ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2/W2-2025
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10—12 September 2025, Espoo, Finland

Implementing real-time wildfire detection using lightweight object-detection models and
machine vision sensor on Raspberry Pi 5: Fireframe, a practical framework

Jukka Joutsalainen, Maxim Vitikainen, Juuso Lehrbick, Alexander Goldhill, Anna-Maria Raita-Hakola

Faculty of Information Technology, University of Jyviskyld, Mattilanniemi 2, Jyviskyld Finland
(jukka.a.joutsalainen, maxim.t.vitikainen, juuso.e.lehrback, alejgold, anna.m.hakola) @jyu.fi

Keywords: Wildfire smoke detection, Edge-device deployment, Fire surveillance, Framework for real-time smoke detection,

Object detection

Abstract

The research field of small, lightweight object-detection models that are capable of real-time monitoring, particularly for the detec-
tion of wildfires, is highly popular. However, a quick overview of the literature reveals that while most research suggests lightweight
models, it does not report results from tests conducted on platforms with limited computational power or frameworks that might
enable practical applicability of the techniques. This leaves the algorithms without real-time usability tests. This study addresses
the research gap, aiming to provide a robust and low-cost framework (Fireframe) for edge device deployment for wildfire smoke
detection. Fireframe combines hardware (Raspberry 5 computer and Basler machine vision camera) and a trained object detection
model with tasks that are performed in an operational loop (main thread). It can simultaneously record a live stream, analyze
whether wildfire s moke is present, and display the fi ndings. Fireframe is tested using tw o li ghtweight models (Y OLOv10 and
MobileNetV3), and the findings confirm its suitability for simulations and real-life action.

1. INTRODUCTION

Forest fires are among the most devastating natural disasters,
leading to large-scale environmental degradation, loss of biod-
iversity, and severe public health implications. To highlight hu-
man impact, global exposure to landscape fire smoke contrib-
utes to an estimated 339,000 premature deaths annually (John-
ston et al., 2012). The economic factor caused by the wild-
fire damage is also substantial. The United Nations Environ-
ment Program (UNEP) reports that the cost of wildfire dam-
ages, including suppression, property loss, and health impacts,
continues to rise due to climate change and increased human en-
croachment to forested areas (UNEP and GRID-Arendal, 2022).
In addition, forest fires have an impactful contribution to green-
house gas emissions and long-term soil degradation, thus affect-
ing global climate change and hampering reforestation efforts.

Wildfires typically spread rapidly, making early and reliable de-
tection essential for effective mitigation. Traditional approaches
such as satellite-based observation and ground-based surveil-
lance often suffer from latency and limited spatial resolution,
which can hamper early-stage detection (Park and Ko, 2020).
In response, Unmanned Aerial Vehicles (UAVs) combined with
machine vision solutions, particularly deep learning models,
have become widely proposed in wildfire and smoke detection
applications (Chen et al., 2023b). However, the operations bey-
ond visual line of sight (BVLOS) are strictly controlled with
legislation (see, for example, (Ariante and Del Core, 2025)).
Thus, for these situations, low-cost solutions are needed that
could be used both ways as an effective UAV payload as well as
an inexpensive small device that could be installed stationary in
areas that are not suitable for UAVs.

Although there is a lot of research on the lightweight wild-
fire detection and monitoring research (Barmpoutis et al., 2020,
Moumgiakmas et al., 2021, |Abid, 2021} |Bouguettaya et al.,
2022} |Gaur et al., 2020} [Surya, 2020 [Saleh et al., 2024, |Carta
et al., 2023)), relatively few new technological solutions have

been put into practice (Barmpoutis et al., 2020, Moumgiakmas
et al., 2021} Bouguettaya et al., 2022} |Carta et al., 2023 [Bailon-
Ruiz and Lacroix, 2020). Besides evaluating review articles
from 2020-2024, we searched the web-of-science database to
retrieve 148 forest fire detection and monitoring articles from
2010 to 2024. We performed a brief overview of them and sep-
arated articles that presented only algorithms from those that
put algorithms into practice and made hardware implementa-
tions. We found 108 articles presenting only algorithms and 38
articles that tested algorithms in theory and practice. To con-
clude, the majority of the studies present the models as state-
of-the-art, being computationally lightweight for real-time plat-
forms, but without practical testing, these have fallen short of
real-world experimentation.

1.1 Detecting smoke with deep learning

Convolutional Neural Networks (CNNs), which are designed
for image analysis, are well-suited for this task due to their abil-
ity to automatically extract and learn spatial patterns such as
smoke plumes and flame textures. Architectures like YOLOV3,
YOLOVS, and YOLOvVS8 have been employed in UAV-based
systems for real-time detection, showing improved accuracy
and processing efficiency (Zhou et al., 2019} Ha et al., 2018,
Yang et al., 2019).

