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Abstract

Real-time processing of UAV imagery is crucial for applications requiring urgent geospatial information, such as disaster response,
where rapid decision-making and accurate spatial data are essential. However, processing high-resolution imagery in real time presents
significant challenges due to the computational demands of feature extraction, matching, and bundle adjustment (BA). Conventional
BA methods either downsample images, sacrificing important details, or require extensive processing time, making them unsuitable
for time-critical missions. To overcome these limitations, we propose a novel real-time BA framework that operates directly on full-
resolution UAV imagery without downsampling. Our lightweight, onboard-compatible approach divides each image into user-defined
patches (e.g., NxN grids, default 150x150 pixels) and dynamically tracks them across frames using UAV GNSS/IMU data and a coarse,
globally available digital surface model (DSM). This ensures spatial consistency for robust feature extraction and matching between
patches. Overlapping relationships between images are determined in real time using UAV navigation system, enabling the rapid
selection of relevant neighbouring images for localized BA. By limiting optimization to a sliding cluster of overlapping images,
including those from adjacent flight strips, the method achieves real-time performance while preserving the accuracy of global BA.
The proposed algorithm is designed for seamless integration into the DLR Modular Aerial Camera System (MACS), supporting large-
area mapping in real time for disaster response, infrastructure monitoring, and coastal protection. Validation on MACS datasets with
50MP images demonstrates that the method maintains precise camera orientations and high-fidelity mapping across multiple strips,

running full bundle adjustment in under 2 seconds without GPU acceleration.

1. Introduction

The demand for real-time aerial mapping and rapid 3D
reconstruction is steadily increasing in various fields such as
disaster management, infrastructure monitoring, agriculture, and
coastal protection. In time-critical scenarios such as disaster
response, timely and accurate geospatial data are essential for
informed decision-making under dynamic and uncertain
conditions. Fast generation of georeferenced aerial imagery and
3D models helps first responders localize damages, plan rescue
operations, and assess infrastructure stability in near real-time.
While emergency response is a primary use case, rapid mapping
is also beneficial for routine applications where timely spatial
insights can improve operational efficiency. One of the most
critical components in real-time mapping workflows is the
estimation of accurate image orientations during flight, which is
the key prerequisite for generating consistent 3D point clouds and
georeferenced orthophotos.

In these applications, real-time refers to the ability to process all
captured images during the flight, a requirement that poses
substantial computational challenges. These challenges stem
from variability in flight and camera parameters such as image
size, flight velocity, image acquisition frequency and flight
altitude (overlap ratio) as can be seen in Eq. (1) and (2). In a
representative scenario with a flight velocity of 20 m/s, flight
altitude of 300 m, and 80% overlap in the flight direction, the
maximum target processing time per image pair can be computed
as 2.08 seconds.

t = hyn (1= B/100)/v )

where t is the processing time (sec), h;,, is the image footprint in
flight direction (m), v is velocity (m/s) and £ is overlap ratio (%)
which can be derived as:
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where f,.» is the focal length (mm), At is the camera shooting
frequency (s), N is the number of pixels along flight direction,
Oum is the pixel size (um) and finally hgj;gp, is the flight altitude

(m).

To address these needs, the Institute of Optical Sensor Systems
at the German Aerospace Center (DLR) has developed modular
aerial imaging systems and workflows (MACS-Mosaica) that
support rapid and accurate georeferencing of UAV imagery
(Hein & Berger, 2018). These systems are designed to operate
with lightweight onboard hardware and focus on minimizing the
latency between image acquisition and map generation. Notably,
recent developments such as terrain-aware image clipping (TAC)
enable real-time map generation by geometrically intersecting
individual images with a DSM to extract the most relevant
rectangular sections of each frame. This method requires no
bundle adjustment and provides high accuracy within individual
flight strips, offering a practical solution for scenarios where
immediate image transmission or post-landing map generation is
necessary (Figure 1, except step 4). However, it does not address
the need for consistent orientation estimation between
overlapping images across different strips, a crucial requirement
not only for improving users’ comprehensive understanding of
the 2D scene, but also for accurate 3D mapping.

