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Abstract 

Real-time processing of UAV imagery is crucial for applications requiring urgent geospatial information, such as disaster response, 
where rapid decision-making and accurate spatial data are essential. However, processing high-resolution imagery in real time presents 
significant challenges due to the computational demands of feature extraction, matching, and bundle adjustment (BA). Conventional 
BA methods either downsample images, sacrificing important details, or require extensive processing time, making them unsuitable 
for time-critical missions. To overcome these limitations, we propose a novel real-time BA framework that operates directly on full-
resolution UAV imagery without downsampling. Our lightweight, onboard-compatible approach divides each image into user-defined 
patches (e.g., NxN grids, default 150×150 pixels) and dynamically tracks them across frames using UAV GNSS/IMU data and a coarse, 
globally available digital surface model (DSM). This ensures spatial consistency for robust feature extraction and matching between 
patches. Overlapping relationships between images are determined in real time using UAV navigation system, enabling the rapid 
selection of relevant neighbouring images for localized BA. By limiting optimization to a sliding cluster of overlapping images, 
including those from adjacent flight strips, the method achieves real-time performance while preserving the accuracy of global BA. 
The proposed algorithm is designed for seamless integration into the DLR Modular Aerial Camera System (MACS), supporting large-
area mapping in real time for disaster response, infrastructure monitoring, and coastal protection. Validation on MACS datasets with 
50MP images demonstrates that the method maintains precise camera orientations and high-fidelity mapping across multiple strips, 
running full bundle adjustment in under 2 seconds without GPU acceleration. 

1. Introduction

The demand for real-time aerial mapping and rapid 3D 
reconstruction is steadily increasing in various fields such as 
disaster management, infrastructure monitoring, agriculture, and 
coastal protection. In time-critical scenarios such as disaster 
response, timely and accurate geospatial data are essential for 
informed decision-making under dynamic and uncertain 
conditions. Fast generation of georeferenced aerial imagery and 
3D models helps first responders localize damages, plan rescue 
operations, and assess infrastructure stability in near real-time. 
While emergency response is a primary use case, rapid mapping 
is also beneficial for routine applications where timely spatial 
insights can improve operational efficiency. One of the most 
critical components in real-time mapping workflows is the 
estimation of accurate image orientations during flight, which is 
the key prerequisite for generating consistent 3D point clouds and 
georeferenced orthophotos. 

In these applications, real-time refers to the ability to process all 
captured images during the flight, a requirement that poses 
substantial computational challenges. These challenges stem 
from variability in flight and camera parameters such as image 
size, flight velocity, image acquisition frequency and flight 
altitude (overlap ratio) as can be seen in Eq. (1) and (2). In a 
representative scenario with a flight velocity of 20 m/s, flight 
altitude of 300 m, and 80% overlap in the flight direction, the 
maximum target processing time per image pair can be computed 
as 2.08 seconds. 

𝑡𝑡 = ℎ𝑖𝑖𝑖𝑖(1 − 𝛽𝛽/100)/𝑣𝑣   (1) 

where t is the processing time (sec), ℎ𝑖𝑖𝑖𝑖 is the image footprint in 
flight direction (m), 𝑣𝑣 is velocity (m/s) and 𝛽𝛽 is overlap ratio (%) 
which can be derived as: 

𝛽𝛽% = �1 − 10𝑓𝑓𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣
𝑁𝑁𝜃𝜃𝜇𝜇𝜇𝜇ℎ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑡𝑡

� 𝑥𝑥100   (2) 

where 𝑓𝑓𝑚𝑚𝑚𝑚 is the focal length (mm), Δ𝑡𝑡 is the camera shooting 
frequency (s), 𝑁𝑁 is the number of pixels along flight direction, 
𝜃𝜃𝜇𝜇𝜇𝜇 is the pixel size (𝜇𝜇𝜇𝜇) and finally ℎ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑡𝑡 is the flight altitude 
(m).  