Since smoke is often the first visual signal of a fire, and thus
it is not typically present in a machine-learning imagery, there
is a limited amount of relevant training data that is suitable for
training deep-learning-based object detection methods (Raita-
Hakola et al., 2023)). To address the challenge of limited data-
sets and high model complexity, researchers have increasingly
turned to transfer learning. Pre-trained CNNss allow efficient ad-
aptation to new fire detection tasks, even with modest data (Best
et al., 2020). These models are typically trained on large-scale
datasets like ImageNet, which provides millions of labeled im-
ages across a wide variety of categories, enabling stronger gen-
eralization capabilities (Krizhevsky et al., 2017). However, when

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-2-W2-2025-81-2025 | © Author(s) 2025. CC BY 4.0 License. 81

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2/W2-2025
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10—12 September 2025, Espoo, Finland

fine-tuning models for new datasets, existing knowledge may be
lost, a challenge referred to as forgetting. To mitigate this, Sath-
ishkumar et al. (Sathishkumar et al., 2023) introduced a method
combining transfer-learning with Learning without Forgetting
(LwF). Noteworthy, this was achieved by leveraging relatively
lightweight and efficient pre-trained models such as VGG16,
InceptionV3, and Xception, reducing training complexity while
maintaining performance across chosen datasets.

Integrating deep learning with UAV platforms enables early de-
tection of subtle fire indicators like smoke plumes, even un-
der challenging environmental conditions. These models aim
to address key issues such as identifying small and dispersed
smoke patches and differentiating them from visually similar
backgrounds like clouds or mist (Wu et al., 2023). Nonetheless,
accurate smoke detection remains difficult due to its inherent
variability in transparency, shape, and motion. Environmental
factors such as fog, rain, low light, and interference from indus-
trial emissions can lead to high false positive rates (Chen et al.,
2023al [Hosseini and Choi, 2022).

However, many state-of-the-art deep learning architectures are
computationally intensive, requiring significant memory and pro-
cessing power, making them unsuitable for deployment on edge
devices such as UAVs, which are constrained by limited bat-
tery life, onboard storage, and real-time processing capabilit-
ies. Consequently, there is a growing need for lightweight,
resource-efficient models that can operate reliably on embed-
ded systems without compromising accuracy (Qu, 2022). In
parallel, existing fire detection methodologies often fall short
when applied to ecologically complex domains such as boreal
forests, where dense canopies, high humidity, and atmospheric
variability pose unique challenges. These environmental com-
plexities can degrade the performance of generic models, thus
underscoring the domain-specific solutions.

1.2 Hypothesis, research questions and main contributions

Given the increasing prevalence of wildfires as a global prob-
lem, we will need low-cost technological solutions in the future
that can be rapidly deployed, both static and on-board UAVs,
for example. We hypothesize that a low-cost framework can
ease the real-life implementations of wildfire detection systems.
In the future, UAVs have high potential for autonomous wild-
fire monitoring, especially in smaller countries such as Finland,
but while the legislation is not ready for autonomous UAVs,
stationary solutions are equally important. By keeping this in
mind, we aim to answer the following research questions:

A) How to create a low-cost framework that can be used for
testing and real-time use (onboard and stationary) of object de-
tection methods for wildfire detection?

B) What kind of operational loop (main thread) is needed for
Raspberry Pi to run machine vision camera, object detection
algorithm and result visualization tasks?

Our main contribution is a robust and low-cost framework (Fire-
frame) for edge device deployment for wildfire smoke detec-
tion, which addresses the challenges of real-time wildfire smoke
detection and can be used for testing novel object detection al-
gorithms as well as be implemented into a real-life scenarios
(stationary or UAV-based).

The article is organized as follows: Section [2] presents the re-
quirements and processes of our Fireframe framework. Section
[3] shows how we constructed and compared three lightweight

object detection methods for it and tested Fireframe in practice.
The results of our tests can be found in Section[d] and the dis-
cussion and conclusions are in Section 3]

2. MATERIAL AND METHODS

This section contains the Fireframe framework’s details of hard-
ware, tasks, workflow, and object detection model architectures
that were used in our edge device deployment.

2.1 Requirements for framework’s edge device deployment

A wildfire smoke detection system, based on Fireframe can be
built using the following hardware:

e Raspberry Pi 5 8 GB single-board computer (64-bit quad-
core Arm Cortex-A76 processor running at 2.4GHz, with
a basic Ubuntu operating system)

e Basler Dart daA1920-160uc machine vision camera (Sony
IMX392 CMOS sensor, 2.3 MP resolution, 160fps)

e Evetar S-mount 4mm F1.6 1/2” lens

e The programming language was Python 3.9, which was
used for controlling hardware, analysis and visualizations.

e Two basic computer screens with no specific requirements

e Keyboard and mouse for the phases when the system is
deployed

Figure [3| visualizes the Basler Dart camera and Raspberry Pi
computer. As can be seen from the images, the computer is
connected with a USB-3 and USB-C cables, which can give a
hint of the physical size.

Figure 1. Hardware aspects of the framework: Raspberry Pi 5
single-board computer connected to a Basler RGB machine
vision camera with Evetar lens.