Conventional BA algorithms, while robust for offline workflows,
struggle to meet stringent real-time constraints. For example,
running full-resolution global BA on a typical acquisition of
high-resolution (e.g. MACS images at around 50MP) images can
take several minutes to converge, far exceeding our target of
approximately 2 seconds for near-instantaneous map updates.
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Figure 1: Workflow overview

This is due to the dense optimization over all available camera
poses and 3D points, which quickly becomes computationally
prohibitive. While downsampling strategies can reduce
computation time, they introduce a trade-off by degrading spatial
precision, an unacceptable compromise for tasks requiring high-
detail surface analysis or accuracy (d’Angelo & Kurz, 2019).

To overcome these limitations, we present a novel local bundle
adjustment framework that achieves real-time processing without
downsampling, preserving the full resolution and detail of the
original imagery (step 4 in Figure 1). Our method introduces a
patch-based approach that divides each image into an adaptive
NxN grid of patches, which are individually tracked across
sequential frames. These patches are spatially guided using UAV
GNSS/IMU measurements and a DSM, ensuring that the same
ground regions are followed through the image sequences. Rather
than relying solely on direct navigation data (I1z & Munel, 2023),
we incorporate image footprint information, specifically, the
projection of corner world coordinates onto an a-priori known
elevation model (e.g., TanDEM-X or SRTM-Shuttle Radar
Topography Mission), to compute inter-image transformations
more accurately. This geo-referenced strategy enhances spatial
consistency in patch tracking, and significantly improves feature
matching performance, particularly between strips.

The proposed framework offers a balanced solution and
contributes to the literature on real-time bundle adjustment with
high-resolution images in the following aspects. It
e introduces a novel localized bundle adjustment
strategy that operates on sliding clusters of overlapping
images, including across adjacent flight strips when
applicable, during flight.
e  provides geo-referenced multi-strip image orientation
solution with translated patches using each image’s
ECEF  (Earth-Centered Earth-Fixed)  corner
coordinates.
e accelerates matching, to strike an optimal accuracy—
efficiency balance.
e  provides an adaptable solution for varying UAV image
resolutions through user-defined patch parameters,

allowing flexibility in deployment scenarios with high-
resolution sensors.

e supports seamless integration into existing systems,
such as the DLR’s MACS (Lehmann et al., 2011),
enabling applicability in operational large-scale
mapping tasks.

The remainder of this paper is organized as follows: Section 1l
reviews related work on bundle adjustment and real-time
photogrammetry. Section Il describes the proposed patch-based
tracking and localized BA method. Section IV presents
experimental results and performance evaluation. Finally,
Section V concludes the paper and suggests directions for future
work.
2. Related Work

Real-time mapping from UAVs has long been a subject of
significant interest across photogrammetry, robotics, and remote
sensing. Traditional mapping systems have largely relied on
offline processing pipelines, often requiring the entire dataset to
be available before processing can begin. These pipelines,
including incremental and global Structure-from-Motion (SfM)
methods, have achieved impressive results in reconstructing
high-fidelity 3D models from UAV imagery (Snavely et al.,
2006; Wu, 2011). However, their dependence on full dataset
availability and computationally intensive BA steps makes them
unsuitable for dynamic, real-time missions.