To address these needs, the Institute of Optical Sensor Systems 
at the German Aerospace Center (DLR) has developed modular 
aerial imaging systems and workflows (MACS-Mosaica) that 
support rapid and accurate georeferencing of UAV imagery 
(Hein & Berger, 2018). These systems are designed to operate 
with lightweight onboard hardware and focus on minimizing the 
latency between image acquisition and map generation. Notably, 
recent developments such as terrain-aware image clipping (TAC) 
enable real-time map generation by geometrically intersecting 
individual images with a DSM to extract the most relevant 
rectangular sections of each frame. This method requires no 
bundle adjustment and provides high accuracy within individual 
flight strips, offering a practical solution for scenarios where 
immediate image transmission or post-landing map generation is 
necessary (Figure 1, except step 4). However, it does not address 
the need for consistent orientation estimation between 
overlapping images across different strips, a crucial requirement 
not only for improving users’ comprehensive understanding of 
the 2D scene, but also for accurate 3D mapping. 

Conventional BA algorithms, while robust for offline workflows, 
struggle to meet stringent real-time constraints. For example, 
running full-resolution global BA on a typical acquisition of 
high-resolution (e.g. MACS images at around 50MP) images can 
take several minutes to converge, far exceeding our target of 
approximately 2 seconds for near-instantaneous map updates. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2/W2-2025 
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10–12 September 2025, Espoo, Finland

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-2-W2-2025-73-2025 | © Author(s) 2025. CC BY 4.0 License.

 
73



This is due to the dense optimization over all available camera 
poses and 3D points, which quickly becomes computationally 
prohibitive. While downsampling strategies can reduce 
computation time, they introduce a trade-off by degrading spatial 
precision, an unacceptable compromise for tasks requiring high-
detail surface analysis or accuracy (d’Angelo & Kurz, 2019). 

To overcome these limitations, we present a novel local bundle 
adjustment framework that achieves real-time processing without 
downsampling, preserving the full resolution and detail of the 
original imagery (step 4 in Figure 1). Our method introduces a 
patch-based approach that divides each image into an adaptive 
NxN grid of patches, which are individually tracked across 
sequential frames. These patches are spatially guided using UAV 
GNSS/IMU measurements and a DSM, ensuring that the same 
ground regions are followed through the image sequences. Rather 
than relying solely on direct navigation data (Iz & Munel, 2023), 
we incorporate image footprint information, specifically, the 
projection of corner world coordinates onto an a-priori known 
elevation model (e.g., TanDEM-X or SRTM-Shuttle Radar 
Topography Mission), to compute inter-image transformations 
more accurately. This geo-referenced strategy enhances spatial 
consistency in patch tracking, and significantly improves feature 
matching performance, particularly between strips. 

The proposed framework offers a balanced solution and 
contributes to the literature on real-time bundle adjustment with 
high-resolution images in the following aspects. It 

• introduces a novel localized bundle adjustment
strategy that operates on sliding clusters of overlapping 
images, including across adjacent flight strips when
applicable, during flight.

• provides geo-referenced multi-strip image orientation
solution with translated patches using each image’s
ECEF (Earth-Centered Earth-Fixed) corner
coordinates.

• accelerates matching, to strike an optimal accuracy–
efficiency balance.

• provides an adaptable solution for varying UAV image
resolutions through user-defined patch parameters,

allowing flexibility in deployment scenarios with high-
resolution sensors. 

• supports seamless integration into existing systems,
such as the DLR’s MACS (Lehmann et al., 2011),
enabling applicability in operational large-scale
mapping tasks.

The remainder of this paper is organized as follows: Section II 
reviews related work on bundle adjustment and real-time 
photogrammetry. Section III describes the proposed patch-based 
tracking and localized BA method. Section IV presents 
experimental results and performance evaluation. Finally, 
Section V concludes the paper and suggests directions for future 
work. 

2. Related Work

Real-time mapping from UAVs has long been a subject of 
significant interest across photogrammetry, robotics, and remote 
sensing. Traditional mapping systems have largely relied on 
offline processing pipelines, often requiring the entire dataset to 
be available before processing can begin. These pipelines, 
including incremental and global Structure-from-Motion (SfM) 
methods, have achieved impressive results in reconstructing 
high-fidelity 3D models from UAV imagery (Snavely et al., 
2006; Wu, 2011). However, their dependence on full dataset 
availability and computationally intensive BA steps makes them 
unsuitable for dynamic, real-time missions. 