2.2 Fireframe tasks
Despite limited computational resources, a Fireframe-based sys-

tem is capable of performing the complete detection pipeline
locally with the following tasks:

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-2-W2-2025-81-2025 | © Author(s) 2025. CC BY 4.0 License. 82

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2/W2-2025
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10—12 September 2025, Espoo, Finland

Load a pre-trained neural network model into memory
Capture live video frames from a camera system
Preprocess the captured data as required by the model
Perform inference using the preloaded model

Visualize and display the inference results in near real-
time

e Repeat this cycle continuously with low latency.

By performing the entire processing loop on a single device,
this approach eliminates the need for additional processing on
external systems. This makes the system suitable for real-world
deployment scenarios, such as static monitoring stations (e.g.,
fire posts or surveillance towers). Once legislation permits,
such autonomous systems could be integrated into mobile plat-
forms (e.g., drones or autonomous vehicles) that transmit ac-
tionable, processed data to remote control centers.

2.3 Framework’s process flow

The main thread of the application, illustrated in Figure 2] fol-
lows a structured and repeatable pipeline:

Continuous Frame
Capture

Init |

_~

S~ Frame Buffer
e

-
Latest Frame

Prediction
Wisualization

Main Thread

Resize &
Coordinate Data Structure Conversion

Normalization

Model Cuput:
Localization & Data Fed to Madel
Classification

Information

Model Inference Delay

Figure 2. Conceptual overview of the main thread process for
edge-based smoke detection.

1. Inmitialization: The system initializes using predefined con-
figuration parameters. This includes setting up the cam-
era interface and loading the neural network model into
memory for subsequent inference tasks.

2. Frame Acquisition: The main thread continuously fetches
the latest frame from the camera system’s frame buffer.

3. Preprocessing and Resizing: The captured frame is res-
ized to match the input dimensions expected by the net-
work model. YOLO-based libraries handle this intern-
ally, but for custom architecture, resizing is implemented
manually within the main thread.

4. Inference: The preprocessed frame is fed into the model
for inference. The model produces detection results indic-
ating object presence and type.

5. Model Output: The output includes bounding box co-
ordinates, class probabilities (e.g., ”smoke” vs. "no smoke”),
and confidence scores, all represented as floating-point val-
ues.

6. Coordinate Normalization and Visualization: The raw
bounding box coordinates are normalized to pixel values
relative to the original frame dimensions. A visualization

step overlays the detection results—bounding boxes and
class labels onto the original image using a visualization
library.

7. Output Utilization: The annotated output may be dis-
played on a monitoring interface and/or stored for further
analysis, as illustrated in Figure[d] After this step, the pro-
cess returns to frame acquisition, continuing the loop.

2.4 Data and object detection architectures for tests

A Fireframe system deploys light-weight object detection algo-
rithms. In our study, we used data from Boreal forests, and
tested three lightweight algorithms, of which two were deployed
into Fireframe framework after comparison.

2.4.1 Data We utilized the Boreal Forest Fire dataset’s sub-
set A in our tests, which is available at (Pesonen et al., 2025)).
Boreal Forests dataset is an UAV-collected wildfire detection
and smoke segmentation dataset comprising aerial photographs
and video clips of forest fires and non-fire forest regions. The
data is sourced from four different municipalities in Finland.
The dataset contains UAV-captured images under different light-
ing conditions and from various angles, being annotated with
bounding boxes around the smoke clouds.

2.4.2 Architectures Three different architectures were used
in the final testing phase: YOLOvS8, YOLOv10, and MobileN-
etV3, the latter of which had a custom detection head attached.
The YOLO models were developed using the Ultralytics lib-
rary (Ultralytics, 2023b)), while the MobileNetV3-based model
was implemented with Keras (Chollet et al., 2015)). Model op-
timization, training, and comparison were performed on a 28-
core Linux server (x86_64) in a non-parallel computing setup.

2.4.3 Custom detection head A pre-trained MobileNetV3
with ImageNet weights, served as the backbone and was fol-
lowed by a flatten-layer branching into two heads: one for bound-
ing box coordinates and another for classification and confid-
ence estimation. The architecture is visualized in Figure[3]

The heads consisted of dense layers, from which bounding-box
output is achieved with reshape-function, whilst confidence and
class predictions are obtained via lambda functions

AM(z)=—2 and X(z)=1-= (1

where they apply lightweight output transformations. The func-
tion A\ (z) inverts the binary class prediction, emphasizing the
negative class in the loss function, and A2 (z) complements the
confidence score, providing a direct measure of uncertainty.

The architecture of the box head for the Keras model is presen-
ted in Table[T] while the class head architecture is provided in
Table

Box head
Neuron count | Type | Activation
256
64 .
32 Dense Swish
16
4 Sigmoid

Table 1. Box head architecture for the Keras model

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-2-W2-2025-81-2025 | © Author(s) 2025. CC BY 4.0 License. 83

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2/W2-2025
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10—12 September 2025, Espoo, Finland

Box Class Conf
4) (1) (1
£ S

Reshape (1,4)‘ ’ A1 | As

1 —

Dense Dense
layers layers
(box) (class)

Flatten

MobileNetV3
Backbone

_’;

Input
(224,224,3)

Figure 3. Diagram of MobileNetV3-based architecture

Class head
Neuron count Type Activation
128 Dense ReLU
Dropout
64 Dense ReLU
Dropout
1 Dense Sigmoid

Table 2. Class head architecture for the Keras model

3. Deployment

After the hardware, tasks, workflow, data and architecture are
selected, it is time for deployment. The process phase covers
steps from data pre-processing and model training and optim-
ization to model evaluation and finally implementing the al-
gorithms, camera controls and main thread to the Raspberry Pi
computers.