Efforts to migrate from offline SfM to real-time pipelines have
leveraged visual SLAM frameworks that approximate camera
poses incrementally using onboard sensors. Notably, several
SLAM-based systems, such as ORB-SLAM variants and
Map2DFusion, have demonstrated their ability to perform image
stitching and sparse reconstruction on low-resolution aerial
sequences (Mur-Artal & Tardés, 2017; Bu et al., 2016). These
systems are particularly effective in high-overlap image
sequences captured at lower altitudes. Nevertheless, they often
suffer from accumulated drift and poor performance under low-
texture or high-parallax conditions (Zhao et al., 2023).
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To enhance robustness, many mapping frameworks integrate
auxiliary sensors such as GNSS and IMUs into the SLAM
pipeline. This coupling mitigates localization errors and
improves consistency of global map alignment (Hinzmann et al.,
2016; Wu et al., 2020). Yet, even hybrid systems struggle when
real-time constraints are combined with high-resolution imaging
requirements. Most current approaches, including those that
exploit GPU acceleration or matching confidence in dense
feature tracking, still require significant computational resources
(Zhao et al., 2023; Yao et al., 2019). This makes them impractical
for onboard processing, especially when high-resolution images
beyond 50 megapixels are involved.

Other approaches have attempted to bypass heavy
photogrammetric processing by simplifying alignment to 2D
homography-based mosaicking. These systems achieve rapid
visual output, but often compromise on geometric accuracy and
cannot handle significant parallax or topographic variation
(Ghosh & Kaabouch, 2016; Kekec et al., 2014). A notable
exception is the TAC workflow developed by Hein and Berger
(2019), which offers a topography-aware, geo-referenced image
processing method suitable for onboard execution. By
intersecting image footprints with a digital terrain model, the
TAC method enables fast and accurate map generation without
the need for bundle adjustment. Nevertheless, as noted earlier, it
does not incorporate inter-strip feature matching or global
orientation estimation, which limits its effectiveness in achieving
coherent alignment across overlapping strips, an essential
requirement for seamless 2D scene understanding and 3D
reconstruction.

A further frontier lies in the application of dense stereo and
depth-enhanced mapping pipelines. SLAM-integrated depth
processing, as seen in TerrainFusion and OpenREALM, enables
live 3D mesh generation or point cloud fusion, though often at
the cost of reduced resolution or delayed processing (Wang et al.,
2016; Kern et al., 2020). While effective in moderate-resolution
cases, these systems still rely on significant onboard
computational resources, frequently requiring dedicated GPUs,
post-flight data refinement, data-driven models, or fast rendering
techniques.

More recent 3D reconstruction pipelines based on Neural
Radiance Fields (NeRFs) have gained traction for their ability to
reconstruct detailed scenes from sparse inputs. Systems such as
FIlyNeRF (Dronova et al., 2024) and UAV-NeRF (Li et al.,
2024b) integrate flight path planning and incident-angle-aware
sampling to improve rendering quality and depth estimation from
drone-captured imagery. However, these methods primarily
target photorealistic rendering and DSM generation, relying on
iterative volumetric optimization, GPU acceleration, and pre-
oriented image sets; typically using lower-resolution images than
those considered in our work.

Similarly, Gaussian Splatting has rapidly evolved as a
lightweight yet highly photorealistic alternative for scene
modeling and dense map generation. DroneSplat (Tang et al.,
2025) applies 3D Gaussian splatting in multi-view aerial settings,
guided by stereo priors and visibility prediction. It handles
limited baselines and dynamic distractors more robustly than
NeRF in real-world UAV sequences. UAVTwin (Choi et al.,
2025) further fuses splatting with synthetic human model
injection for onboard perception tasks. Nonetheless, these
approaches focus on novel-view rendering rather than real-time
depth reconstruction, and still require inter-frame orientation
information to initiate processing.

Finally, recent advances in feature matching have been driven by
Transformer-based models and lightweight learned descriptors,
enabling robust, dense correspondences in high-resolution UAV
imagery. LOFTR is one of the touchstone studies to leverage
attention mechanisms to handle large viewpoint and scale
variations (Sun et al., 2021). More recent methods, such as
LightGlue and XFeat, improve efficiency and modularity for
large-scale aerial inputs, even exceeding 50MP, through
decoupled architectures and multi-head attention (Lindenberger
et al., 2023; Potje et al., 2024). These techniques, particularly
when combined with hierarchical or patch-wise inference, strike
a practical balance between accuracy and onboard feasibility,
making them increasingly integral to modern aerial mapping
pipelines. Historically, the idea of limiting tie point extraction to
compact, well-distributed patterns also appeared in early
photogrammetric  approaches, such as Ebner’s 3x3
configurations (Ebner, 1976) or Gruen’s 5x5 grids (Gruen,
1985), even though our method was developed independently to
address modern UAV-scale challenges.