Efforts to migrate from offline SfM to real-time pipelines have 
leveraged visual SLAM frameworks that approximate camera 
poses incrementally using onboard sensors. Notably, several 
SLAM-based systems, such as ORB-SLAM variants and 
Map2DFusion, have demonstrated their ability to perform image 
stitching and sparse reconstruction on low-resolution aerial 
sequences (Mur-Artal & Tardós, 2017; Bu et al., 2016). These 
systems are particularly effective in high-overlap image 
sequences captured at lower altitudes. Nevertheless, they often 
suffer from accumulated drift and poor performance under low-
texture or high-parallax conditions (Zhao et al., 2023). 

Figure 1: Workflow overview 
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To enhance robustness, many mapping frameworks integrate 
auxiliary sensors such as GNSS and IMUs into the SLAM 
pipeline. This coupling mitigates localization errors and 
improves consistency of global map alignment (Hinzmann et al., 
2016; Wu et al., 2020). Yet, even hybrid systems struggle when 
real-time constraints are combined with high-resolution imaging 
requirements. Most current approaches, including those that 
exploit GPU acceleration or matching confidence in dense 
feature tracking, still require significant computational resources 
(Zhao et al., 2023; Yao et al., 2019). This makes them impractical 
for onboard processing, especially when high-resolution images 
beyond 50 megapixels are involved. 

Other approaches have attempted to bypass heavy 
photogrammetric processing by simplifying alignment to 2D 
homography-based mosaicking. These systems achieve rapid 
visual output, but often compromise on geometric accuracy and 
cannot handle significant parallax or topographic variation 
(Ghosh & Kaabouch, 2016; Kekec et al., 2014). A notable 
exception is the TAC workflow developed by Hein and Berger 
(2019), which offers a topography-aware, geo-referenced image 
processing method suitable for onboard execution. By 
intersecting image footprints with a digital terrain model, the 
TAC method enables fast and accurate map generation without 
the need for bundle adjustment. Nevertheless, as noted earlier, it 
does not incorporate inter-strip feature matching or global 
orientation estimation, which limits its effectiveness in achieving 
coherent alignment across overlapping strips, an essential 
requirement for seamless 2D scene understanding and 3D 
reconstruction.  

A further frontier lies in the application of dense stereo and 
depth-enhanced mapping pipelines. SLAM-integrated depth 
processing, as seen in TerrainFusion and OpenREALM, enables 
live 3D mesh generation or point cloud fusion, though often at 
the cost of reduced resolution or delayed processing (Wang et al., 
2016; Kern et al., 2020). While effective in moderate-resolution 
cases, these systems still rely on significant onboard 
computational resources, frequently requiring dedicated GPUs, 
post-flight data refinement, data-driven models, or fast rendering 
techniques. 

More recent 3D reconstruction pipelines based on Neural 
Radiance Fields (NeRFs) have gained traction for their ability to 
reconstruct detailed scenes from sparse inputs. Systems such as 
FlyNeRF (Dronova et al., 2024) and UAV-NeRF (Li et al., 
2024b) integrate flight path planning and incident-angle-aware 
sampling to improve rendering quality and depth estimation from 
drone-captured imagery. However, these methods primarily 
target photorealistic rendering and DSM generation, relying on 
iterative volumetric optimization, GPU acceleration, and pre-
oriented image sets; typically using lower-resolution images than 
those considered in our work. 

Similarly, Gaussian Splatting has rapidly evolved as a 
lightweight yet highly photorealistic alternative for scene 
modeling and dense map generation. DroneSplat (Tang et al., 
2025) applies 3D Gaussian splatting in multi-view aerial settings, 
guided by stereo priors and visibility prediction. It handles 
limited baselines and dynamic distractors more robustly than 
NeRF in real-world UAV sequences. UAVTwin (Choi et al., 
2025) further fuses splatting with synthetic human model 
injection for onboard perception tasks. Nonetheless, these 
approaches focus on novel-view rendering rather than real-time 
depth reconstruction, and still require inter-frame orientation 
information to initiate processing. 

