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Abstract 

 

To effectively respond to the growing number of search and rescue (SAR) incidents in mountainous areas, a real-time and automated 

detection system is essential. Traditional SAR operations still rely heavily on manual visual detection, which becomes signif icantly 

limited in low-light or night-time environments. The proposed system is an integrated UAV–Cloud–AI automated architecture 
designed to enable real-time detection even in low-visibility environments, with the goal of improving rescue efficiency. The entire 
pipeline-ranging from Uncrewed Aerial Vehicles (UAV) operation and IR data acquisition to MinIO-based storage, event-driven file 

conversion, SFTP-based transmission, and AI-based inference is fully automated without manual intervention. To evaluate system 
latency, the entire process was divided into four key stages image acquisition, cloud upload and conversion, server transmiss ion, and 
object detection. A total of 231 Infrared (IR) images were collected across five sorties, with an average processing time of 12.4 

seconds per image. The upload and conversion stage showed the longest delay at 10.474 seconds, while file transfer and model 

inference recorded stable performances of 0.532 seconds and 1.402 seconds, respectively. In addition, detection experiments u sing 
YOLOv12 demonstrated that the model consistently identified human targets in thermal imagery, even under complex backgrounds 
and low thermal contrast. This study experimentally validated the feasibility of a UAV-based SAR system capable of real-time 
detection and response. Its scalability and field applicability are expected to be further enhanced through the future integration of 
lightweight detection models and collaborative multi-drone architectures. 

 

 
1. Introduction 

According to the annual reports of the major European 

mountain rescue organizations, approximately 70,000 mountain 
rescue missions are carried out each year in Europe alone (Rega, 
2023; KFV, 2024; Montagna.tv, 2024; Snosm, 2024; Bergwacht 

Bayern, 2024). These operations occur repeatedly, both during 

the day and at night, and the increasing number of incidents 
continues to place a heavy burden on rescue personnel. 
Consequently, a systematic search framework is required to 
effectively respond to the recurring nature of mountain rescue 

demands. 
 

As mountain rescue requests increase, local Fire and Rescue 
Authorities are incorporating a variety of aerial assets into their 
search systems. Among these, manned aircraft are effective for 

surveying wide areas. However, they are limited by significant 
personnel and operational costs. As a more efficient alternative, 
drone-based search operations are being increasingly adopted 
(Ha et al., 2021; Cho et al., 2020). 

 
Drone-based search operations offer a key advantage in their 
ability to operate in areas that are difficult for humans to access 
or under poor lighting conditions. To enhance detection 

performance in such challenging environments, infrared (IR) 
sensors are increasingly employed. These sensors detect thermal 

signals based on the body heat of victims, making them 
effective even when RGB imagery alone is insufficient for 

identification. IR sensors maintain high recognition accuracy in 
situations where visual identification is limited such as in 
mountainous terrain, shaded areas, or when subjects wear 
clothing similar in color to the background. Moreover, they are 
robust to changes in weather and lighting conditions, making 

them a reliable sensing technology across diverse operational 
environments (Yeom, 2024). 

When imagery collected by drones is transmitted rapidly, 
rescuers can assess the victim's location and situation before 
arriving on-site, thereby improving the accuracy of equipment 
and personnel deployment. Such real-time information is not 

only valuable to field responders but also plays a critical role in 
decision-making at the command center. By enabling the 
assessment of a victim’s condition and surrounding 
environment without solely relying on verbal reports from field 

personnel, real-time situational sharing systems serve as a core 
technological foundation for collaborative decision-making in 
rescue operations. 

 
However, conventional drone usage still requires rescuers to 

manually inspect the imagery for victim detection, which 
prevents the full advantages of drone mobility and rapid 
deployment from being realized (Gotovac et al., 2020). To 
address these limitations and enhance the operational efficiency 

of drones, the adoption of automated detection technologies is 

essential (Abdelnabi and Rabadi, 2024; Kundid Vasić and Papić, 
2020). A prominent example is object detection using 
Convolutional Neural Networks (CNNs), which requires a fast 

and stable data transmission system for effective 
implementation (Tian et al., 2025). 
 

