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Abstract

To effectively respond to the growing number of search and rescue (SAR) incidents in mountainous areas, a real-time and automated
detection system is essential. Traditional SAR operations still rely heavily on manual visual detection, which becomes signifiicantly
limited in low-light or night-time environments. The proposed system is an integrated UAV—Cloud—Al automated architecture
designed to enable real-time detection even in low-visibility environments, with the goal of improving rescue efficiency. The entire
pipeline-ranging from Uncrewed Aerial Vehicles (UAV) operation and IR data acquisition to MinlO-based storage, event-driven file
conversion, SFTP-based transmission, and Al-based inference is fully automated without manual intervention. To evaluate system
latency, the entire process was divided into four key stages image acquisition, cloud upload and conversion, server transmission, and
object detection. A total of 231 Infrared (IR) images were collected across five sorties, with an average processing time of 12.4
seconds per image. The upload and conversion stage showed the longest delay at 10.474 seconds, while file transfer and model
inference recorded stable performances of 0.532 seconds and 1.402 seconds, respectively. In addition, detection experiments using
YOLOV12 demonstrated that the model consistently identified human targets in thermal imagery, even under complex backgrounds
and low thermal contrast. This study experimentally validated the feasibility of a UAV-based SAR system capable of real-time
detection and response. Its scalability and field applicability are expected to be further enhanced through the future integration of

lightweight detection models and collaborative multi-drone architectures.

1. Introduction

According to the annual reports of the major European
mountain rescue organizations, approximately 70,000 mountain
rescue missions are carried out each year in Europe alone (Rega,
2023; KFV, 2024; Montagna.tv, 2024; Snosm, 2024; Bergwacht
Bayem, 2024). These operations occur repeatedly, both during
the day and at night, and the increasing number of incidents
continues to place a heavy burden on rescue personnel.
Consequently, a systematic search framework is required to
effectively respond to the recurring nature of mountain rescue
demands.

As mountain rescue requests increase, local Fire and Rescue
Authorities are incorporating a variety of aerial assets into their
search systems. Among these, manned aircraft are effective for
surveying wide areas. However, they are limited by significant
personnel and operational costs. As a more efficient altemative,
drone-based search operations are being increasingly adopted
(Ha et al., 2021; Cho et al., 2020).

Drone-based search operations offer a key advantage in their
ability to operate in areas that are difficult for humans to access
or under poor lighting conditions. To enhance detection
performance in such challenging environments, infrared (IR)
sensors are increasingly employed. These sensors detect thermal
signals based on the body heat of victims, making them
effective even when RGB imagery alone is insufficient for
identification. IR sensors maintain high recognition accuracy in
situations where visual identification is limited such as in
mountainous terrain, shaded areas, or when subjects wear
clothing similar in color to the background. Moreover, they are
robust to changes in weather and lighting conditions, making

them a reliable sensing technology across diverse operational
environments (Yeom, 2024).

When imagery collected by drones is transmitted rapidly,
rescuers can assess the victim's location and situation before
arriving on-site, thereby improving the accuracy of equipment
and personnel deployment. Such real-time information is not
only valuable to field responders but also plays a critical role in
decision-making at the command center. By enabling the
assessment of a victim’s condition and surrounding
environment without solely relying on verbal reports from field
personnel, real-time situational sharing systems serve as a core
technological foundation for collaborative decision-making in
rescue operations.

However, conventional drone usage still requires rescuers to
manually inspect the imagery for victim detection, which
prevents the full advantages of drone mobility and rapid
deployment from being realized (Gotovac et al., 2020). To
address these limitations and enhance the operational efficiency
of drones, the adoption of automated detection technologies is
essential (Abdelnabi and Rabadi, 2024; Kundid Vasi¢ and Papi¢,
2020). A prominent example is object detection using
Convolutional Neural Networks (CNNs), which requires a fast
and stable data transmission system for effective
implementation (Tian et al., 2025).

When image data is rapidly transmitted from drones to the
cloud server, it becomes possible to automatically detect victims
in real time. This reduces the reliance on subjective human
judgment and enables rescue operations to be carried out based
on consistent detection performance (Kundid Vasi¢ and Papic,

2020). Given the limited flight time of drones, the entire process

from data collection and transmission to analysis and decision-
making must be completed within a single flight without delay.
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In order to satisfy these operational constraints, the automated
detection system should be closely integrated with the drone-
based processing pipeline and architected to function reliably
under varying environmental conditions and time limitations.