Finally, recent advances in feature matching have been driven by 
Transformer-based models and lightweight learned descriptors, 
enabling robust, dense correspondences in high-resolution UAV 
imagery. LoFTR is one of the touchstone studies to leverage 
attention mechanisms to handle large viewpoint and scale 
variations (Sun et al., 2021). More recent methods, such as 
LightGlue and XFeat, improve efficiency and modularity for 
large-scale aerial inputs, even exceeding 50MP, through 
decoupled architectures and multi-head attention (Lindenberger 
et al., 2023; Potje et al., 2024). These techniques, particularly 
when combined with hierarchical or patch-wise inference, strike 
a practical balance between accuracy and onboard feasibility, 
making them increasingly integral to modern aerial mapping 
pipelines. Historically, the idea of limiting tie point extraction to 
compact, well-distributed patterns also appeared in early 
photogrammetric approaches, such as Ebner’s 3×3 
configurations (Ebner, 1976) or Gruen’s 5×5 grids (Gruen, 
1985), even though our method was developed independently to 
address modern UAV-scale challenges. 

3. Methods

In contrast to the existing body of work, our proposed method 
introduces a real-time, onboard-capable mapping pipeline 
specifically designed for ultra-high-resolution imagery (50MP+). 
Unlike prior systems constrained by fixed image sizes or GPU 
dependencies, our approach utilizes a user-defined dynamic 
patching mechanism that allows flexible and efficient memory 
allocation without compromising spatial resolution. This patch-
wise image handling, combined with GNSS-aided direct geo-
referencing, enables the generation of globally aligned outputs 
without the need for intensive global BA procedures. 

Furthermore, our system performs continuous BA across 
overlapping image clusters during flight, accounting not only for 
current frames but also for adjacent strip images, thereby 
maintaining local consistency while enabling seamless 
integration into broader mapping frameworks. Crucially, the 
entire pipeline operates without dedicated GPU hardware, 
making it ideal for edge-based deployments and cost-sensitive 
UAV platforms. In the following subsections we detail the core 
components of our method, including patch-based feature 
extraction and tracking, footprint-aware spatial consistency, 
inter-strip integration, and final matching for BA. 

3.1. Patch-Based Feature Extraction and Tracking 
At the core of the proposed pipeline lies a flexible patch-based 
tracking strategy, in which the user defines a grid of patches over 
the initial image. Rather than processing the entire image 
globally, which becomes computationally infeasible for ultra-
high-resolution imagery, the image is divided into a user-defined 
grid of patches. This grid-based subdivision (e.g., 5×5, 150x150 
px per patch) offers flexibility in patch size and density. The 
initial formation of these patches can be selected dynamically 
according to the available resources and the acquisition 
parameters as illustrated in Figure 2. 

Figure 2: User defined patch illustration 
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To maintain spatial consistency across frames, the patch 
translation is guided by GNSS/IMU-assisted transformations in 
combination with footprint-based surface projection. While 
GNSS/IMU data from the UAV provide coarse position and 
orientation information at each time step, we refine the 
transformation using the projected image footprints, the four-
corner projections of the image on the DSM. These quadrilaterals 
capture the geometric deformation introduced by the terrain and 
represent the actual geo-referenced surface area covered by the 
image. 

In ideal flat terrain, footprints retain a rectangular shape and 
correspond well to simple projective transforms. However, as 
highlighted in Hein et al. (2019), uneven terrain introduces shape 
distortions in the footprints due to varying elevation (Figure 3 & 
Figure 4). These deformations invalidate the assumption of a 
single homography transformation between frames, necessitating 
local affine approximations or surface-based interpolation to 
accurately propagate patches. 

Figure 3: Aerial camera positions and footprints on elevation 
model Hein et al. (2019) 

Figure 4: An aerial raw image (left) and its surface-reflected form 
(right) (Hein et al. (2019)) 

In the GNSS/IMU-based approach, image-to-image 
transformation is derived directly from the platform’s pose 
estimates. Each image's position and orientation are obtained 
from GNSS/IMU readings, and patches are translated based on a 
rigid-body transform in 3D space, assuming flat terrain or an a-
priori known elevation model. The transformation between 
frames can be computed as:  

𝑝𝑝𝑖𝑖𝑖𝑖
(𝑘𝑘) = 𝜋𝜋 �𝐾𝐾 ∗ 𝑅𝑅𝑘𝑘𝑇𝑇 ��𝑇𝑇0 + 𝜆𝜆 ∗ 𝑅𝑅0𝐾𝐾−1𝑝𝑝𝑖𝑖𝑖𝑖

(0)� − 𝑇𝑇𝑘𝑘��   (3) 

where 
• Camera intrinsic 𝐾𝐾 and UAV poses (𝑅𝑅𝑘𝑘, 𝑇𝑇𝑘𝑘) ∈

𝑆𝑆𝑆𝑆(3) 𝑥𝑥 𝑅𝑅3

• 𝑝𝑝𝑖𝑖𝑖𝑖
(0) = �𝑢𝑢𝑖𝑖𝑖𝑖, 𝑣𝑣𝑖𝑖𝑖𝑖�

𝑇𝑇 which is the patch center of the
image 𝐼𝐼0 where 𝑝𝑝𝑖𝑖𝑖𝑖

(0) ∈ 𝑅𝑅2 (similarly, for target image
𝐼𝐼𝑘𝑘)

