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Abstract

Hyperspectral cameras have recently been miniaturized for operation on lightweight airborne platforms such as UAV or small

aircraft. Unlike frame cameras (RGB or Multispectral), many hyperspectral sensors use a linear array or ’push-broom’ scanning

design. This design makes image rectification and the calibration of intrinsic and extrinsic camera parameters significantly more

challenging. Standard methods employed to address such tasks rely on precise GPS/INS estimates of the airborne platform trajectory

and a detailed terrain model. However, inaccuracies in the trajectory or surface model can introduce systematic errors and complicate

geometric modeling, which ultimately degrade the quality of the image rectification. To overcome these challenges, we propose a

method for tie point extraction and camera calibration for ’push-broom’, hyperspectral sensors using only raw spectral imagery and

a raw, possibly low quality, GPS/INS trajectory. We demonstrate that our approach allows for the automatic calibration of airborne

systems with push-broom, hyperspectral cameras, outperforms other state-of-the-art automatic rectification methods and reaches an

accuracy on par with manual calibration methods.

1. Introduction

Until recently, hyperspectral sensors (HS) have not been prac-

tical to use as payloads for light airborne platforms (e.g. UAVs)

(Nex et al., 2022), unlike frame cameras. Lightweight HS of-

fer many advantages over larger, aircraft based sensors. They

offer higher image resolution, greater deployment flexibility

and lower cost. These aspects make them highly useful for

a wide range of applications, such as snow-cover characteriz-

ation (Ding et al., 2022), crop and forest monitoring (Asner,

1998), and more. To maximize the achievable spatial and spec-

tral resolution, most light-weight Airborne Imaging Spectro-

meters (AIS) operate as push-broom cameras (Nex et al., 2022).

This makes georectifying their data challenging, as the solu-

tion is heavily reliant on the GPS/INS solution associated with

the imagery. Orientation determination with inertial measure-

ments remains an especially challenging task for low-end iner-

tial sensors (Sharma et al., 2024). There are two major types of

distortions which affect the output of push-broom sensors and

lead to the aforementioned georeferencing inaccuracy (Fang

et al., 2017): high frequency perturbations caused by non-

stabilized platforms on multirotor drones and low frequency at-

titude drift caused by GPS/INS imprecision. In general, roll

motion causes horizontal shift between successive lines in the

image, while pitch and speed variation cause along-track de-

formation (see Figure 1).

Imprecision of the georeferenced data becomes particularly

problematic when multiple data modalities are to be considered

together, e.g., point cloud and HS images for surface charac-

terization (Liu et al., 2017), or when a time series of the data

must be considered, e.g., for snow cover monitoring (Dozier

and Painter, 2004). Another challenge arises when the GPS/INS

sensor is attached to the airborne platform rather than to the hy-

perspectral sensor. In this configuration, the boresight and lever

arm between the camera projective center and the IMU center,

must be frequently re-calibrated. In fact, most hyperspectral

cameras integrate an internal GPS/INS sensor to solve this is-

sue. This makes the payload heavier, requiring larger, more

Figure 1. Overview of our proposed process for tie-point

extraction in push-broom hyperspectral imagery

expensive drones and limits the capability of the camera to be

operated jointly with other payloads. In addition, this often only

reduces the amplitude of the boresight, leaving precise calibra-

tion of the sensor to the user (Sankararao et al., 2020).

Computer vision methods such as bundle adjustment can be

used to mitigate errors in the trajectory and mounting offsets

and rectify the image orientation (Barbieux et al., 2016). How-

ever, the processing methodologies for push-broom imagery re-

main much more complex than the equivalent process for frame

imagery, widely available in commercial software suites such

as Agisoft Metashape (Agisoft, 2024) or Pix4D (SA, 2024).