In search and rescue missions, the speed of data collection and
transmission has a direct impact on survival rates, making
automation and real-time processing in drone-based systems
essential. A UAV-Cloud—Al-based object detection system
minimizes the delays and human dependency inherent in
traditional rescue approaches, enabling faster and more efficient
responses. Such systems play an increasingly critical role under
real-world operational constraints, particularly in low-visibility
conditions such as nighttime, where the limitations of
conventional methods become more pronounced and rapid
decision-making is crucial for locating victims.

To overcome these limitations, an automated detection system
is required—one that transmits IR image data collected by
drones to a cloud server and applies a deep learning-based
object detection model, as illustrated in Figure 1. The system
should automate the entire process—from data acquisition and

storage to conversion, transmission, and inference—to
minimize manual intervention and ensure consistent
performance and real-time capability across various

environments. Accordingly, this study proposes a drone-based
near-real-time search platform to address these operational
needs.

Drone-based
Image Capture

Deliver Results
to Rescuers

Upload to
Cloud Server

Automatic Target
Detection

Figure 1. Conceptual diagram of drone-based real-time rescue
system.

2. System Architecture and Methodology
2.1 Overview of the Automated SAR Pipeline

The UAV-based real-time automated detection pipeline
proposed in this study consists of five stages, as illustrated in
Figure 2. In Stage 1, thermal images are captured using an IR
sensor mounted on the drone and transmitted to the remote
controller. In Stage 2, the received images are uploaded to a
cloud server, where they are converted to JPG format and
processed for storage and preprocessing. Stage 3 involves
transferring the converted images to a dedicated processing
server for inference. In Stage 4, real-time inference is performed
on the processing server—equipped with high-performance
GPUs—using a deep leaming-based object detection model to
identify human targets. Finally, Stage 5 delivers the detection
results to the responder to support decision-making and rescue
operations. The proposed pipeline automates the entire process

from image acquisition to result delivery, thereby minimizing
detection delays and enabling timely response in rescue
missions.
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Figure 2. Workflow of the proposed UAV—Cloud—Al
automated pipeline.

2.2 Drone-Based Thermal Image Acquisition

In this study, the DJI M30T drone, which supports real-time
data acquisition and integration with external systems, was
utilized for data collection. This drone employs DJI’s OcuSync
technology, enabling low-latency transmission of video and
control signals between the drone and the remote controller,
thereby allowing real-time video transfer. The collected data is
then integrated with an Object Storage Service (OSS) and
processed through a cloud pipeline based on the DJI Cloud API.
To enhance the accuracy of human target detection, the drone is
equipped with an IR sensor that effectively distinguishes the
thermal signatures of human subjects from the background,
enabling reliable operation in low-light or visually obstructed
environments such as nighttime or mountainous terrain.

The overall structure for collecting, transmitting, and processing
data in real time at the scene of an incident is as follows.
Thermal data acquired through the IR sensor is transmitted to
the remote controller via OcuSync wireless technology and then
processed in real time on a cloud server integrated with the DJI
Cloud API. This API supports various functions such as video
data transmission, real-time monitoring, and remote control. In
the actual system, it was further customized to establish a direct
connection between the remote controller and the cloud server.
In the implemented pipeline, the video data transmitted to the
controller is automatically stored on the server, after which real-
time inference is performed using a deep learning model. This
system is designed to store field-acquired data in near real time
and perform automated human detection based on the stored
data, thereby significantly improving response speed and
operational efficiency in rescue scenarios.

2.3 Cloud Upload and Format Conversion

Thermal images received from the drone are collected in real
time and initially stored in binary file format before being
converted to JPG fommat. This stage incorporates automatic
detection and conversion triggers, which are essential for
maintaining the system’s real-time performance and automation.
To efficiently manage data transmitted from the drone and
remote controller, the cloud server was built on a locally hosted
MinlO server. MinlO is a lightweight object storage system that
enables easy deployment of a private cloud environment and
supports flexible data handling in various experimental and
operational scenarios. Furthermore, its compatibility with
extemal processing systems and its integration with Watchdog-
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based event detection and real-time processing functions make
it well-suited for the proposed system.

In the actual operating environment, IR image data acquired by
the drone and remote controller are uploaded to the MinlO
server in near real time and stored in binary format. To
automate the process of detecting uploaded data, converting
binary files into JPG format, and transmitting them to the
processing server, an event-driven detection system based on
Watchdog was implemented. This system automatically handles
both data conversion and transmission, with a focus on
maximizing the efficiency of real-time data processing. Instead
of continuously monitoring all changes within the folder, the
detection mechanism is designed to respond only to specific
events, such as the creation of new folders, thereby reducing
system resource usage. As a result, once a binary file is detected
upon upload, it is immediately converted into JPG format and
passed to the next processing stage.