• 𝑝𝑝𝑖𝑖𝑖𝑖
(0) = �𝑢𝑢𝑖𝑖𝑖𝑖, 𝑣𝑣𝑖𝑖𝑖𝑖, 1�𝑇𝑇 which are the homogeneous

coordinates
• 𝜋𝜋 is perspective projection where 𝜋𝜋(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = �𝑥𝑥

𝑧𝑧
, 𝑦𝑦
𝑧𝑧
�. 

• 𝑅𝑅0, 𝑅𝑅𝑘𝑘 are camera orientations
• 𝑇𝑇0, 𝑇𝑇𝑘𝑘 are camera positions
• 𝜆𝜆 is nominal depth approximation which is usually flat.

In contrast, the second approach we have followed uses surface-
consistent footprint projections. Each image is orthoprojected 
onto the terrain using its camera parameters and DSM comes 
from TanDEM-X (12m resolution) and SRTM (30m resolution). 
The four corners of the image define a georeferenced 
quadrilateral footprint, which inherently encodes the surface 
deformation. Patches are translated in geographic space 
according to the local displacement between corresponding 
footprints across frames. A local planar transformation, in this 
approach, can be computed per patch as: 

𝑝𝑝𝑖𝑖𝑖𝑖
(𝑘𝑘) = 𝑅𝑅(𝜃𝜃𝑘𝑘) �𝑝𝑝𝑖𝑖𝑖𝑖

(0) − 𝑐𝑐� + 𝑐𝑐 + 𝑔𝑔𝑘𝑘 − 𝑔𝑔0   (4) 

where 
• Image center location 𝑔𝑔𝑘𝑘 ∈ 𝑅𝑅2
• Relative heading 𝜃𝜃𝑘𝑘 ∈ 𝑅𝑅 in plane rotation
• 𝑅𝑅(𝜃𝜃𝑘𝑘) = [𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑘𝑘   sin(−𝜃𝜃𝑘𝑘);  𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑘𝑘   𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑘𝑘]
• 𝑐𝑐 is center of the patch grid
• 𝑔𝑔𝑘𝑘 and 𝑔𝑔0 are image center positions in global frame

(East-North-Up (ENU), ECEF coordinate systems etc.)

As demonstrated in Equations (3) and (4), the footprint-based 
patch transition method operates independently of camera 
matrices and depth models, in contrast to the GNSS/IMU-based 
approach. This independence contributes to a significantly lower 
computational load. Furthermore, Figure 5 highlights the 
divergence in patch trajectories between the two methods. While 
the GNSS/IMU-based method maintains reasonable consistency 
near the image center, the footprint-based approach exhibits 
superior performance in preserving spatial alignment across the 
entire image extent. Therefore, in scenarios where the footprints 
of all captured images are available in real-time, as is the case in 
our study, the footprint-based patch transition method not only 
achieves higher accuracy by incorporating precise terrain 
information, but also delivers faster processing. 

Figure 5: Reflected patches between two consecutive images. 
Dashed frames: GNSS/IMU method; solid frames: footprint 
method. In (a), red and yellow asterisks denote the centers of the 
solid and dashed frames, respectively. The black asterisk in (a) 
and (b) marks the same location for reference. 

After translation, if a patch moves out of the current image 
bounds, it is re-initialized at the opposite edge to achieve 
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continuous flow across the image stream. This process allows 
persistent tracking of features over large temporal windows 
without loss of coverage. 

When transitioning between neighbouring flight strips, overlap 
between newly acquired images and previously captured 
adjacent-strip images is detected by comparing their projected 
footprints. The previously defined patches in overlapping regions 
are then re-projected onto the current image, enabling cross-strip 
feature tracking. This ensures that orientation and alignment are 
maintained not just within but also between strips, a major 
limitation in many conventional approaches. 