There are two main reasons for this additional complexity. First,

the motion of the airborne platform can cause misalignments

between pushbroom scan line, complicating the automatic ex-

traction of accurate tie points from the data. Second, in push-

broom imagery, each line has a different pose, which dramat-

ically increases the number of parameters considered in the

bundle adjustment, and introduces certain limits on the geomet-

ric constraints that can be used when filtering the data (e.g.,

epipolar constraints (Zhang, 2021)). These limitations prevent

the use of algorithms commonly used for frame images, such

as the 8-point algorithm (Hartley, 1997), to align push-broom

imagery.
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Figure 2. Pika-L HS camera mounted on a DJI M350

In this work, we contribute a new method for automatic tie point

extraction from push-broom, HS images without the require-

ment of additional data (i.e., terrain model or GPS/INS data):

1. We propose a probabilistic model of push-broom im-

age formation to rectify high-frequency distortion caused

mainly by roll motion in the image data. This approach

yields subpixel accurate estimates of the shift between im-

age lines, and does so without access to a terrain model or

GPS/INS data.

2. We propose a y-scale invariant matching-scheme to re-

solve distortions caused by pitch motions and speed dif-

ferences when matching push-broom images. We show

that this significantly increases the number of matches and

inlier ratio.

3. We then show a practical use of the proposed methods by

evaluating the quality of boresight calibration of AIS cam-

eras using the proposed visual matches. Tie points gener-

ated with our algorithm, coupled with a robust algorithm

for boresight estimation, provide an orientation accuracy

of approximately 0.2°, employing a low cost IMU (SBG

Ellipse-N), compared to 0.3° for state-of-the-art tie point

generation methods.

Next, in section 2 we review related works in the literature. In

section 3 we review the proposed model. In section 4 we present

the experimental methodology we used to evaluate our model,

as well as the results we obtained. We conclude in section 5.

2. Related works

Processing pipelines for push-broom AIS imagery usually rely

only on the GPS/INS solution to georectify image lines from

the camera (Sankararao et al., 2020, Nex et al., 2022). To limit

the impact of high frequency vibrations, stabilization gimbals

can be used (Hueni et al., 2025, Turner et al., 2017) but they

pose other issues (i.e., additional weight and size, time varying

boresight and lever arm between the GPS/INS sensor and the

camera).

Historically, strong straight features (e.g. roads) had to be

manually identified to correct for distortion caused by aircraft

motion (mostly roll motion) (Jensen et al., 2008), but such

methods are not feasible in the absence of a straight, linear pat-

tern/object in the image, and are complex to automate. In addi-

tion to linear features, Ground Control Points (GCPs), marked

with recognizable patterns that can be identified in the images

and for which spatial coordinates are measured on the terrain,

can also be used as constraints (Ryan R. Jensen and Jensen,

2011). Alternatively to GCPs, which require an intervention in

the terrain, image correspondences or tie points can be extracted

from overlapping image regions. Tie points have been widely

used for HS sensor calibration, either extracted from overlap-

ping HS cubes (Berveglieri and Tommaselli, 2019), or between

HS cubes and frame images (Barbieux et al., 2016). However,

the reliable extraction of tie points can be challenging in the

presence of distortion in HS imagery. This presents a conun-

drum when such tie points are required to rectify these deform-

ations in the first place. In such cases, the image can be pre-

rectified using only the raw solution from the GPS/INS sensor.

However, artifacts can be generated in the image during the rec-

tification process, if there is no prior boresight calibration, the

GPS solution is noisy, or there is a time offset between the cam-

eras and the GPS/INS sensor (Habib et al., 2018).

It has been shown that the cross-correlation of pixels between

successive scan lines can be used to correct the horizontal dis-

placement caused by aircraft roll motion (Fang et al., 2017).

This makes it possible to extract tie-points from the partially

rectified hyperspectral cubes, without any form of direct geo-

referencing of the data or boresight calibration. We propose

a similar approach for horizontal displacement correction, but

we replace the cross-correlation with a Bayesian probabil-

istic model (Section 3.2), which has multiple benefits over the

state of the art. The Bayesian model better characterizes the

stochastic properties of the image, enabling sub-pixel accuracy

in predicting the horizontal shift between consecutive image

scan lines. Additionally, it incorporates a prior which regular-

izes the solution for improved stability.

For tie point extraction in HS imagery, spatial/spectral variants

of popular descriptors such as SIFT have been proposed (Yu

et al., 2021), but in practice, it has been observed that tradi-

tional descriptors yield reliable results without the need to be

adapted (Berveglieri and Tommaselli, 2019). In this work, we

used the standard A-KAZE matching pipeline (Alcantarilla and

Solutions, 2011) to detect tie points after image rectification.