3.1 Preprocessing

We used, 4760 Boreal Forests Fire images, in our trials. The
images contained frames with and without smoke. Since, they
were captured in several municipalities of Finland, we left all
Ruokolahti area images into our test set (total 1822), while the
remaining images (2938), were randomly divided into training
and validation sets, with 20% allocated to validation and the rest
to training. Since the Boreal Forest Fire data is annotated in the
YOLO-compatible center-based XY, W, H (center coordinate,
width, height) format. However, for Keras, the relative XY, XY
(upper-left corner, bottom-right corner coordinates) box format
was adopted.

Before training, all images were resized to 224 x 224 pixels for
the MobileNetV3-based model and to 640 x 640 pixels for the
YOLO models. To improve generalization, data augmentation
was applied. In Keras, this was done explicitly using KerasCV
layers, mainly RandomFlip and JitteredResize. These per-
formed horizontal or vertical flips and randomized resizing, fol-
lowed by cropping and padding to the target size.

For YOLO models, Ultralytics’ built-in augmentation pipeline
was used, which automatically applies a wide range of ran-

dom transformations. These include color jitter (hue, satur-
ation, brightness), scaling, horizontal translation and flipping,
mosaic augmentation, random erasing, and cropping. The spe-
cific augmentations and their parameters are documented in Ul-
tralytics’ official documentation (Ultralytics, 2023a). These aug-
mentations aimed to simulate diverse real-world conditions with
unpredictable noise, and to improve the model’s robustness against
unseen variations

3.1.1 Hyperparameter selection, training and optimization
Five hyperparameters were chosen to be optimized for YOLO
models: optimizing algorithm, initial learning rate (Ir0), final
learning rate factor (Irf), weight decay and momentum. Learn-
ing rate and momentum are mentioned in YOLO documenta-
tion as important parameters. The final learning rate factor was
chosen due to the direct connection to the initial learning rate,
and the optimizing algorithm is assumed to have a notable effect
on the result. Weight decay, which basically refers to regulariz-
ation, is an important parameter to control overfitting.

In Keras, some hyperparameters were the same as in Ultralyt-
ics, but due to varying implementations of the optimization al-
gorithms and own custom detection head architecture, some dif-
ferent hyperparameters were chosen: an optimizing algorithm,
number of dense layers, dropout probability in chosen layers
and activation function in localization part of the detection head,
learning rate, global clip norm and weight decay. The Global
clip norm limits the maximum norm of gradients when updating
the weights, which is essential for preventing exploding gradi-
ents. Dropout is another tool for avoiding overfitting ((Srivast-
ava et al., 2014)). When the dropout probability was less than
0.05, it wasn’t applied at all.

MobileNetV3
Optimizer RMSProp
Layers 5
Activation Swish
Learning rate 2.61 x 107°
Global clipnorm 11.26
Weight decay 9.97 x 1075
Dropout 0/0.042

YOLOv10
Optimizer AdamW
Ir0 2.20 x 107*
Irf 1.37 x 107°
Weight decay 7.83 x 107°
Momentum 0.803

YOLOVS
Optimizer Adam
Ir0 4.25 x 107*
Irf 0.042
Weight decay 8.39 x 107*
Momentum 0.921

Table 3. Optimized hyperparameters for different models.
Dropout was applied only to the classification head in
MobileNetV3.

All three models were trained using transfer learning. The YOLO
models transfer learning followed (Raita-Hakola et al., 2023)),
and the Keras-based MobileNetV3 model was pre-trained on
ImageNet data (Deng, 2012)), with its backbone frozen to pre-
serve well-generalizing feature extraction. To calculate a gen-
eric loss metric, a mean squared error (MSE) of classes and

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-2-W2-2025-81-2025 | © Author(s) 2025. CC BY 4.0 License. 84

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2/W2-2025
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10—12 September 2025, Espoo, Finland

complete intersection over union (CloU) of coordinates were
summed using built-in Keras functions. CIoU was chosen as it
offers a more in-depth metric for the accuracy of the coordin-
ates than regular IoU metrics, since it not only considers the
coordinates, but also the center point distance and aspect ratio
(Zheng et al., 2020).

Training was conducted using Ray Tune with various hyper-
parameter configurations. YOLO models were optimized us-
ing random search and HyperOpt, both of which leveraged the
Asynchronous HyperBand Scheduler (ASHA) (Li et al., 2018)
for efficient early stopping and parallelization. In all cases,
the best model of the hyperparameter optimization was selected
based on mAP50-95 results. Early stopping was integrated into
the training process to save the model at the optimal number
of epochs. The optimal hyperparameters for the best perform-
ing three models are presented in Table [3| After optimization
and training, the best models were compared using test data and
evaluation metrics.