Finally, features extracted within each translated patch are 
matched with their corresponding patch IDs across frames 
(Figure 6). This patch-based feature matching strategy 
significantly reduces the computational load by narrowing the 
search space to predefined, locally consistent regions, making the 
high-resolution matching process feasible for real-time onboard 
execution. These matched features are then passed to the 
continuous bundle adjustment module to refine pose estimates 
and maintain global consistency. 

Figure 7: Feature matching in corresponding boxes 

3.2. Localized Bundle Adjustment for Real-Time Processing 
Real-time processing of 50 MP+ images exceeds the capabilities 
of traditional BA methods. While global BA offers high 
accuracy, it is computationally prohibitive for large datasets. 
Incremental BA is faster but relies on tracks established relative 
to only one previous image which makes it prone to drift and 
lacks inter-strip consistency. To overcome these issues, we 
introduce a cluster-based BA that processes user-defined image 

groups, integrating overlapping frames from neighbouring strips 
to ensure smooth transitions and global coherence.  

In the proposed method, the user defines a cluster size 𝑀𝑀 (i.e., the 
number of images to be optimized simultaneously). Within each 
cluster, feature tracks are established based on matched features 
in corresponding patches. Initially, each image is assigned an 
approximate pose from GNSS/IMU data, with the position and 
orientation provided in the ECEF/ENU coordinate systems. 
These initial estimates, denoted as 𝑇𝑇𝑘𝑘

(0) and 𝑅𝑅𝑘𝑘
(0) for 𝐼𝐼𝑘𝑘, serve as

a starting point for the BA optimization. 

The reprojection error for a given observation of a 3D scene point 
𝑋𝑋𝑗𝑗 in image 𝐼𝐼𝑘𝑘 is given by 

𝑝𝑝𝑘𝑘𝑘𝑘 = 𝜋𝜋 �𝐾𝐾𝑅𝑅𝑘𝑘𝑇𝑇�𝑋𝑋𝑗𝑗 − 𝑇𝑇𝑘𝑘�� (5) 

where 𝜋𝜋, 𝐾𝐾 and 𝐼𝐼𝑘𝑘 represent same annotations as in the previous 
section.  The corresponding BA cost function for a set of images 
𝐼𝐼𝑘𝑘 and feature tracks is formulated as 

𝐸𝐸𝐵𝐵𝐵𝐵 = ∑ ∑ 𝜌𝜌 ���𝑝𝑝𝑘𝑘𝑘𝑘 − 𝜋𝜋 �𝐾𝐾𝑅𝑅𝑘𝑘𝑇𝑇�𝑋𝑋𝑗𝑗 − 𝑇𝑇𝑘𝑘����
2
�𝑗𝑗∈𝐽𝐽𝑘𝑘𝑘𝑘∈𝐼𝐼     (6) 

with 𝜌𝜌 being a robust cost function to mitigate the influence of 
outliers. 

Global BA seeks to solve the above minimization over the entire 
dataset, optimizing all camera poses {𝑃𝑃𝑘𝑘 = (𝑅𝑅𝑘𝑘, 𝑇𝑇𝑘𝑘)} and 3D 
points {𝑋𝑋𝑗𝑗} simultaneously. Traditional incremental bundle 
adjustment lacks a cross-check mechanism and relies solely on 
consecutive images. While this reduces computational load, it 
can lead to drift and fails to incorporate overlaps between 
adjacent flight strips. Furthermore, when not confined to a local 
cluster, the track list grows continuously with each iteration, 
resulting in a significant slowdown. 

In contrast, our cluster-based BA approach operates on a 
dynamically formed cluster 𝐶𝐶𝑙𝑙defined as  

𝐶𝐶𝑙𝑙 = �𝐼𝐼𝑘𝑘1, 𝐼𝐼𝑘𝑘2, … , 𝐼𝐼𝑘𝑘𝑀𝑀� 

Figure 6: Patches in cross-strips 

Overlapping Fields:
Between strips
Same strip

𝑃𝑃1𝑃𝑃2
𝑃𝑃𝑛𝑛 𝑃𝑃𝑛𝑛+1

𝑷𝑷𝟐𝟐 𝑷𝑷𝒏𝒏+𝟏𝟏

𝑷𝑷𝒏𝒏
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where 𝑀𝑀 is the selected trade-off between computational load 
and local reconstruction accuracy. The cost function within each 
cluster is  