3. Methods

In contrast to the existing body of work, our proposed method
introduces a real-time, onboard-capable mapping pipeline
specifically designed for ultra-high-resolution imagery (50MP+).
Unlike prior systems constrained by fixed image sizes or GPU
dependencies, our approach utilizes a user-defined dynamic
patching mechanism that allows flexible and efficient memory
allocation without compromising spatial resolution. This patch-
wise image handling, combined with GNSS-aided direct geo-
referencing, enables the generation of globally aligned outputs
without the need for intensive global BA procedures.

Furthermore, our system performs continuous BA across
overlapping image clusters during flight, accounting not only for
current frames but also for adjacent strip images, thereby
maintaining local consistency while enabling seamless
integration into broader mapping frameworks. Crucially, the
entire pipeline operates without dedicated GPU hardware,
making it ideal for edge-based deployments and cost-sensitive
UAV platforms. In the following subsections we detail the core
components of our method, including patch-based feature
extraction and tracking, footprint-aware spatial consistency,
inter-strip integration, and final matching for BA.

3.1. Patch-Based Feature Extraction and Tracking

At the core of the proposed pipeline lies a flexible patch-based
tracking strategy, in which the user defines a grid of patches over
the initial image. Rather than processing the entire image
globally, which becomes computationally infeasible for ultra-
high-resolution imagery, the image is divided into a user-defined
grid of patches. This grid-based subdivision (e.g., 5x5, 150x150
px per patch) offers flexibility in patch size and density. The
initial formation of these patches can be selected dynamically
according to the available resources and the acquisition
parameters as illustrated in Figure 2.

Figure 2: User defined patch illustration
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To maintain spatial consistency across frames, the patch
translation is guided by GNSS/IMU-assisted transformations in
combination with footprint-based surface projection. While
GNSS/IMU data from the UAV provide coarse position and
orientation information at each time step, we refine the
transformation using the projected image footprints, the four-
corner projections of the image on the DSM. These quadrilaterals
capture the geometric deformation introduced by the terrain and
represent the actual geo-referenced surface area covered by the
image.

In ideal flat terrain, footprints retain a rectangular shape and
correspond well to simple projective transforms. However, as
highlighted in Hein et al. (2019), uneven terrain introduces shape
distortions in the footprints due to varying elevation (Figure 3 &
Figure 4). These deformations invalidate the assumption of a
single homography transformation between frames, necessitating
local affine approximations or surface-based interpolation to
accurately propagate patches.

N A A A A

Figure 3: Aerial camera positions and footprints on elevation
model Hein et al. (2019)
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Figure 4: An aerial raw image (left) and its surface-reflected form
(right) (Hein et al. (2019))

In  the GNSS/IMU-based approach, image-to-image
transformation is derived directly from the platform’s pose
estimates. Each image's position and orientation are obtained
from GNSS/IMU readings, and patches are translated based on a
rigid-body transform in 3D space, assuming flat terrain or an a-
priori known elevation model. The transformation between
frames can be computed as:

i = (iR (1 + 20 mBP) 1)) @

where
e Camera intrinsic K and UAV poses (Ry, Ty) €
SO0(3) x R?

o p)= (usj,vi;)" which is the patch center of the

image I, where pg’) € R? (similarly, for target image
I)

. ﬁg.’) = (w;j,v;;,1)" which are the homogeneous
coordinates

e 7 is perspective projection where 7(x, v, z) = (f X).

’
zZ z

e Ry, Ry are camera orientations
e T, Ty are camera positions
e Aisnominal depth approximation which is usually flat.

