boresight calibration

The main parameter we want to calibrate for a HS camera is
the boresight. Intrinsic parameters such as the focal length and
lens distortion can be calibrated in advance, meaning that a
strong prior can be attributed to them. The lever arm between
a GPS/INS sensor and the camera can be measured on the plat-
form before the flight with good accuracy (relative to the scale
of the scene). On the other hand, the boresight, which is key for
precise geo-referencing of the mapping data, cannot be meas-
ured. Tie points offer a good system for the boresight cal-
ibration from the mapping data itself, limiting the need for a
separate calibration procedure before flight. Due to geometric
constraints, it still imposes requirements on the flight path, as
crossing lines are required to disambiguate the projected effects
between the different axes of rotation.

To estimate the boresight, we minimize the residuals of epi-
polar constraints for each pair of tie points. We parameterized
the boresight as an axis angle r, in which the direction indicates
the axis of rotation, and the norm indicates the angle. This is
in fact an element of so(3), the lie algebra associated with the
special orthogonal group SO(3). This means that the corres-
ponding rotation matrix R is given by the matrix exponential
el™lx | with [r],, the matrix representing the cross product with
r. The epipolar constraint for a pair of image points is written
as:

<e[r]x'v1 X Rée[T]sz,t§> =0, 6)

with v; and v2 being the ray direction in the camera frame
at pose 1, respectively 2, R} being the relative rotation from
pose 2 to pose 1 and 3 being the translation between pose 1
and 2. R} and ¢} are taken from the GPS/INS output, and as
such would be noisy, but the estimate of = is obtained with a
very large number n hundred, if not thousands of tie points,
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Figure 6. Horizontal shift error distribution (compared to Az
computed from ground truth GPS/INS)

lowering the noise level with a factor O(y/n) as long as no bias
is present.

Equations 6 can be solved using a numerical solver like Gauss-
Newton or Levenberg—Marquardt. We used Gauss-Newton, as
the problem proved to be well behaved and converges to the
solution without a need for additional regularization.

The Gauss-Newton algorithm solves an over-determined set of
equations in the least square sense, meaning that a single outlier
can have a large effect on the solution. To limit the impact of
outliers, it can be useful to wrap the residuals of the equations in
a non-linear kernel. A popular option is the Huber Loss, which
is quadratic close to zero and linear further away:

Hs(z) = {

with § being a hyper-parameter of the loss. We selected § =
1/4.

z? for |z| < 4,

- (]| — 30) , otherwise.

Q)

(ST

4. Experiments

In this section, we evaluate the different methods described in
Section 3. First, we evaluate our proposed probabilistic model
for horizontal shift correction in Section 4.1. Then, in Sec-
tion 4.2, we evaluate how the proposed horizontal shift correc-
tion and y-scale invariant approach impact the production of tie
points, and the proportion of outliers filtered out. Finally, in
Section 4.3, we measure the quality of boresight calibration as
a function of the produced automated correspondences.

4.1 Horizontal shift correction

To evaluate the quality of the proposed horizontal-shift correc-
tion method, we compare its performance against the state of
the art method by (Fang et al., 2017).

We use the reference solution from the navigation grade
GPS/INS to estimate the ground truth horizontal displacement
. We compute the shift in pixels of the features on the ground,
based on the digital surface model of the terrain. We then av-
erage that shift to get &. Note that only the regions within the
mapping area were included. Regions outside of the mapping

areas highlighted in Figure 3, where the helicopter is turning,
are excluded.

Overall, for the Delemont dataset, our method reaches an aver-
age accuracy, measured by the RMSE, of 0.85 pixels. Note that
the RMSE is very strongly influenced by a small set of outliers.
When the median is considered instead, the accuracy is 0.28
pixels. For comparison, the previous state of the art method by
(Fang et al., 2017), based on the cross correlation of successive
lines, reaches a RMSE 0.93 pixels and a median accuracy of
0.35 pixels. Figure 6 shows the distribution of error with the
median, as well as the 5%, 25%, 75% and 95% quantiles.

Observations in the rectified images (Figure 7) show that there
are two main reasons why our method reaches this accuracy:

First, since our model is continuous (able to detect sub-pixel
shifts), and based on a better approximation of the image form-
ation model, it reaches a superior rectification quality. This is
especially visible in Figure 7a, where both the road and rail-
way are still distorted when correlation is used, but little to no
deformation is visible with our approach.

Second, as our approach is based on the Bayesian formalism,
it includes a prior for the latent variable. This prior in turn has
a regularizing effect (Jospin et al., 2022), which prevents the
solution from collapsing to a slightly more optimal shift accord-
ing to the image texture, but less likely in practice. This effect
is especially visible in Figure 7b, where the texture on the road
across the image seems to have just the right tilt to cause strong
and visible deformations on the other elements of the image,
here a tree. With our method, no such distortion is apparent on
the rectified image.

4.2 Tie point detection and filtering

Here, we investigate whether increasing the accuracy of the
horizontal shift estimate increases the quality of detected tie
points. We ran our tie point detector, first on the unrectified
data, second on the data rectified using the correlation based ap-
proach described by (Fang et al., 2017) and third on the data rec-
tified using our method. We also used the reference GPS/INS
data to rectify the hyperspectral data and manually selected 949
tie points. These manual tie points will be used later as com-
parison points when evaluating the accuracy of the boresight
calibration.

The tie points obtained by the three different methods are manu-
ally categorized as either inliers, when visibly pointing at the
same object, or outliers, when pointing to different objects.
Around 1’000 tie points were labeled in this way for each set of
points. This allows for the different methods to be compared in
accuracy in terms of the proportion of inliers present in the tie
points.