2.4 Image Transmission to Processing Server

The converted images are automatically transmitted to a
separate processing server through a dedicated transfer stage,
where inference is immediately performed using a deep leaming
model. This transmission process employs the Secure File
Transfer Protocol (SFTP), which provides high security through
encryption during file transfer and ensures stable performance
even under unstable network conditions.

In particular, implementation in Python is straightforward using
libraries such as paramiko, allowing flexible integration with
various Python-based environments and system configurations.
The entire system is developed in Python, ensuring broad
library compatibility and enabling the construction of an end-to-
end automated data processing pipeline—from data upload and
format conversion to real-time inference.

2.5 Real-Time Person Detection Using YOLOv12

This stage serves as the core computational component of the
automated pipeline, where deep leaming-based object detection
is performed using high-performance GPUs, taking JPG images
transmitted from the cloud server as input. It is a critical
element in implementing a real-time automated detection
system aimed at overcoming the subjectivity and omission
issues inherent in traditional search methods. In particular, the
cloud-based computational environment compensates for the
limited processing capabilities of UAV systems, enabling stable
operation of complex models and full automation of the pipeline,
thereby improving both the accuracy and speed of rescue
operations.

In the actual system, a real-time operation structure capable of
automatic inference was implemented within the data
processing server. It was designed to detect images as soon as
they are uploaded to the server and automatically perform
inference through an object detection model. Through the event
detection function linked to image upload, near-real-time
detection is possible for each individual image.

In this study, considering the trade-off between real-time
detection performance and accuracy, we adopted YOLOv 12, the
latest object detection model. The You Only Look Once
(YOLO) series is a convolutional neural network (CNN)-based
single-stage object detector designed to achieve a balance
between high inference speed and accuracy. Owing to its user-
friendly design and accessibility for non-experts in deep

learning, the YOLO series has been widely adopted across
various application domains. Among these, YOLOvI12
demonstrates excellent performance even with relatively small
training datasets and offers enhanced accuracy and processing
speed compared to previous versions in the series.

In the proposed detection stage, the model is configured to
automatically detect human objects immediately upon the
arrival of new data by linking the inference process to the image
upload event. This configuration is expected to effectively
fulfill the performance requirements of real-time automatic
detection.

3. Experiments and Results
3.1 Experimental Setup

To evaluate the detection performance and processing time of
the model, experiments were conducted at night (21:00 ~ 22:00)
in a small mountainous area near an urban region. The test site
featured low illumination and limited visibility, partially
simulating extemal conditions encountered in real-world search
scenarios. The total survey area was 20,967.8 m?, and the
Ground Sample Distance (GSD) was set to 3 cm.

A single flight from drone departure to retum was defined as a
sortie, and a total of five sorties were conducted using the IR
camera mounted on the DJI M30T drone. For each sortie, 45 to
48 thermal images were captured at approximately 5-second
intervals, resulting in a total of 231 IR images. The collected
images have a resolution of 1280x1024 pixels, with an average
file size of approximately 1.6 MB.

In this experiment, the processing time per image and the total
time required for each sort were analyzed together to evaluate
the time efficiency of the system. For the model used for
inference, a public thermal image dataset centered on human
objects captured using an IR sensor was used for learning (Speth
et al, 2022; Suo et al, 2023). The dataset consists of a total of
1,172 images, of which 1,040 were used for learning and 134
for verification. The entire image contains a total of 3,501
human instances.

In this study, object detection learning was performed based on
the YOLOvI2 model, and the following hyperparameters were
set for optimal leaming performance. The initial learning rate
was set to 0.01 to allow the model to converge effectively, and
the final leaming rate fraction was set to 0.01 so that the
learning rate gradually decreased as learning progressed.
AdamW was used as the optimization algorithm, weight decay
0.0005 was applied, and momentum was set to 0.937 to increase
learning stability. Learning was performed for a total of 100
epochs, and the batch size was set to 16 to consider the balance
between leaming speed and memory efficiency. Model leaming
and inference were performed on a processing server equipped
with NVIDIA RTX 3090 GPU, and the hardware environment
enabled efficient processing of deep learning models requiring
large-scale computation.

3.2 Time Points and Latency Structure

To evaluate the performance of the drone-based automatic
detection pipeline, Stage 1 through 4 of the previously defined
five-stage process were selected for analysis, and processing
times were measured based on the completion time of each
stage. Figure 3 illustrates the entire processing flow, from the
moment an incident occurs to the point at which the detection

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-2-W2-2025-95-2025 | © Author(s) 2025. CC BY 4.0 License. 97



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2/W2-2025
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10-12 September 2025, Espoo, Finland

result is generated. The completion times of each stage are
denoted as T1 through T4.