When image data is rapidly transmitted from drones to the 

cloud server, it becomes possible to automatically detect victims 
in real time. This reduces the reliance on subjective human 
judgment and enables rescue operations to be carried out based 
on consistent detection performance (Kundid Vasić and Papić, 

2020). Given the limited flight time of drones, the entire process 

from data collection and transmission to analysis and decision-
making must be completed within a single flight without delay. 
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In order to satisfy these operational constraints, the automated 
detection system should be closely integrated with the drone-

based processing pipeline and architected to function reliably 
under varying environmental conditions and time limitations. 
 

In search and rescue missions, the speed of data collection and 

transmission has a direct impact on survival rates, making 
automation and real-time processing in drone-based systems 
essential. A UAV–Cloud–AI-based object detection system 
minimizes the delays and human dependency inherent in 

traditional rescue approaches, enabling faster and more efficient 

responses. Such systems play an increasingly critical role under 
real-world operational constraints, particularly in low-visibility 
conditions such as nighttime, where the limitations of 
conventional methods become more pronounced and rapid 

decision-making is crucial for locating victims. 
 
To overcome these limitations, an automated detection system 

is required—one that transmits IR image data collected by 

drones to a cloud server and applies a deep learning-based 
object detection model, as illustrated in Figure 1. The system 
should automate the entire process—from data acquisition and 
storage to conversion, transmission, and inference—to 

minimize manual intervention and ensure consistent 
performance and real-time capability across various 

environments. Accordingly, this study proposes a drone-based 
near-real-time search platform to address these operational 

needs. 
 
 

 

Figure 1. Conceptual diagram of drone-based real-time rescue 

system. 

 

2. System Architecture and Methodology 

2.1 Overview of the Automated SAR Pipeline 

The UAV-based real-time automated detection pipeline 
proposed in this study consists of five stages, as illustrated in 
Figure 2. In Stage 1, thermal images are captured using an IR 
sensor mounted on the drone and transmitted to the remote 
controller. In Stage 2, the received images are uploaded to a 

cloud server, where they are converted to JPG format and 

processed for storage and preprocessing. Stage 3 involves 
transferring the converted images to a dedicated processing 
server for inference. In Stage 4, real-time inference is performed 

on the processing server—equipped with high-performance 

GPUs—using a deep learning-based object detection model to 
identify human targets. Finally, Stage 5 delivers the detection 
results to the responder to support decision-making and rescue 

operations. The proposed pipeline automates the entire process 

from image acquisition to result delivery, thereby minimizing 
detection delays and enabling timely response in rescue 

missions. 
 

 

Figure 2.  Workflow of the proposed UAV–Cloud–AI 

automated pipeline. 

 
2.2 Drone-Based Thermal Image Acquisition 

In this study, the DJI M30T drone, which supports real-time 
data acquisition and integration with external systems, was 
utilized for data collection. This drone employs DJI’s OcuSync 

technology, enabling low-latency transmission of video and 

control signals between the drone and the remote controller, 
thereby allowing real-time video transfer. The collected data is 
then integrated with an Object Storage Service (OSS) and 
processed through a cloud pipeline based on the DJI Cloud API. 
To enhance the accuracy of human target detection, the drone is 

equipped with an IR sensor that effectively distinguishes the 
thermal signatures of human subjects from the background, 
enabling reliable operation in low-light or visually obstructed 
environments such as nighttime or mountainous terrain. 

 
The overall structure for collecting, transmitting, and processing 
data in real time at the scene of an incident is as follows. 

Thermal data acquired through the IR sensor is transmitted to 

the remote controller via OcuSync wireless technology and then 
processed in real time on a cloud server integrated with the DJI 
Cloud API. This API supports various functions such as video 
data transmission, real-time monitoring, and remote control. In 

the actual system, it was further customized to establish a direct 
connection between the remote controller and the cloud server. 

In the implemented pipeline, the video data transmitted to the 
controller is automatically stored on the server, after which real-
time inference is performed using a deep learning model. This 

system is designed to store field-acquired data in near real time 
and perform automated human detection based on the stored 
data, thereby significantly improving response speed and 
operational efficiency in rescue scenarios. 

 
2.3 Cloud Upload and Format Conversion 

Thermal images received from the drone are collected in real 
time and initially stored in binary file format before being 

converted to JPG format. This stage incorporates automatic 
detection and conversion triggers, which are essential for 

maintaining the system’s real-time performance and automation. 
To efficiently manage data transmitted from the drone and 

remote controller, the cloud server was built on a locally hosted 
MinIO server. MinIO is a lightweight object storage system that 
enables easy deployment of a private cloud environment and 
supports flexible data handling in various experimental and 
operational scenarios. Furthermore, its compatibility with 

external processing systems and its integration with Watchdog-
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based event detection and real-time processing functions make 
it well-suited for the proposed system. 