3.1.2 Evaluation metrics for model comparison The mo-
del comparison was performed to acquire a more nuanced un-
derstanding of the quality of the models. We evaluated the per-
formance using precision, recall, mAP50 and mAP50-95. Pre-
cision and recall tell, how accurately the model labels the image
to have smoke or not. mAP50 and mAP50-95 allow for varying
levels of more precise performance analysis based on the ac-
curacy of the coordinates compared to the ground truth. These
metrics are readily available in Ultralytics, but for Keras, cus-
tom metric code was required. After evaluations, we selected
two best-performing models to be implemented in our hardware
framework.

3.2 Edge device deployment and evaluation

3.2.1 Hardware To assess the real-world feasibility of the
Fireframe, we deployed two of our models on embedded hard-
ware and tested their inference performance in a simulated op-
erational scenario that follows our framework. For both mod-
els, we used a Raspberry Pi 5 device, connected to Basler Dart
area-scan camera, equipped with an Evetar S-mount lens. Test
videos were obtained from the Boreal Forest Fire data subset B
(Pesonen et al., 2025) and displayed on common office monit-
ors (Dell). The cameras, mounted in small stands (Figure E]),
captured these displayed frames, simulating real-time wildfire
detection conditions.

3.2.2 Software The software for the tasks and main thread,
analysis as well as camera controls, was made using basic Py-
thon libraries. For camera controls, there are several Python
options available. As an example, Basler has an official Python
wrapper Pylon (Basler, 2025)), and for Basler and other manu-
facturers, our in-house-backend Camazing can control several
types of machine vision sensors utilizing GenlCam standard
(EMVA, 2025). The Camazing is available at (Jaaskeldinen et
al., 2019), introduced and used for example in (Rahkonen et al.,
2022) and (Trops et al., 2019).

3.2.3 Workflow The captured frames were continuously pas-
sed to the deployed model (either YOLOvV10 or MobileNetV3),
which performed inference in real time. The output detections
were rendered using OpenCV (Bradski, 2000) and displayed on
separate screens. Figure[dillustrates the full setup, showing the
input screen (left) and the output display pipeline (right). This
setup allowed us to measure end-to-end detection performance,

including frame capture and rendering on real hardware, reflect-
ing practical constraints and edge deployment viability.

Figure 4. Edge device setup. Left: A machine vision camera
acquires a screen that shows UAV-collected video material from
the Boreal Forest Fire dataset. Right: The second screen shows
the results, where the detected wildfire is surrounded with a blue

bounding box, and the prediction confidence is printed on the
screen. The Raspberry Pi computer, that processes all tasks, is at

the bottom of the image.

4. Results

4.1 Performance comparison

As can be seen in the comparison results (Table), all models
demonstrated relatively strong performance. YOLOv10 outper-
formed YOLOVS in most categories, except for recall, where
YOLOVS retained a slight advantage (0.969 versus 0.965). The
MobileNetV3 achieved the highest mAP50-95 score (0.854),
surpassing both YOLO variants in terms of overall precision
and consistency.

Qualitative results, illustrated in Figure[5] further support these
findings. The MobileNetV3-based model produced more re-
fined and stable detections, while the YOLO models offered
faster inference times, albeit with slightly lower precision and
confidence.

Model Precision | Recall | mAP-50 | mAP50-95
MobileNetV3 0.984 | 0.984 1.0 0.854
YOLOvI10 0.979 | 0.965 0.992 0.809
YOLOV8 0.934 | 0.969 0.964 0.763

Table 4. Results of the model comparison

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-2-W2-2025-81-2025 | © Author(s) 2025. CC BY 4.0 License. 85

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2/W2-2025
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10-12 September 2025, Espoo, Finland

big smoke 0.

Figure 5. A sample of predictions: (a) Ground truth, (b)
MobileNetV3-based model (Confidence 1.0), (¢) YOLOv10
(Confidence 0.70), (d) YOLOv8 (Confidence 0.76).

In addition to detection performance, model complexity was
analyzed to better understand each model’s efficiency and ca-
pacity. Table 5] presents the number of layers and parameters
for each model. YOLOVI10 features significantly more layers
(223) than YOLOVS (129), yet has fewer total parameters (2.7M
vs. 3.0M), indicating a more compact and parameter-efficient
design. In contrast, the custom MobileNetV3-based model is
substantially larger, with approximately 85 identifiable layer
blocks and over 11.8 million parameters. This added capacity
benefits precision and consistency, as reflected in its mAP50-95
score. However, this comes at the cost of increased model size.

Model # Layers | Parameters
MobileNetV3 ~85 | 11823461
YOLOvV10 223 | 2707430
YOLOVS 129 | 3011043

Table 5. Model complexity comparison: number of layers and
parameters. The YOLOv10 had the least trainable parameters.