3. Methodology

The proposed method aims to obtain tie points for HS, push-

broom imagery in the presence of either a non-stabilized plat-

form, inaccurate GPS/INS measurements, time tagging offset

w.r.t GPS time and/or unknown boresight between the GPS/INS

system and the camera. We split the main problem into three: 1)

horizontal shift correction due to roll motion, 2) removing the

ambiguity in vertical scaling due to pitch motion and variable

speed and finally 3) tie point extraction.

Section 3.1 presents the dataset used in our experiments. Sec-

tion 3.2 presents our method for horizontal shift correction,

based on a probabilistic model. Section 3.3 presents our ap-

proach for dealing with the ambiguity in vertical scaling of the

raw AIS data. Finally, Section 3.4 presents our approach for

tie-point extraction.

3.1 Datasets

The dataset for this work was acquired in the region of Delem-

ont, in Switzerland. A Resonon Pika-L HS camera was used to

acquire the data. With a total payload weight of approximately

1kg, this camera is ideal to be flown on certain UAVs, such as

the DJI M350, see Figure 2. For this experiment, the camera

was mounted on a helicopter, alongside a reference navigation
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Figure 3. Dataset acquisition in Delemont (CH), map

background © OpenStreetMap contributors

grade GPS/INS system comprised of a Javad GNSS receiver

and iXblue AirINS inertial platform, see Figure 3. The Pika-L

comes bundled with a GPS-INS system, SBG Ellipse-N, which

is representative of the quality one could expect by flying the

camera on a UAV, while the output of the AirINS was used as a

ground truth reference. The flight lasted approximately 1 hour

and was conducted at an altitude of 150 m above ground level,

with a flight speed of 14 m/s. The Pika-L, with a field of view

of 36.5° and 900 spatial pixels per scan-line, was operated at a

sampling frequency of 200 Hz. The resulting ground sampling

distance of the HS data was approximately 10 cm/px.

A hardware output pulse triggered for each exposure by the

Pika-L was used to time-tag scan-lines with absolute GPS time.

Within this configuration, more pulses sent from the Pika-L

were registered by the GNSS receiver than scan-lines were re-

corded. This is likely due to hardware limitations and sens-

itivity to noise of the acquisition setup. Nonetheless, since

our method for horizontal shift rectification, presented in Sec-

tion 3.2, does not require GPS/INS data, but the horizontal shift

is correlated with roll, we were able to recover the correct time

offsets between the captured HS scan-lines and the absolute

GPS-time of the pulses.

3.2 Horizontal shifts and image formation model

At the core of our approach, we consider that the value of two

successive lines in the push-broom images, represented here as

a vector I , follow approximately a normal distribution whose

covariance is a function of the relative pose ∆Γ between two

lines:

I ∼ N (µ,Σ (∆Γ)) . (1)

This derives from the assumption that the image generation can

be approximated by a Gaussian Process, an assumption, while

not perfect, has been shown to be sufficiently accurate in prac-

tice when correct covariance functions are used (He and Siu,

2011). If we have a prior on how different pixels are correlated

based on the relative poses of the camera between the two lines,

then observing I yields insight about the relative orientation of

the camera between two lines by inverting the conditional prob-

ability distribution p (I|∆Γ) to obtain p (∆Γ|I). A straightfor-

ward way of doing so is to use the Bayesian formalism and

probabilistic graphical models (Buntine, 1994).

In practice, a model based on the full 6-DOF relative pose ∆Γ
will be ambiguous, as the posterior p (∆Γ|I) can be a com-

plex multi-modal distribution in which effects such as change

in pitch or forward motion can be highly correlated. To remove

Figure 4. Probabilistic graphical model of our approach

the ambiguity, we only consider the resulting horizontal (cross-

path) shift ∆x and vertical (along-path) shift ∆y, as these are

sufficient to pre-rectify the push-broom data and find tie points.

With the Pika-L optics, the relative error of approximating the

effect of roll motion with horizontal shifts is on average 0.03

pixels, which is lower than our target estimation accuracy of

0.1px.