Finally, we used the homography based RANSAC filtering ap-
proach described in Section 3.4 to filter the outliers. We estim-
ate the proportion of inliers a second time, after filtering.

The results, reported in Table 1, show clearly that using a
y-scaling invariant scheme, as we propose, significantly im-
proves both rectification methods by increasing the number of
tie points and the proportion of inliers. Additionally, the pro-
posed filtering method based on a homography model yields a
larger proportion of inliers, but is not perfect. In fact, horizontal
shift without y-scaling invariance seems to be counterproduct-
ive compared to running the detector on the raw data, most

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-2-W2-2025-7-2025 | © Author(s) 2025. CC BY 4.0 License. 11



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2/W2-2025
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10—12 September 2025, Espoo, Finland

(a) Rectification quality: less deformations are visible along the road
and railway with our method.

Correlation

(b) Resistance to local attractors: features on the road seem to distort the
tree in the correlation based rectification, not with our method.

Figure 7. Our method is both more accurate than the state of the art (a), but also, the Bayesian prior ensures that the solution is not too
strongly impacted by local attractors (b)

Method Y-scale invariant Keypoints Initial matches (Inliers prop) Selected Ransac (actual Inliers prop)
Raw No 288’024 2’213 (16.0%) 871 (acc. 69.9%)
(Fang et al., 2017)  No 310433 3’088 (12.5%) 1’145 (acc. 69.6%)
(Fang et al., 2017)  Yes 500’971 12’691 (58.8%) 7°920 (acc. 92.2%)
Ours No 309’187 27380 (15.0%) 917 (acc. 72.7%)
Ours Yes 499°947 14°459 (69.2%) 10’289 (acc. 94.0%)

Table 1. Number of tie points and inliers for different methods. Bold is the best estimated proportion of inliers (excluding reference)

likely because the horizontal correction re-alignes patterns on
the road, which in turn increases the amount of self-similar tex-
ture areas where the algorithm could fail. Our method reaches
a higher proportion of inliers, both before (70%) and after fil-
tering (95%), showing the benefits of an improved horizontal
rectification algorithm.

Overall, our method produces a higher proportion of inlier tie
points within the highest number of matches. In the next sec-
tion, we investigate if this higher proportion of inlier tie points
translates to a better estimation of the boresight calibration,
which is an important practical application we are interested
in.

4.3 Camera boresight calibration

To estimate the uncertainty associated with the obtained set of
tie points, we use bootstrapping (Efron and Tibshirani, 1985),
i.e., estimate the uncertainty associated with an input distribu-
tion by using resampling in the set of measurements. While
Laplace’s approximation (MacKay, 2003) is often used to de-
termine the uncertainty of an estimate obtained via Gauss-
Newton’s optimization (the covariance of the estimated pos-
terior is just the inverse of the Hessian of the optimization prob-
lem), it also assumes that the errors in the inputs are normally
distributed. Laplace’s approximation is also meant to estimate
the uncertainty given a set of measurements, not the uncertainty
associated with the generation of the measurements themselves.
To account for the fact that the error distribution of the obtained
tie points can be heavily tailed and assumed to be arbitrary, we
use bootstrapping instead.

For each set of filtered points shown in Table 1, including the

949 reference points, we randomly select 500 and solve the
problem of boresight calibration. For each tie point set, except
for the reference which we know contains no outliers, we com-
pare the results when using either the ¢2 or the Huber kernel for
the Gauss-Newton optimization.

We repeat this experiment 100 times. From the 100 generated
samples, we compute the mean, as well as the expected angle
deviation from the mean. The angle deviation between two ro-
tations 71 and 72, with 7 and r, expressed as axis angles, can
be computed as:

Tr (e*[Tllx e[Tz]X) 1
arccos . (8)

2

We then compare the boresight estimate for each generated tie
point set and compare it with the estimate obtained with manual
tie points (which we will use as ground truth), computing the
deviation with Equation 8 again.

The results, shown in Table 2, highlight the clear benefits of our
method. We get a 30% reduction in the uncertainty associated
with the tie point generation process compared to the method of
(Fang et al., 2017), and a 50% reduction in the error compared
to the ground truth (i.e., the reference obtained with manual tie
points). The caveat is that the use of a robust regression kernel
like the Huber loss, seems to be mandatory, as without, the re-
maining outliers seem to have an out-sized effect, but with less
than 10% outliers after RANSAC, the robust estimator remains
stable.
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Method Filter method Optimization kernel Bootstrap standard error  Error with reference
Raw Homography Ransac ~ ¢2 5.77° 10.35°
Raw Homography Ransac  Huber 1.33° 5.72°
(Fang et al., 2017)  Homography Ransac ~ ¢2 4.92° 20.97°
(Fang et al., 2017)  Homography Ransac ~ Huber 0.30° 0.34°
Ours Homography Ransac ~ ¢2 3.59° 11.37°
Ours Homography Ransac  Huber 0.22° 0.12°

Table 2. Comparison of different boresight calibration approaches, with expected angular error and error compared to the reference.
Bold is the best accuracy (excluding reference)

5. Conclusion

In this work, we have demonstrated that a method for push-
broom hyperspectral horizontal shift rectification based on
probabilistic modeling of the image formation process, coupled
with a y-scale invariant tie point extraction algorithm and ro-
bust regression effectively addresses the boresight calibration
problem and achieves accuracy on par with manually curated tie
points. In addition to the calibration of the boresight for light-
weight hyperspectral push-broom cameras, our method for tie
point generation can be used for other problems such as integ-
rated orientation of GPS/INS or other re-calibration procedures
for the camera parameters.

Since our method for tie point production does not require ex-
ternal input, another interesting direction for future research is
multiple sensor co-registration.
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