In contrast, the second approach we have followed uses surface-
consistent footprint projections. Each image is orthoprojected
onto the terrain using its camera parameters and DSM comes
from TanDEM-X (12m resolution) and SRTM (30m resolution).
The four corners of the image define a georeferenced
quadrilateral footprint, which inherently encodes the surface
deformation. Patches are translated in geographic space
according to the local displacement between corresponding
footprints across frames. A local planar transformation, in this
approach, can be computed per patch as:

e Image center location g, € R?

e Relative heading 6;, € R in plane rotation

e R(6y) =[cosO) sin(—0y); sinb cosb;]

e cis center of the patch grid

e gp and g, are image center positions in global frame
(East-North-Up (ENU), ECEF coordinate systems etc.)

As demonstrated in Equations (3) and (4), the footprint-based
patch transition method operates independently of camera
matrices and depth models, in contrast to the GNSS/IMU-based
approach. This independence contributes to a significantly lower
computational load. Furthermore, Figure 5 highlights the
divergence in patch trajectories between the two methods. While
the GNSS/IMU-based method maintains reasonable consistency
near the image center, the footprint-based approach exhibits
superior performance in preserving spatial alignment across the
entire image extent. Therefore, in scenarios where the footprints
of all captured images are available in real-time, as is the case in
our study, the footprint-based patch transition method not only
achieves higher accuracy by incorporating precise terrain
information, but also delivers faster processing.

Figure 5: Reflected patches between two consecutive images.
Dashed frames: GNSS/IMU method; solid frames: footprint
method. In (a), red and yellow asterisks denote the centers of the
solid and dashed frames, respectively. The black asterisk in (a)
and (b) marks the same location for reference.

After translation, if a patch moves out of the current image
bounds, it is re-initialized at the opposite edge to achieve
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Overlapping Fields:
Between strips
Same strip

Figure 6: Patches in cross-strips

continuous flow across the image stream. This process allows
persistent tracking of features over large temporal windows
without loss of coverage.

When transitioning between neighbouring flight strips, overlap
between newly acquired images and previously captured
adjacent-strip images is detected by comparing their projected
footprints. The previously defined patches in overlapping regions
are then re-projected onto the current image, enabling cross-strip
feature tracking. This ensures that orientation and alignment are
maintained not just within but also between strips, a major
limitation in many conventional approaches.

Finally, features extracted within each translated patch are
matched with their corresponding patch IDs across frames
(Figure 6). This patch-based feature matching strategy

significantly reduces the computational load by narrowing the
search space to predefined, locally consistent regions, making the
high-resolution matching process feasible for real-time onboard
execution. These matched features are then passed to the
continuous bundle adjustment module to refine pose estimates
and maintain global consistency.

s N A

Figure 7: Feature matching in corresponding boxes

3.2. Localized Bundle Adjustment for Real-Time Processing
Real-time processing of 50 MP+ images exceeds the capabilities
of traditional BA methods. While global BA offers high
accuracy, it is computationally prohibitive for large datasets.
Incremental BA is faster but relies on tracks established relative
to only one previous image which makes it prone to drift and
lacks inter-strip consistency. To overcome these issues, we
introduce a cluster-based BA that processes user-defined image

groups, integrating overlapping frames from neighbouring strips
to ensure smooth transitions and global coherence.

In the proposed method, the user defines a cluster size M (i.e., the
number of images to be optimized simultaneously). Within each
cluster, feature tracks are established based on matched features
in corresponding patches. Initially, each image is assigned an
approximate pose from GNSS/IMU data, with the position and
orientation provided in the ECEF/ENU coordinate systems.

These initial estimates, denoted as Tk(o) and R,((O) for I, serve as
a starting point for the BA optimization.

The reprojection error for a given observation of a 3D scene point
X; inimage Iy is given by

p =7 (KRE(X; = Ti)) ©)

where 7, K and I, represent same annotations as in the previous
section. The corresponding BA cost function for a set of images
I, and feature tracks is formulated as

2
Epa = Yker Ljej, P <“ij - n(KR;f(Xj - Tk))” > (6)

with p being a robust cost function to mitigate the influence of
outliers.