We build our probabilistic graphical model, see (Buntine, 1994)

for more details, as shown in Figure 4. We set the prior such

that p(∆x) is a normal distribution with mean equal to 0 px

and standard deviation equal to 0.5 px and p(∆y) is an expo-

nential distribution with rate parameter equal to 1. The values

of the standard deviation and rate were chosen empirically by

analyzing the raw IMU data.

The likelihood model is given, following Equation 1, by:

p(I|∆x,∆y) = N (µ,Σ(∆x,∆y)) , (2)

where µ is the mean of the pixel value intensity, and the func-

tion Σ(∆x,∆y) is computed using a Matérn covariance kernel

(Genton, 2002). With this model, the covariance between two

pixels separated by a horizontal distance d is given by:

σ2

(

1 +

√
3
√

(∆x+ d)2 +∆y2

l

)

e

(

−

√
3
√

(∆x+d)2+∆y2

l

)

,

(3)

with σ2 the variance of the image pixel intensity and l a length

factor that can be calibrated by evaluating the covariance of

pixels on the same row (thus without distortion). We set

∆x = ∆y = 0 for pixels on the same row. The Matérn

covariance function ensures that the covariance between two

pixels decreases effectively with distance, while ensuring that

Σ(∆x,∆y) remains positive definite for all values of ∆x and

∆y, which an arbitrary covariance function cannot guarantee.

In the end, we select the estimator for ∆x and ∆y to be:

∆x̂,∆ŷ = argmax
∆x,∆y

p(I|∆x,∆y)p(∆x)p(∆y). (4)

A closed form expression for log (p(I|∆x,∆y)p(∆x)p(∆y))
and its derivative exists, however solving for the minima is not

feasible, thus we rely on the l-BGFS (Liu and Nocedal, 1989)

numerical solver to compute ∆x̂ and ∆ŷ.

3.3 Vertical scale invariance

It was observed that ∆x̂ yields a good estimate of the horizontal

shift and is very correlated with the roll motion of the airborne
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(a) Parallel crossing (b) Perpendicular crossing

Figure 5. The effect of y-scaling, where the aspect ratio of the

image changes when the airborne platform flies parallel (a) or

perpendicular (b) to the road.

platform. On the other hand, ∆ŷ is usually less predictable and

yields very little information about the local distortion along the

direction of motion. This is because when sharp transitions in

the landscape occur (e.g., the plane crosses the edge of a build-

ing along the axis of travel), the local correlation hypothesis is

no longer valid. In that case, ∆x̂ is only marginally affected, as

the transition occurs for only a single pixel in the across-track

direction, while, since multiple pixels can be part of the trans-

ition in the along-track direction, ∆ŷ is strongly affected. For

our intended application, we need a different method to treat

vertical distortion in the HS data.

This is because, for crossing flight lines, i.e., when tie points

are the most useful for calibration purposes, the variable speed

of the aircraft can lead to distortion in the push-broom pixels

along the direction of travel, see Figure 5. These distortions, in

turn, complicate the process of matching keypoints as they act

in opposite directions in the two crossing flight lines.

To deal with possible distortions in the y direction, we modified

the A-KAZE scale invariant feature pyramid, such that the scale

in the x and y directions are now explored independently. This

anisotropic scale pyramid trades speed and complexity of the

algorithm for invariance against y scaling. Nonetheless, in aer-

ial imaging, the aircraft usually flies at constant height above

the ground, so very few levels in the x direction need to be

considered. Generally a single level and rarely more than 2 dif-

ferent levels are sufficient. In our study we only considered a

single scale level in the x direction, as the whole feature pyr-

amid is meant to deal with the y scaling of the data.

3.4 Tie point extraction and filtering

Once the image is rectified as described in Section 3.2, it be-

comes possible to use a traditional pipeline to extract match-

ing tie points. We used the A-KAZE method (Alcantarilla and

Solutions, 2011), which is known to yield fast and accurate res-

ults (Ordonez et al., 2018), and is open source. Initial testing

on our data hinted that A-KAZE is a better alternative to SIFT

as it yields more matches and a similar proportion of inliers.

We also compared with ORB (Rublee et al., 2011), (Tareen and

Saleem, 2018). While ORB yields more matches, more of them

are outliers, which complicates downstream tasks.