 
In the actual operating environment, IR image data acquired by 
the drone and remote controller are uploaded to the MinIO 

server in near real time and stored in binary format. To 

automate the process of detecting uploaded data, converting 
binary files into JPG format, and transmitting them to the 
processing server, an event-driven detection system based on 
Watchdog was implemented. This system automatically handles 

both data conversion and transmission, with a focus on 

maximizing the efficiency of real-time data processing. Instead 
of continuously monitoring all changes within the folder, the 
detection mechanism is designed to respond only to specific 
events, such as the creation of new folders, thereby reducing 

system resource usage. As a result, once a binary file is detected 
upon upload, it is immediately converted into JPG format and 
passed to the next processing stage. 

 

2.4 Image Transmission to Processing Server 

The converted images are automatically transmitted to a 
separate processing server through a dedicated transfer stage, 
where inference is immediately performed using a deep learning 

model. This transmission process employs the Secure File 

Transfer Protocol (SFTP), which provides high security through 
encryption during file transfer and ensures stable performance 
even under unstable network conditions.  

 
In particular, implementation in Python is straightforward using 
libraries such as paramiko, allowing flexible integration with 
various Python-based environments and system configurations. 

The entire system is developed in Python, ensuring broad 

library compatibility and enabling the construction of an end-to-
end automated data processing pipeline—from data upload and 
format conversion to real-time inference. 
 

2.5 Real-Time Person Detection Using YOLOv12 

This stage serves as the core computational component of the 
automated pipeline, where deep learning-based object detection 
is performed using high-performance GPUs, taking JPG images 

transmitted from the cloud server as input. It is a critical 
element in implementing a real-time automated detection 
system aimed at overcoming the subjectivity and omission 
issues inherent in traditional search methods. In particular, the 

cloud-based computational environment compensates for the 
limited processing capabilities of UAV systems, enabling stable 
operation of complex models and full automation of the pipeline, 
thereby improving both the accuracy and speed of rescue 
operations. 

 

In the actual system, a real-time operation structure capable of 
automatic inference was implemented within the data 
processing server. It was designed to detect images as soon as 

they are uploaded to the server and automatically perform 
inference through an object detection model. Through the event 
detection function linked to image upload, near-real-time 
detection is possible for each individual image. 

 
In this study, considering the trade-off between real-time 
detection performance and accuracy, we adopted YOLOv12, the 
latest object detection model. The You Only Look Once 

(YOLO) series is a convolutional neural network (CNN)-based 
single-stage object detector designed to achieve a balance 
between high inference speed and accuracy. Owing to its user-
friendly design and accessibility for non-experts in deep 

learning, the YOLO series has been widely adopted across 
various application domains. Among these, YOLOv12 

demonstrates excellent performance even with relatively small 
training datasets and offers enhanced accuracy and processing 
speed compared to previous versions in the series. 

 

In the proposed detection stage, the model is configured to 
automatically detect human objects immediately upon the 
arrival of new data by linking the inference process to the image 
upload event. This configuration is expected to effectively 

fulfill the performance requirements of real-time automatic 

detection. 
 

3. Experiments and Results 

3.1 Experimental Setup 

To evaluate the detection performance and processing time of 

the model, experiments were conducted at night (21:00 ~ 22:00) 
in a small mountainous area near an urban region. The test site 
featured low illumination and limited visibility, partially 

simulating external conditions encountered in real-world search 

scenarios. The total survey area was 20,967.8 m², and the 
Ground Sample Distance (GSD) was set to 3 cm. 
 

A single flight from drone departure to return was defined as a 
sortie, and a total of five sorties were conducted using the IR 
camera mounted on the DJI M30T drone. For each sortie, 45 to 
48 thermal images were captured at approximately 5-second 

intervals, resulting in a total of 231 IR images. The collected 
images have a resolution of 1280×1024 pixels, with an average 
file size of approximately 1.6 MB. 