𝐸𝐸𝐶𝐶𝑙𝑙 = ∑ ∑ 𝜌𝜌���𝑝𝑝𝑘𝑘𝑘𝑘 − 𝜋𝜋 �𝐾𝐾𝑅𝑅𝑘𝑘𝑇𝑇�𝑋𝑋𝑗𝑗 − 𝑇𝑇𝑘𝑘����
2
�𝑗𝑗∈𝐽𝐽𝑘𝑘𝑘𝑘∈𝐶𝐶𝑙𝑙    (7) 

By using the georeferenced ECEF coordinates as the initial 
positions, the optimization directly yields geo-referenced camera 
poses. Feature tracks are established within the cluster by 
matching corresponding patches in real time; concurrently, the 
algorithm verifies the existence of overlapping images from 
neighbouring flight strips (Figure 7). When the number of images 
in the current cluster reaches the predefined threshold, the BA 
optimization is executed for that cluster. 

To ensure smooth transitions between successive clusters, we 
enforce an overlap between clusters. Specifically, the last 25% 
of the images in the previous cluster 𝐶𝐶𝑙𝑙−1 are used as references 
for the new cluster 𝐶𝐶𝑙𝑙. Within this overlapping set, the first half 
of images are fixed (i.e., their optimized poses from the previous 
cluster are retained), while the orientations of the remaining 
images are adjusted using a weighted averaging scheme based on 
the number of matched features. For a common overlapping 
image 𝐼𝐼𝑜𝑜, its updated pose is computed as  

𝑃𝑃0𝑛𝑛𝑛𝑛𝑛𝑛 = 𝜔𝜔0
(𝑜𝑜𝑜𝑜𝑜𝑜)𝑃𝑃0

𝑐𝑐𝑙𝑙−1+𝜔𝜔0
(𝑛𝑛𝑛𝑛𝑛𝑛)𝑃𝑃0

𝑐𝑐𝑙𝑙

𝜔𝜔0
(𝑜𝑜𝑜𝑜𝑜𝑜)+𝜔𝜔0

(𝑛𝑛𝑛𝑛𝑛𝑛)    (8) 

where 𝜔𝜔0
(𝑜𝑜𝑜𝑜𝑜𝑜) and  𝜔𝜔0

(𝑛𝑛𝑛𝑛𝑛𝑛) represent the weights proportional to 
the number of feature matches in the old and new clusters, 
respectively. This scheme ensures that the transition between 
clusters is smooth and consistent, thereby linking the adjusted 
orientations and positions across different clusters. 

3.3. Validation and Benchmarking 
To evaluate the performance of the proposed multi-strip cluster-
based bundle adjustment, we compare it against two established 
methods: (1) Traditional incremental BA, which is more suitable 
for real-time applications than global BA; and (2) Cluster-based 
(local) incremental BA, which run in different cluster of images 
similar to proposed method, and resets the track list in each new 
cluster entrance, which is one of the main reason of performance 
deceleration of incremental BA while the number of images 
increase.  

We employ the following evaluation metrics to assess both 
geometric accuracy and computational efficiency: 

• Qualitative accuracy of oriented images: to quantify
alignment precision and global consistency.

• Reprojection errors (mean and standard deviation) of
the reconstructed point clouds: to measure the
geometric fidelity of the estimated scene.

• Execution time per image pair (measured in
MATLAB): to highlight the real-time suitability and
relative performance gains of the proposed method.

• Feature extraction and feature matching time: to
evaluate the proposed patch-based matcher
performance.

4. Results and Discussion

The proposed method was evaluated using a 60-image, two-strip 
dataset captured with the DLR MACS during an emergency 
mapping mission following the 2023 Turkiye Earthquake. Each 
image has a resolution of 7920×6004 pixels. The tests were 
conducted in MATLAB without GPU support, using a standard 
office laptop equipped with a 13th Gen Intel Core i7 processor 
(20-core) and 32 GB RAM. 