Once the tie point matches are produced, a significant por-

tion can still be incorrect (i.e. the algorithm matches two

pixels representing different elements in the scene). In the case

of frame images, geometric constraints and the RANSAC al-

gorithm (Lacey et al., 2000), commonly epipolar constraints,

can be used to detect and remove outliers. In the case of un-

calibrated pushbroom cameras, assuming the GPS/INS meas-

urement is either unreliable or imprecise, this is not feasible.

Instead, we consider two rectified chunks of the pushbroom HS

data and assume that a generic homography exists between the

points in chunk 1 and chunk 2. In other words, we assume the

existence of a unique matrix H such that:

pt1,i ∝ Hpt2,i, (5)

where pt1,i and pt2,i are matching points in chunks 1, respect-

ively 2, in homogeneous coordinates. The assumption here is

that there exists a perspective transformation between the sets

of inlier points in the two respective chunks.

The coefficients of H can be estimated with at least 4 points us-

ing Equation 5 and the direct linear transform algorithm (Abdel-

Aziz et al., 2015). Based on this model, a RANSAC loop can

be built. In the RANSAC loop, we consider a point to be an

inlier if it lies at a distance of at most 60 pixels, which is very

tolerant to account for the fact that our homography model is

only an approximation.

3.5 Hyperspectral camera boresight calibration

The main parameter we want to calibrate for a HS camera is

the boresight. Intrinsic parameters such as the focal length and

lens distortion can be calibrated in advance, meaning that a

strong prior can be attributed to them. The lever arm between

a GPS/INS sensor and the camera can be measured on the plat-

form before the flight with good accuracy (relative to the scale

of the scene). On the other hand, the boresight, which is key for

precise geo-referencing of the mapping data, cannot be meas-

ured. Tie points offer a good system for the boresight cal-

ibration from the mapping data itself, limiting the need for a

separate calibration procedure before flight. Due to geometric

constraints, it still imposes requirements on the flight path, as

crossing lines are required to disambiguate the projected effects

between the different axes of rotation.

To estimate the boresight, we minimize the residuals of epi-

polar constraints for each pair of tie points. We parameterized

the boresight as an axis angle r, in which the direction indicates

the axis of rotation, and the norm indicates the angle. This is

in fact an element of so(3), the lie algebra associated with the

special orthogonal group SO(3). This means that the corres-

ponding rotation matrix R is given by the matrix exponential

e[r]× , with [r]
×

the matrix representing the cross product with

r. The epipolar constraint for a pair of image points is written

as:

〈

e[r]×v1 ×R
1
2e

[r]×v2, t
1
2

〉

= 0, (6)

with v1 and v2 being the ray direction in the camera frame

at pose 1, respectively 2, R1
2 being the relative rotation from

pose 2 to pose 1 and t12 being the translation between pose 1

and 2. R1
2 and t12 are taken from the GPS/INS output, and as

such would be noisy, but the estimate of r is obtained with a

very large number n hundred, if not thousands of tie points,
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Figure 6. Horizontal shift error distribution (compared to ∆x
computed from ground truth GPS/INS)

lowering the noise level with a factor O(
√
n) as long as no bias

is present.

Equations 6 can be solved using a numerical solver like Gauss-

Newton or Levenberg–Marquardt. We used Gauss-Newton, as

the problem proved to be well behaved and converges to the

solution without a need for additional regularization.

The Gauss-Newton algorithm solves an over-determined set of

equations in the least square sense, meaning that a single outlier

can have a large effect on the solution. To limit the impact of

outliers, it can be useful to wrap the residuals of the equations in

a non-linear kernel. A popular option is the Huber Loss, which

is quadratic close to zero and linear further away:

Hδ(x) =

{

1
2
x2 for |x| ≤ δ,

δ ·
(

|x| − 1
2
δ
)

, otherwise.
, (7)

with δ being a hyper-parameter of the loss. We selected δ =
1/4.

4. Experiments

In this section, we evaluate the different methods described in

Section 3. First, we evaluate our proposed probabilistic model

for horizontal shift correction in Section 4.1. Then, in Sec-

tion 4.2, we evaluate how the proposed horizontal shift correc-

tion and y-scale invariant approach impact the production of tie

points, and the proportion of outliers filtered out. Finally, in

Section 4.3, we measure the quality of boresight calibration as

a function of the produced automated correspondences.