Global BA seeks to solve the above minimization over the entire
dataset, optimizing all camera poses {P; = (Ry, Tx)} and 3D
points {X;} simultaneously. Traditional incremental bundle
adjustment lacks a cross-check mechanism and relies solely on
consecutive images. While this reduces computational load, it
can lead to drift and fails to incorporate overlaps between
adjacent flight strips. Furthermore, when not confined to a local
cluster, the track list grows continuously with each iteration,
resulting in a significant slowdown.

In contrast, our cluster-based BA approach operates on a
dynamically formed cluster C,defined as

Cr = {liy ey oo Iy, }
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where M is the selected trade-off between computational load
and local reconstruction accuracy. The cost function within each
cluster is

Ec, = Yrec, Zjej, P (“ij - H(KR;Z(XJ - Tk))||2> @)

By using the georeferenced ECEF coordinates as the initial
positions, the optimization directly yields geo-referenced camera
poses. Feature tracks are established within the cluster by
matching corresponding patches in real time; concurrently, the
algorithm verifies the existence of overlapping images from
neighbouring flight strips (Figure 7). When the number of images
in the current cluster reaches the predefined threshold, the BA
optimization is executed for that cluster.

To ensure smooth transitions between successive clusters, we
enforce an overlap between clusters. Specifically, the last 25%
of the images in the previous cluster C;_; are used as references
for the new cluster C;. Within this overlapping set, the first half
of images are fixed (i.e., their optimized poses from the previous
cluster are retained), while the orientations of the remaining
images are adjusted using a weighted averaging scheme based on
the number of matched features. For a common overlapping
image I, its updated pose is computed as

(old) ,€1-1, (new) €|
[2D Py +wy Py

PTLEW — 8
0 w(()old)_'_w(()new) ( )
where »'® and (""" represent the weights proportional to

the number of feature matches in the old and new clusters,
respectively. This scheme ensures that the transition between
clusters is smooth and consistent, thereby linking the adjusted
orientations and positions across different clusters.

3.3. Validation and Benchmarking

To evaluate the performance of the proposed multi-strip cluster-
based bundle adjustment, we compare it against two established
methods: (1) Traditional incremental BA, which is more suitable
for real-time applications than global BA; and (2) Cluster-based
(local) incremental BA, which run in different cluster of images
similar to proposed method, and resets the track list in each new
cluster entrance, which is one of the main reason of performance
deceleration of incremental BA while the number of images
increase.

We employ the following evaluation metrics to assess both
geometric accuracy and computational efficiency:

e  Qualitative accuracy of oriented images: to quantify
alignment precision and global consistency.

e  Reprojection errors (mean and standard deviation) of
the reconstructed point clouds: to measure the
geometric fidelity of the estimated scene.

e Execution time per image pair (measured in
MATLAB): to highlight the real-time suitability and
relative performance gains of the proposed method.

e Feature extraction and feature matching time: to
evaluate the proposed patch-based matcher
performance.

4, Results and Discussion

The proposed method was evaluated using a 60-image, two-strip
dataset captured with the DLR MACS during an emergency
mapping mission following the 2023 Turkiye Earthquake. Each
image has a resolution of 79206004 pixels. The tests were
conducted in MATLAB without GPU support, using a standard
office laptop equipped with a 13th Gen Intel Core i7 processor
(20-core) and 32 GB RAM.

Two established bundle adjustment (BA) strategies were used for
comparison. The first is a conventional incremental BA
approach, commonly adopted in SLAM pipelines, which
sequentially incorporates new images. The second is a cluster-
based incremental BA strategy, where images are processed in
local clusters to prevent excessive memory growth due to
extended feature tracks. Each cluster contains 12 images, with the
last three images reused as references in the subsequent cluster,
similar to the proposed method. Both baseline methods operate
on the full-size images without any downsampling.