T1 corresponds to the time when the drone captures the video
on-site. T2 is the point at which the image is stored on the cloud
server and converted to JPG format. T3 marks the upload of the
converted image to the object detection model, and T4 indicates
the moment when inference is completed and the result is
produced by the model.

T4

\
(= N
I:’“""'“""" Cloud Upload and Image Transmission “"""f"" Eeres Result Delivery to
ermal Image e o o Detection Using e
Pt Format Conversion rocessing Server Yorons ield Operators

Figure 3. Overview of the end-to—end processing pipeline

segmented by key time points (T1-T4).

By measuring the time required for each section based on each
point in time, it is possible to identify bottlenecks within the
system and derive optimization directions for improving real-
time performance. In this analysis, the entire processing process
from image capture to object detection was targeted at stage 2 to
4, and the performance by section was analyzed as shown in
Table 1

Stage Calculation Description
Stage 2 T2-T1 Capture — Upload/Conversion
complete
Stage 3 T3-T2 Conversion complete —
Transmission complete
Stage 4 T4-T3 Transmission complete —
Inference complete

Table 1. Definitions of processing phases based on system time
intervals

Stage 2 is the section where the drone takes the video, and the
video is uploaded to the cloud storage and converted to JPG
format. This is mainly affected by the Internet upload speed and
conversion processing performance. Stage 3 is the section
where the converted image is transmitted to the data processing
server. This is mainly affected by the network transmission
speed between servers. Stage 4 is the section where deep
learning-based inference is performed on the image uploaded to
the object detection model and the result is output. The
processing time is determined by the model’s inference speed.

3.3 Latency Analysis by Processing Stage

In this study, a drone-based automatic detection pipeline was
constructed, and the performance of each processing section
was summarized in Table 2. The table records the timestamps of
each major processing step from the initial video capture T1 to
the output of object detection results T4 in hours, presenting the
sequential flow of data in chronological order. This allows for a
direct assessment of whether each stage in the system operates
in real time.

T1 T2 T3 T4
1 | 21:41:55.000 | 21:42:00.966 | 21:42:01.495 | 21:42:02.784
2 | 21:41:59.000 | 21:42:05.152 | 21:42:05.678 | 21:42:06.952
3 | 21:42:04.000 | 21:42:10417 | 21:42:10.952 | 21:42:12.228
4 | 21:42:09.000 | 21:42:17.590 | 21:42:18.158 | 21:42:19.414
5 | 21:42:13.000 | 21:42:18981 | 21:42:19.491 | 21:42:20.779

Table 2. Time log of sequential processing steps

Based on the time point of each video frame, the data is divided
into a sortie, which is a single flight unit, and the average
processing time for each sortie is presented in Table 3. The
analysis was performed by dividing the entire process from
video shooting to object detection into stages to identify the
processing time characteristics, bottlenecks, and improvement
directions for each section. In addition, Figure 4 visualizes the
time required for each processing stage across 46 frames within
one sortie, complementing the data summarized in the table.

Sortie | No.Frames | Stage | Stage | Stage | Stage
2(s) 3(s) 4(s) | 2~4(s)

Sortie 1 46 11.17 0.531 1.392 | 13.093
Sortie 2 48 10.67 0.543 1411 12.624
Sortie 3 45 10.47 0.532 1.364 | 12.366
Sortie 4 47 9.57 0.526 1.37 11.466
Sortie 5 45 10.49 0.529 1.471 12.490
Average - 10474 | 0.532 | 1.402 | 12408

Table 3. Stage-wise processing time for each sortie

Stage 1 (Upload+Convert)

Stage 2 (Transfer)
— stage 3 (Inference)

s

Processing Time(s)
s s

a 10 20 30 a0
Frame Index

Figure 4. Stage-wise time analysis of 46 frames from a single

UAV sortie.

The average processing time for Stage 2 was 10.474 seconds,
making it the bottleneck with the highest delay in the entire
pipeline. This stage was particularly sensitive to extemal
environmental factors such as network conditions, storage
delays, and file conversion performance. Therefore, Stage 2
requires the highest priority for optimization to enhance real-
time performance. Technical solutions such as improving
network speed, restructuring the cloud upload process,
lightening the conversion algorithm, and implementing parallel
processing are recommended. In contrast, the average
processing time for Stage 3 was 0.532 seconds, indicating stable
inter-server communication.