 
In this experiment, the processing time per image and the total 

time required for each sort were analyzed together to evaluate 
the time efficiency of the system. For the model used for 
inference, a public thermal image dataset centered on human 
objects captured using an IR sensor was used for learning  (Speth 

et al., 2022; Suo et al., 2023). The dataset consists of a total of 

1,172 images, of which 1,040 were used for learning and 134 
for verification. The entire image contains a total of 3,501 
human instances. 

 
In this study, object detection learning was performed based on 
the YOLOv12 model, and the following hyperparameters were 
set for optimal learning performance. The initial learning rate 

was set to 0.01 to allow the model to converge effectively, and 
the final learning rate fraction was set to 0.01 so that the 
learning rate gradually decreased as learning progressed. 
AdamW was used as the optimization algorithm, weight decay 
0.0005 was applied, and momentum was set to 0.937 to increase 

learning stability. Learning was performed for a total of 100 

epochs, and the batch size was set to 16 to consider the balance 
between learning speed and memory efficiency. Model learning 
and inference were performed on a processing server equipped 

with NVIDIA RTX 3090 GPU, and the hardware environment 
enabled efficient processing of deep learning models requiring 
large-scale computation. 
 

3.2 Time Points and Latency Structure 

To evaluate the performance of the drone-based automatic 
detection pipeline, Stage 1 through 4 of the previously defined 
five-stage process were selected for analysis, and processing 

times were measured based on the completion time of each 
stage. Figure 3 illustrates the entire processing flow, from the 
moment an incident occurs to the point at which the detection 
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result is generated. The completion times of each stage are 
denoted as T1 through T4. 

 
T1 corresponds to the time when the drone captures the video 
on-site. T2 is the point at which the image is stored on the cloud 

server and converted to JPG format. T3 marks the upload of the 

converted image to the object detection model, and T4 indicates 
the moment when inference is completed and the result is 
produced by the model. 
 

 

Figure 3. Overview of the end-to-end processing pipeline 

segmented by key time points (T1–T4). 

 

By measuring the time required for each section based on each 

point in time, it is possible to identify bottlenecks within the 
system and derive optimization directions for improving real-
time performance. In this analysis, the entire processing process 

from image capture to object detection was targeted at stage 2 to 
4, and the performance by section was analyzed as shown in 
Table 1 
 

Stage Calculation Description 

Stage 2 T2-T1 
Capture → Upload/Conversion 

complete 

Stage 3 T3-T2 
Conversion complete → 
Transmission complete 

Stage 4 T4-T3 
Transmission complete → 

Inference complete 

Table 1. Definitions of processing phases based on system time 
intervals 

 
Stage 2 is the section where the drone takes the video, and the 

video is uploaded to the cloud storage and converted to JPG 
format. This is mainly affected by the Internet upload speed and 

conversion processing performance. Stage 3 is the section 
where the converted image is transmitted to the data processing 
server. This is mainly affected by the network transmission 

speed between servers. Stage 4 is the section where deep 
learning-based inference is performed on the image uploaded to 
the object detection model and the result is output. The 
processing time is determined by the model’s inference speed. 

 
3.3 Latency Analysis by Processing Stage 

In this study, a drone-based automatic detection pipeline was 
constructed, and the performance of each processing section 

was summarized in Table 2. The table records the timestamps of 
each major processing step from the initial video capture T1 to 
the output of object detection results T4 in hours, presenting the 
sequential flow of data in chronological order. This allows for a 

direct assessment of whether each stage in the system operates 
in real time. 

 

  T1 T2 T3 T4 

1 21:41:55.000 21:42:00.966 21:42:01.495 21:42:02.784 

2 21:41:59.000 21:42:05.152 21:42:05.678 21:42:06.952 

3 21:42:04.000 21:42:10.417 21:42:10.952 21:42:12.228 

4 21:42:09.000 21:42:17.590 21:42:18.158 21:42:19.414 

5 21:42:13.000 21:42:18.981 21:42:19.491 21:42:20.779 

Table 2. Time log of sequential processing steps 

 
Based on the time point of each video frame, the data is divided 

into a sortie, which is a single flight unit, and the average 
processing time for each sortie is presented in Table 3. The 
analysis was performed by dividing the entire process from 

video shooting to object detection into stages to identify the 

processing time characteristics, bottlenecks, and improvement 
directions for each section. In addition, Figure 4 visualizes the 
time required for each processing stage across 46 frames within 
one sortie, complementing the data summarized in the table. 