4.1 Horizontal shift correction

To evaluate the quality of the proposed horizontal-shift correc-

tion method, we compare its performance against the state of

the art method by (Fang et al., 2017).

We use the reference solution from the navigation grade

GPS/INS to estimate the ground truth horizontal displacement

x̌. We compute the shift in pixels of the features on the ground,

based on the digital surface model of the terrain. We then av-

erage that shift to get x̌. Note that only the regions within the

mapping area were included. Regions outside of the mapping

areas highlighted in Figure 3, where the helicopter is turning,

are excluded.

Overall, for the Delemont dataset, our method reaches an aver-

age accuracy, measured by the RMSE, of 0.85 pixels. Note that

the RMSE is very strongly influenced by a small set of outliers.

When the median is considered instead, the accuracy is 0.28

pixels. For comparison, the previous state of the art method by

(Fang et al., 2017), based on the cross correlation of successive

lines, reaches a RMSE 0.93 pixels and a median accuracy of

0.35 pixels. Figure 6 shows the distribution of error with the

median, as well as the 5%, 25%, 75% and 95% quantiles.

Observations in the rectified images (Figure 7) show that there

are two main reasons why our method reaches this accuracy:

First, since our model is continuous (able to detect sub-pixel

shifts), and based on a better approximation of the image form-

ation model, it reaches a superior rectification quality. This is

especially visible in Figure 7a, where both the road and rail-

way are still distorted when correlation is used, but little to no

deformation is visible with our approach.

Second, as our approach is based on the Bayesian formalism,

it includes a prior for the latent variable. This prior in turn has

a regularizing effect (Jospin et al., 2022), which prevents the

solution from collapsing to a slightly more optimal shift accord-

ing to the image texture, but less likely in practice. This effect

is especially visible in Figure 7b, where the texture on the road

across the image seems to have just the right tilt to cause strong

and visible deformations on the other elements of the image,

here a tree. With our method, no such distortion is apparent on

the rectified image.

4.2 Tie point detection and filtering

Here, we investigate whether increasing the accuracy of the

horizontal shift estimate increases the quality of detected tie

points. We ran our tie point detector, first on the unrectified

data, second on the data rectified using the correlation based ap-

proach described by (Fang et al., 2017) and third on the data rec-

tified using our method. We also used the reference GPS/INS

data to rectify the hyperspectral data and manually selected 949

tie points. These manual tie points will be used later as com-

parison points when evaluating the accuracy of the boresight

calibration.

The tie points obtained by the three different methods are manu-

ally categorized as either inliers, when visibly pointing at the

same object, or outliers, when pointing to different objects.

Around 1’000 tie points were labeled in this way for each set of

points. This allows for the different methods to be compared in

accuracy in terms of the proportion of inliers present in the tie

points.

Finally, we used the homography based RANSAC filtering ap-

proach described in Section 3.4 to filter the outliers. We estim-

ate the proportion of inliers a second time, after filtering.

The results, reported in Table 1, show clearly that using a

y-scaling invariant scheme, as we propose, significantly im-

proves both rectification methods by increasing the number of

tie points and the proportion of inliers. Additionally, the pro-

posed filtering method based on a homography model yields a

larger proportion of inliers, but is not perfect. In fact, horizontal

shift without y-scaling invariance seems to be counterproduct-

ive compared to running the detector on the raw data, most
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(a) Rectification quality: less deformations are visible along the road

and railway with our method.

(b) Resistance to local attractors: features on the road seem to distort the

tree in the correlation based rectification, not with our method.

Figure 7. Our method is both more accurate than the state of the art (a), but also, the Bayesian prior ensures that the solution is not too

strongly impacted by local attractors (b)

Method Y-scale invariant Keypoints Initial matches (Inliers prop) Selected Ransac (actual Inliers prop)
Reference - - (manual) 949 (100.0%) -
Raw No 288’024 2’213 (16.0%) 871 (acc. 69.9%)
(Fang et al., 2017) No 310’433 3’088 (12.5%) 1’145 (acc. 69.6%)
(Fang et al., 2017) Yes 500’971 12’691 (58.8%) 7’920 (acc. 92.2%)
Ours No 309’187 2’380 (15.0%) 917 (acc. 72.7%)
Ours Yes 499’947 14’459 (69.2%) 10’289 (acc. 94.0%)

Table 1. Number of tie points and inliers for different methods. Bold is the best estimated proportion of inliers (excluding reference)

likely because the horizontal correction re-alignes patterns on

the road, which in turn increases the amount of self-similar tex-

ture areas where the algorithm could fail. Our method reaches

a higher proportion of inliers, both before (7̃0%) and after fil-

tering (9̃5%), showing the benefits of an improved horizontal

rectification algorithm.