4.2 Real-time deployment of Fireframe with YOLOv10 and
MobileNetV3-based models

To evaluate real-time deployment, two best-performing models
were tested in a Fireframe hardware setup described in Sec-
tion 321 Both YOLOv10 and MobileNetV3-based models sus-
tained real-time inference performance, achieving approxim-
ately one detection per second, including all phases from the
frame capture to result visualization. At this speed, the Rasp-
berry Pi computer could serve without duty-related crashes.

When the camera’s frame rate and main thread’s operation speed
are increased, the direct effect can be seen in the reliability of
the system: a small computer can easily be overloaded with
tasks and data and crash.

These tests confirm the feasibility of Fireframe in deploying ob-
ject detection systems in low-power, embedded environments
such as UAVs and validate detection accuracy even under chal-
lenging visual conditions, including noise and motion artifacts
(caused by screen technology).

5. Discussion and Conclusions
5.1 Key contributions and discussion

This study addressed two key research questions regarding low-
cost, real-time wildfire smoke detection using embedded sys-
tems. The aim was to show, in practice, how scientists can
test their algorithms in simple hardware experiments. This was
achieved through the development and validation of a complete
Fireframe system, based on Raspberry Pi and a machine vis-
ion camera. By integrating lightweight object detection models
such as YOLOv10 and a custom MobileNetV3-based architec-
ture, we achieved reliable smoke detection performance at ap-
proximately one frame per second, which can be considered
suitable for real-life warning applications. The results demon-
strate that optimized neural networks, even on cost-effective
hardware, can enable both prototyping and real-world UAV-
based deployments.

As seen, a basic machine vision camera, lens, two computer
screens (one for showing unseen forest fire videos and one for
visualizations), and a low-cost computational unit, such as a
Raspberry Pi with the latest Ubuntu release, are the needed
hardware. The needed software is minimal. For example, most
of the camera controlling blocks are implemented in the manu-
facturer’s example code, and the machine-learning libraries are
as well carefully documented. No advanced programming skills
are required, which may ease the implementation threshold.

The second question was how to support image acquisition,
detection reasoning and visualization on resource-constrained
hardware. A streamlined, single-threaded main loop enabled
consistent real-time operation. This confirmed that even min-
imal setups can maintain practical responsiveness. Notably, the
system can provide actionable outputs—yvisual images of detec-
ted smoke—without requiring further post-processing.

At this point, one may wonder why the main loop does not have
new innovative building blocks - we agree. The main findings
lay elsewhere. A Raspberry Pi computer can easily be over-
whelmed when combined with a high-resolution, high-speed
RGB machine vision sensor, visualization loop tasks and im-
age analysis algorithms. The insights of our study reveal that

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-2-W2-2025-81-2025 | © Author(s) 2025. CC BY 4.0 License. 86

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2/W2-2025
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10—12 September 2025, Espoo, Finland

a good camera control backend system can be used to handle
camera features and configure the data flow wisely.

Through several iterations of testing the best possible camera
settings, we ended up setting the camera’s frame rate to one
frame per second, limiting its autocorrection functions so that
we only used the necessary functions (no fancy pixel correc-
tion like automatic color balance was needed), and limiting the
width and height (region of interest) of the captured image so
that it only focused on the video, instead of the video, monitor
and its surroundings. These actions were important for us to
achieve a reliable system, without data overwhelm. The Rasp-
berry Pi computer was able to serve without crashing. There-
fore, we recommend, not only to switch on the cameras, but
also pay attention to the GenlCam standard features ((EMVA,
2025)) of the camera, and its acquisition control possibilities
via Python interface.

5.2 Limitations and future work

While the Fireframe shows promise for embedded wildfire mon-
itoring, some limitations remain. Real-time broadcasting to
end-users or authorities was outside the study’s scope, as im-
plementation depends on specific operational contexts and in-
frastructure.

Our main focus was not to introduce a new novel object de-
tection model, but to create a flexible framework for evaluating
existing models in wildfire scenarios. Evaluation centered on
mAP and energy efficiency; practitioners should also consider
dataset variability and avoid including visualization in perform-
ance measurements unless necessary.

The current test dataset, although containing 1822 images, in-
cludes a high number of samples with clearly visible smoke
and relatively few negative examples. This imbalance can af-
fect metrics such as precision and recall. To mitigate this, we
emphasized mean Average Precision (mAP) and enforced con-
sistent labeling for bounding boxes.

Regarding detection speed tests. These camera stream limita-
tions, producing eventually result visualizations once per second,
may sound slow, but that is deliberate. In an action, the fire-
fighters don’t need tens of warnings per second, but they be-
nefit from a visualization, which, of course, takes energy and
computational capacity in this system. Therefore, the version
we tested, was solid, and performed at a rate that enables visual
inspection and interpretations of the result visualizations. How-
ever, if one wishes to push boundaries, we recommend remov-
ing the visualization loop from the framework, adding energy
consumption measurement devices into the framework and in-
creasing the frame rate of the camera to high-speed, and then
evaluating the detection rate.

References

Abid, F., 2021. A survey of machine learning algorithms based
forest fires prediction and detection systems. Fire Technology,
57(2), 559-590.

Ariante, G., Del Core, G., 2025. Unmanned Aircraft Systems
(UASs): Current State, Emerging Technologies, and Future
Trends. Drones, 9(1), 59.