Two established bundle adjustment (BA) strategies were used for 
comparison. The first is a conventional incremental BA 
approach, commonly adopted in SLAM pipelines, which 
sequentially incorporates new images. The second is a cluster-
based incremental BA strategy, where images are processed in 
local clusters to prevent excessive memory growth due to 
extended feature tracks. Each cluster contains 12 images, with the 
last three images reused as references in the subsequent cluster, 
similar to the proposed method. Both baseline methods operate 
on the full-size images without any downsampling. 

The proposed method employs a 4×4 patch grid per image, with 
each patch measuring 100×100 pixels. These patches are tracked 
using GNSS/IMU data and DSM-informed footprint 
transformations. 

In terms of geometric accuracy, the proposed method achieves 
comparable performance to the incremental BA. The mean 
reprojection error decreased from 0.727 px (incremental BA) to 
0.710 px, and the standard deviation reduced from 1.756 px to 
1.075 px. Though the numerical differences are modest, they 
indicate improved consistency across image strips. This stability 
is attributed to localized BA clusters with overlap-aware 
initialization based on projected image footprints (Table 1). 

Runtime performance exhibits more pronounced differences. The 
total processing time dropped from 962.69 seconds (incremental 
BA) to 66.45 seconds with the proposed method. Feature 
matching time alone was reduced from 530.31 seconds to just 
0.62 seconds, thanks to patch-constrained matching that avoids 
brute-force comparisons. Feature extraction time also improved, 
decreasing from 61.27 to 48.86 seconds by limiting detection to 
patch windows, which suppresses irrelevant features and reduces 
false correspondences (Table 1). 

The cluster-based incremental BA achieved a moderate runtime 
of 14.73 seconds per image pair and showed better memory 
efficiency compared to the incremental BA. However, qualitative 
analysis in Figure 8 reveals that its orientation estimates degrade 
when transitioning between strips. While intra-strip consistency 

Table 1: Comparison of incremental BA and the proposed method 

Incremental BA The Proposed Method

0.72743 0.71049

1.7563 1.0758

61.27 48.86

530.31 0.62

962.69 66.45

Mean of Reprojection Error (px) 

Std-dev of Reprojection Errors (px) 

Total Feature Extraction Time (sec) 

Total Feature Matching Time (sec) 

Total Run Time (sec)

Run Time per Image Pairs (sec) 16.04 1.11
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is preserved, inter-strip transitions show drift due to the absence 
of inter-cluster correspondence management (Figure 8a). 

In contrast, the incremental BA result (Figure 8b) suffers from 
accumulated positioning error, manifesting as parallax 
distortions, a known issue in long-track incremental pipelines. 
The proposed method effectively avoids such artifacts by 
maintaining inter-strip consistency through footprint-guided 
neighbor strip identification and localized clustering. Figure 8c 
illustrates that the proposed method produces geometrically 
consistent results across strips without the parallax or drift issues 
observed in the other approaches. 

5. Conclusion

This study presents a practical and efficient framework for real-
time bundle adjustment of high-resolution UAV imagery, 
addressing the limitations of conventional approaches that are 
either too slow or require image downsampling. By dividing full-
resolution images into user-defined patches and leveraging UAV 
GNSS/IMU data alongside terrain information, the method 
enables accurate feature tracking and localized bundle 
adjustment within manageable clusters. The inclusion of 
overlapping images from neighbouring strips ensures spatial 
consistency and mitigates drift commonly observed in 
incremental methods. 

In the context of the research question, whether full-resolution 
UAV imagery can be processed in real-time without 
compromising orientation accuracy, the results are encouraging. 
The method demonstrates that, through patch-based tracking and 
cluster-wise optimization informed by geo-referenced data, it is 
possible to achieve a practical trade-off between computational 
speed and geometric fidelity. This makes it feasible to deploy the 
method onboard UAVs or in edge-computing environments, 
especially in scenarios where fast decision-making is critical. 

While the method offers flexibility through user-defined 
hyperparameters such as patch size and the number of images per 
cluster, this reliance on manual tuning can be time-consuming, 

especially for new users. Future work should focus on automating 
the selection of these parameters based on image resolution and 
mission scale to improve usability and repeatability. 
Additionally, to broaden accessibility, a variant of the algorithm 
should be developed that relies solely on GNSS/IMU data when 
image footprints are unavailable. 

Overall, the proposed method bridges the gap between high-
fidelity mapping and real-time processing, making it well-suited 
for time-critical applications such as disaster response, where 
both accuracy and speed are imperative. 
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