The proposed method employs a 4x4 patch grid per image, with
each patch measuring 100x100 pixels. These patches are tracked
using GNSS/IMU data and DSM-informed footprint
transformations.

In terms of geometric accuracy, the proposed method achieves
comparable performance to the incremental BA. The mean
reprojection error decreased from 0.727 px (incremental BA) to
0.710 px, and the standard deviation reduced from 1.756 px to
1.075 px. Though the numerical differences are modest, they
indicate improved consistency across image strips. This stability
is attributed to localized BA clusters with overlap-aware
initialization based on projected image footprints (Table 1).

Runtime performance exhibits more pronounced differences. The
total processing time dropped from 962.69 seconds (incremental
BA) to 66.45 seconds with the proposed method. Feature
matching time alone was reduced from 530.31 seconds to just
0.62 seconds, thanks to patch-constrained matching that avoids
brute-force comparisons. Feature extraction time also improved,
decreasing from 61.27 to 48.86 seconds by limiting detection to
patch windows, which suppresses irrelevant features and reduces
false correspondences (Table 1).

The cluster-based incremental BA achieved a moderate runtime
of 14.73 seconds per image pair and showed better memory
efficiency compared to the incremental BA. However, qualitative
analysis in Figure 8 reveals that its orientation estimates degrade
when transitioning between strips. While intra-strip consistency

Table 1: Comparison of incremental BA and the proposed method

Incremental BA The Proposed Method
Mean of Reprojection Error (px) 0.72743 0.71049
Std-dev of Reprojection Errors (px) 1.7563 1.0758
Total Feature Extraction Time (sec) 61.27 48.86
Total Feature Matching Time (sec) 530.31 0.62
Total Run Time (sec) 962.69 66.45
Run Time per Image Pairs (sec) 16.04 1.11
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Figure 6: Comparison of cluster-based incremental BA (a), incremental BA (b), the proposed method (c)

is preserved, inter-strip transitions show drift due to the absence
of inter-cluster correspondence management (Figure 8a).

In contrast, the incremental BA result (Figure 8b) suffers from
accumulated positioning error, manifesting as parallax
distortions, a known issue in long-track incremental pipelines.
The proposed method effectively avoids such artifacts by
maintaining inter-strip consistency through footprint-guided
neighbor strip identification and localized clustering. Figure 8c
illustrates that the proposed method produces geometrically
consistent results across strips without the parallax or drift issues
observed in the other approaches.

5. Conclusion

This study presents a practical and efficient framework for real-
time bundle adjustment of high-resolution UAV imagery,
addressing the limitations of conventional approaches that are
either too slow or require image downsampling. By dividing full-
resolution images into user-defined patches and leveraging UAV
GNSS/IMU data alongside terrain information, the method
enables accurate feature tracking and localized bundle
adjustment within manageable clusters. The inclusion of
overlapping images from neighbouring strips ensures spatial
consistency and mitigates drift commonly observed in
incremental methods.

In the context of the research question, whether full-resolution
UAV imagery can be processed in real-time without
compromising orientation accuracy, the results are encouraging.
The method demonstrates that, through patch-based tracking and
cluster-wise optimization informed by geo-referenced data, it is
possible to achieve a practical trade-off between computational
speed and geometric fidelity. This makes it feasible to deploy the
method onboard UAVs or in edge-computing environments,
especially in scenarios where fast decision-making is critical.

While the method offers flexibility through user-defined
hyperparameters such as patch size and the number of images per
cluster, this reliance on manual tuning can be time-consuming,

especially for new users. Future work should focus on automating
the selection of these parameters based on image resolution and
mission scale to improve usability and repeatability.
Additionally, to broaden accessibility, a variant of the algorithm
should be developed that relies solely on GNSS/IMU data when
image footprints are unavailable.

Overall, the proposed method bridges the gap between high-
fidelity mapping and real-time processing, making it well-suited
for time-critical applications such as disaster response, where
both accuracy and speed are imperative.
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