Bailon-Ruiz, R., Lacroix, S., 2020. Wildfire remote sens-
ing with uavs: A review from the autonomy point of view.

2020 International Conference on Unmanned Aircraft Systems
(ICUAS), IEEE, 412-420.

Barmpoutis, P., Papaioannou, P., Dimitropoulos, K., Grammal-
idis, N., 2020. A review on early forest fire detection systems
using optical remote sensing. Sensors, 20(22), 6442.

Basler, 2025. Pypylon, the official python wrapper for the
Basler pylon Camera Software Suite.

Best, N., Ott, J., Linstead, E. J., 2020. Exploring the efficacy
of transfer learning in mining image-based software artifacts.
Journal of Big Data, 7(1), 1-10.

Bouguettaya, A., Zarzour, H., Taberkit, A. M., Kechida, A.,
2022. A review on early wildfire detection from unmanned
aerial vehicles using deep learning-based computer vision al-
gorithms. Signal Processing, 190, 108309.

Bradski, G., 2000. The OpenCV Library. Dr. Dobb’s Journal of
Software Tools.

Carta, F., Zidda, C., Putzu, M., Loru, D., Anedda, M., Giusto,
D., 2023. Advancements in Forest Fire Prevention: A Compre-
hensive Survey. Sensors, 23(14). https://www.mdpi.com/1424-
8220/23/14/6635.

Chen, G., Cheng, R., Lin, X., Jiao, W., Bai, D., Lin, H.,
2023a. LMDFS: A Lightweight Model for Detecting Forest Fire
Smoke in UAV Images Based on YOLOV7. Remote Sensing,
15(15). https://www.mdpi.com/2072-4292/15/15/3790.

Chen, L., Gao, H., Li, Y., Zhang, X., 2023b. Application of
Deep Transfer Learning on UAV-Based Aerial Images for
Forest Fire Detection. Proceedings of SPIE, 13442, 134421W.
https://www.spiedigitallibrary.org/conference-proceedings-of-

spie/13442/134421W.

Chollet, F. et al., 2015. Keras. https://keras.iol Accessed:
2025-06-25.

Deng, J., 2012. Large Scale Visual Recognition. PhD thesis,
Princeton University.

EMVA, 2025. GenlCam standard. The Generic Interface for
Cameras standard is the base for plug play handling of cam-
eras and devices.

Gaur, A., Singh, A., Kumar, A., Kumar, A., Kapoor, K., 2020.
Video flame and smoke based fire detection algorithms: A lit-
erature review. Fire technology, 56(5), 1943-1980.

Ha, V. K., Ren, J., Xu, X., Zhao, S., Xie, G., Vargas, V. M.,
2018. Deep learning based single image super-resolution: a sur-
vey. Deep learning based single image super-resolution: a sur-
vey, Springer, 106-119.

Hosseini, S., Choi, Y., 2022. Deep Learning and Trans-
former Approaches for UAV-Based Wildfire Detection and Seg-
mentation. Sensors, 22(5), 1977. https://www.mdpi.com/1424-
8220/22/5/19717.

Jadskeldinen, S., Annala, L., Eskelinen, M. A., Raita-Hakola,
A.-M., 2019. Spectral Imaging Laboratory’s Machine vision
library for GenlCam-compliant cameras. Developed at the Uni-
versity of Jaskyld, Spectral Imaging Laboratory. Released under
MIT-licence.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-2-W2-2025-81-2025 | © Author(s) 2025. CC BY 4.0 License. 87

https://keras.io

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2/W2-2025
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10—12 September 2025, Espoo, Finland

Johnston, F. H., Henderson, S. B., Chen, Y., Randerson, J. T.,
Marlier, M., DeFries, R. S., Kinney, P., Bowman, D. M., Brauer,
M., 2012. Estimated global mortality attributable to smoke from
landscape fires. Environmental Health Perspectives, 120(5),
695-701.

Krizhevsky, A., Sutskever, 1., Hinton, G. E., 2017. Imagenet
classification with deep convolutional neural networks. Com-
munications of the ACM, 60(6), 84-90.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Tal-
walkar, A., 2018. Hyperband: A Novel Bandit-Based Approach
to Hyperparameter Optimization. Journal of Machine Learn-
ing Research, 18(185), 1-52. http://jmlr.org/papers/v18/16-
558.html.

Moumgiakmas, S. S., Samatas, G. G., Papakostas, G. A., 2021.
Computer vision for fire detection on UAVs—From software to
hardware. Future Internet, 13(8), 200.

Park, S. J., Ko, Y. T., 2020. A study on forest fire detection
system based on image processing using drone. International
Journal of Computer Science and Network Security (IJCSNS),
20(4), 167-172.

Pesonen, J., Raita-Hakola, A.-M., Joutsalainen, J., Hakala,
T., Akhtar, W., Karjalainen, V., Koivuméki, N., Markelin,
L., Suomalainen, J., de Oliveira, R. A. et al., 2025.
Boreal forest fire: Uav-collected wildfire detection and
smoke segmentation dataset. https://doi.org/10.23729/
fd-72c6cf74-b8eb-3687-860d-bf93alab94c9. National
Land Survey of Finland, FGI Dept. of Remote sensing and
photogrammetry.