Overall, our method produces a higher proportion of inlier tie

points within the highest number of matches. In the next sec-

tion, we investigate if this higher proportion of inlier tie points

translates to a better estimation of the boresight calibration,

which is an important practical application we are interested

in.

4.3 Camera boresight calibration

To estimate the uncertainty associated with the obtained set of

tie points, we use bootstrapping (Efron and Tibshirani, 1985),

i.e., estimate the uncertainty associated with an input distribu-

tion by using resampling in the set of measurements. While

Laplace’s approximation (MacKay, 2003) is often used to de-

termine the uncertainty of an estimate obtained via Gauss-

Newton’s optimization (the covariance of the estimated pos-

terior is just the inverse of the Hessian of the optimization prob-

lem), it also assumes that the errors in the inputs are normally

distributed. Laplace’s approximation is also meant to estimate

the uncertainty given a set of measurements, not the uncertainty

associated with the generation of the measurements themselves.

To account for the fact that the error distribution of the obtained

tie points can be heavily tailed and assumed to be arbitrary, we

use bootstrapping instead.

For each set of filtered points shown in Table 1, including the

949 reference points, we randomly select 500 and solve the

problem of boresight calibration. For each tie point set, except

for the reference which we know contains no outliers, we com-

pare the results when using either the ℓ2 or the Huber kernel for

the Gauss-Newton optimization.

We repeat this experiment 100 times. From the 100 generated

samples, we compute the mean, as well as the expected angle

deviation from the mean. The angle deviation between two ro-

tations r1 and r2, with r1 and r2 expressed as axis angles, can

be computed as:

arccos

(

Tr
(

e−[r1]×e[r2]×
)

− 1

2

)

. (8)

We then compare the boresight estimate for each generated tie

point set and compare it with the estimate obtained with manual

tie points (which we will use as ground truth), computing the

deviation with Equation 8 again.

The results, shown in Table 2, highlight the clear benefits of our

method. We get a 30% reduction in the uncertainty associated

with the tie point generation process compared to the method of

(Fang et al., 2017), and a 50% reduction in the error compared

to the ground truth (i.e., the reference obtained with manual tie

points). The caveat is that the use of a robust regression kernel

like the Huber loss, seems to be mandatory, as without, the re-

maining outliers seem to have an out-sized effect, but with less

than 10% outliers after RANSAC, the robust estimator remains

stable.
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Method Filter method Optimization kernel Bootstrap standard error Error with reference
Reference Manual ℓ2 0.17° -
Raw Homography Ransac ℓ2 5.77° 10.35°
Raw Homography Ransac Huber 1.33° 5.72°
(Fang et al., 2017) Homography Ransac ℓ2 4.92° 20.97°
(Fang et al., 2017) Homography Ransac Huber 0.30° 0.34°
Ours Homography Ransac ℓ2 3.59° 11.37°
Ours Homography Ransac Huber 0.22° 0.12°

Table 2. Comparison of different boresight calibration approaches, with expected angular error and error compared to the reference.

Bold is the best accuracy (excluding reference)

5. Conclusion

In this work, we have demonstrated that a method for push-

broom hyperspectral horizontal shift rectification based on

probabilistic modeling of the image formation process, coupled

with a y-scale invariant tie point extraction algorithm and ro-

bust regression effectively addresses the boresight calibration

problem and achieves accuracy on par with manually curated tie

points. In addition to the calibration of the boresight for light-

weight hyperspectral push-broom cameras, our method for tie

point generation can be used for other problems such as integ-

rated orientation of GPS/INS or other re-calibration procedures

for the camera parameters.

Since our method for tie point production does not require ex-

ternal input, another interesting direction for future research is

multiple sensor co-registration.
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