This section is considered to operate reliably without causing
bottlenecks within the real-time system. Stage 4 recorded an
average processing time of 1.402 seconds and demonstrated
consistent inference performance across all sorties. This result
confirms that the GPU-based computational environment and
the optimized structure of the YOLOvI2 model effectively
support real-time inference performance.

Based on the analysis of each processing stage, it can be
concluded that technical improvements in Stage 2 should be
prioritized to ensure the real-time performance of the overall
pipeline. The remaining stages are considered to have achieved
processing performance levels that can be stably integrated into
the current system architecture.
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These findings provide experimental evidence that the proposed
drone—cloud-Al-based detection system can achieve practical
detection performance and time efficiency, even under
nighttime or complex environmental conditions. Such results
may serve as a foundation for future optimization of the system
and its deployment in real-world scenarios.

3.4 Detection Accuracy Evaluation

When applied to thermal images captured at night using an IR
sensor, the YOLOv12 model reliably detected numerous human
subjects, even under challenging conditions such as complex
backgrounds and weak thermal signatures.

As shown in Figure 5, the inference results indicate that human
subjects were visually distinguishable in the IR images, with
successful detection achieved in most cases, except for a few
outliers. These findings confirm that the model maintains robust
detection performance in low-light environments.

images.

Model training was conducted using 134 out of a total of 1,174
images as validation data. As a result, the model achieved a
Precision of 0.896, a Recall of 0.847, and an AP50 of 0.915.
These results indicate that the IR-based object detection system
can perform effectively even in nighttime environments and
suggest that IR sensors can serve as a viable detection tool in
structural rescue scenarios where securing adequate lighting is
difficult.

However, detection accuracy may be affected by various
environmental factors, such as time-dependent ground
temperature variations and object shape distortion caused by
differences in camera angles between the drone and the training
dataset. Therefore, building a dataset specialized for IR
conditions and advancing detection models to be robust under
diverse imaging conditions are critical to improving overall
performance.

4. Conclusion and Future Work

To overcome the limitations of detection in mountainous terrain
and nighttime environments, this study designed a drone—
cloud—Al-based pipeline that automates the entire process from
image acquisition to transmission and inference. The proposed
system collects images using a DJI drone equipped with an IR
sensor, stores them in the cloud via the DJI Cloud API and
MinlO, and uses a Watchdog to detect the uploaded data,
convert it into JPG format, and transmit it to the processing
server via SFTP. Subsequently, another Watchdog instance on
the server detects the incoming files and performs real-time

object detection using a YOLOv12-based model. This pipeline
is designed as a real-time automatic detection system to enable
near-real-time response in rescue scenarios.

The average processing time for the entire pipeline was
measured at approximately 12.4 seconds per image, indicating
the potential for near-real-time response in actual rescue
scenarios. In particular, Stage 2 showed the highest latency,
with an average processing time of 10.474 seconds, making it
the primary bottleneck in the pipeline. This section was found to
be highly sensitive to extemal factors such as network
conditions, storage delays, and file conversion overhead. To
optimize this stage, improvements in network speed,
restructuring of the upload process, algorithm lightweighting,
and the introduction of parallel processing are required.

In contrast, Stage 3 and Stage 4 demonstrated relatively stable
processing times of 0.532 seconds and 1.402 seconds,
respectively. These results indicate that the cloud-based
computing environment and the optimized architecture of the
YOLOvVI12 model contribute to the consistency and reliability of
real-time detection. Moreover, in nighttime experiments using
IR sensors, human subjects were clearly identifiable even under
low illumination and complex background conditions, with
stable detection achieved in most images.

This experimentally validates the effectiveness of the IR-based
detection system for search-and-rescue operations conducted in
low-light and challenging environments.

The training data used in this study consisted of infrared images
collected under a single condition at a specific time point, which
has limitations in terms of generalization to various periods and
environmental settings. In particular, infrared-based detection is
very sensitive to extemal factors such as temporal temperature
changes, seasonal changes, and weather conditions, which can
affect detection performance. Therefore, future research should
focus on building an infrared-specific dataset that includes
various temporal and seasonal conditions and improve the
detection model to improve the robustess to environmental
changes.

In future research, we aim to enhance the performance of
detection models that are robust to external environmental
variations by constructing IR datasets that reflect temperature
conditions across different seasons and time periods.
Additionally, we plan to explore methods for optimizing the
data transmission structure and improving the efficiency of the
conversion process to address the bottleneck observed in Stage
2, which accounted for the greatest delay in the entire pipeline.
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