Qu, Z., 2022. Enabling Deep Learning on Edge Devices. PhD
thesis, ETH Zurich. Ph.D. dissertation.

Rahkonen, S., Lind, L., Raita-Hakola, A.-M., Kiiskinen,
S., Polonen, I, 2022. Reflectance Measurement Method
Based on Sensor Fusion of Frame-Based Hyperspectral Im-
ager and Time-of-Flight Depth Camera. Sensors, 22(22).
https://www.mdpi.com/1424-8220/22/22/8668.

Raita-Hakola, A.-M., Rahkonen, S., Suomalainen, J., Markelin,
L., Oliveira, R., Hakala, T., Koivumiki, N., Honkavaara, E.,
Po6lonen, 1., 2023. Combining YOLO V5 and transfer learning
for smoke-based wildfire detection on boreal forests. The Inter-
national Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, XLVIII-1/W2-2023, 1771-1778.
https://isprs-archives.copernicus.org/articles/XLVIII-1-W2-
2023/1771/2023/.

Saleh, A., Zulkifley, M. A., Harun, H. H., Gaudreault, F., Dav-
ison, L., Spraggon, M., 2024. Forest fire surveillance systems:
A review of deep learning methods. Heliyon, 10(1), €23127. ht-

Surya, L., 2020. Fighting fire with ai: Using deep learning to
help predict wildfires in the us. International Journal of Creat-
ive Research Thoughts (IJCRT), ISSN, 2320-2882.

Trops, R., Hakola, A.-M., Jadskeldinen, S., Nasild, A., Annala,
L., Eskelinen, M. A., Saari, H., P6lonen, I., Rissanen, A., 2019.
Miniature MOEMS hyperspectral imager with versatile ana-
lysis tools. W. Piyawattanametha, Y.-H. Park, H. Zappe (eds),
MOEMS and Miniaturized Systems XVIII, 10931, International
Society for Optics and Photonics, SPIE, 109310W.

Ultralytics, 2023a. Configuration - ultralytics yolo documenta-
tion.

Ultralytics, 2023b. Ultralytics github repository. https://
github.com/ultralytics, Accessed: 2025-06-25.

UNEP, GRID-Arendal, 2022. Spreading like wildfire: The
rising threat of extraordinary landscape fires. United Nations
Environment Programme.

Wu, Z., Zhang, Y., Li, Y., Wang, S. Zhang, Y,
2023. Forest Fire Smoke Detection Based on Deep Learn-
ing Approaches and UAV Imagery. Sensors, 23(12), 5702.
https://www.mdpi.com/1424-8220/23/12/5702.

Yang, H., Jang, H., Kim, T., Lee, B., 2019. Non-temporal light-
weight fire detection network for intelligent surveillance sys-
tems. [EEE Access, 7, 169257-169266.

Zheng, Z., Wang, P., Liu, W., Li, J.,, Ye, R, Ren, D,
2020. Distance-IoU Loss: Faster and Better Learning for
Bounding Box Regression. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 34(07), 12993-13000. ht-
tps://ojs.aaai.org/index.php/A A Al/article/view/6999.

Zhou, Y., Cheng, H., Jiang, S., Jiang, S., 2019. A deep learn-
ing based forest fire detection approach using uav and yolov3.
Proceedings of the st International Conference on Industrial
Artificial Intelligence (IAI), 1-5.

tps://www.sciencedirect.com/science/article/pii/S2405844023103355.

Sathishkumar, V. E., Cho, J., Subramanian, M., Naren, O. S.,
2023. Forest fire and smoke detection using deep learning-
based learning without forgetting. Fire Ecology, 19(1), 9.
https://doi.org/10.1186/s42408-022-00165-0.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I,
Salakhutdinov, R., 2014. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine learn-
ing research, 15(1), 1929-1958.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-2-W2-2025-81-2025 | © Author(s) 2025. CC BY 4.0 License. 88

https://doi.org/10.23729/fd-72c6cf74-b8eb-3687-860d-bf93a1ab94c9
https://doi.org/10.23729/fd-72c6cf74-b8eb-3687-860d-bf93a1ab94c9
https://github.com/ultralytics
https://github.com/ultralytics

	INTRODUCTION
	Detecting smoke with deep learning
	Hypothesis, research questions and main contributions

	MATERIAL AND METHODS
	Requirements for framework's edge device deployment
	Fireframe tasks
	Framework's process flow
	Data and object detection architectures for tests
	Data
	Architectures
	Custom detection head

	Deployment
	Preprocessing
	Hyperparameter selection, training and optimization
	Evaluation metrics for model comparison

	Edge device deployment and evaluation
	Hardware
	Software
	Workflow

	Results
	Performance comparison
	Real-time deployment of Fireframe with YOLOv10 and MobileNetV3-based models

	Discussion and Conclusions
	Key contributions and discussion
	Limitations and future work