 

Sortie No.Frames Stage 

2(s) 

Stage 

3(s) 

Stage 

4(s) 

Stage 

2~4(s) 

Sortie 1 46 11.17 0.531 1.392 13.093 

Sortie 2 48 10.67 0.543 1.411 12.624 

Sortie 3 45 10.47 0.532 1.364 12.366 

Sortie 4 47 9.57 0.526 1.37 11.466 

Sortie 5 45 10.49 0.529 1.471 12.490 

Average - 10.474 0.532 1.402 12.408 

Table 3. Stage-wise processing time for each sortie 
 

 

Figure 4.  Stage-wise time analysis of 46 frames from a single 

UAV sortie. 

 

The average processing time for Stage 2 was 10.474 seconds, 
making it the bottleneck with the highest delay in the entire 
pipeline.  This stage was particularly sensitive to external 
environmental factors such as network conditions, storage 

delays, and file conversion performance.  Therefore, Stage 2 
requires the highest priority for optimization to enhance real-

time performance. Technical solutions such as improving 
network speed, restructuring the cloud upload process, 
lightening the conversion algorithm, and implementing parallel 

processing are recommended. In contrast, the average 
processing time for Stage 3 was 0.532 seconds, indicating stable 
inter-server communication.  
 

This section is considered to operate reliably without causing 
bottlenecks within the real-time system. Stage 4 recorded an 
average processing time of 1.402 seconds and demonstrated 
consistent inference performance across all sorties. This result 

confirms that the GPU-based computational environment and 
the optimized structure of the YOLOv12 model effectively 
support real-time inference performance. 

 

Based on the analysis of each processing stage, it can be 
concluded that technical improvements in Stage 2 should be 

prioritized to ensure the real-time performance of the overall 
pipeline. The remaining stages are considered to have achieved 
processing performance levels that can be stably integrated into 

the current system architecture. 
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These findings provide experimental evidence that the proposed 
drone–cloud–AI-based detection system can achieve practical 

detection performance and time efficiency, even under 
nighttime or complex environmental conditions. Such results 
may serve as a foundation for future optimization of the system 

and its deployment in real-world scenarios. 

 
3.4 Detection Accuracy Evaluation 

When applied to thermal images captured at night using an IR 
sensor, the YOLOv12 model reliably detected numerous human 

subjects, even under challenging conditions such as complex 

backgrounds and weak thermal signatures.  
 
As shown in Figure 5, the inference results indicate that human 
subjects were visually distinguishable in the IR images, with 

successful detection achieved in most cases, except for a few 
outliers. These findings confirm that the model maintains robust 

detection performance in low-light environments. 
 

 

Figure 5.  Visualization of YOLOv12 detection results on IR 

images. 

 

Model training was conducted using 134 out of a total of 1,174 
images as validation data. As a result, the model achieved a 

Precision of 0.896, a Recall of 0.847, and an AP50 of 0.915. 
These results indicate that the IR-based object detection system 
can perform effectively even in nighttime environments and 
suggest that IR sensors can serve as a viable detection tool in 
structural rescue scenarios where securing adequate lighting is 

difficult.  
 

However, detection accuracy may be affected by various 
environmental factors, such as time-dependent ground 

temperature variations and object shape distortion caused by 
differences in camera angles between the drone and the training 
dataset. Therefore, building a dataset specialized for IR 
conditions and advancing detection models to be robust under 

diverse imaging conditions are critical to improving overall 
performance. 
 

4. Conclusion and Future Work  

To overcome the limitations of detection in mountainous terrain 
and nighttime environments, this study designed a drone–

cloud–AI-based pipeline that automates the entire process from 
image acquisition to transmission and inference. The proposed 
system collects images using a DJI drone equipped with an IR 

sensor, stores them in the cloud via the DJI Cloud API and 
MinIO, and uses a Watchdog to detect the uploaded data, 
convert it into JPG format, and transmit it to the processing 
server via SFTP. Subsequently, another Watchdog instance on 

the server detects the incoming files and performs real-time 

object detection using a YOLOv12-based model. This pipeline 
is designed as a real-time automatic detection system to enable 

near-real-time response in rescue scenarios. 
 
The average processing time for the entire pipeline was 

measured at approximately 12.4 seconds per image, indicating 

the potential for near-real-time response in actual rescue 
scenarios. In particular, Stage 2 showed the highest latency, 
with an average processing time of 10.474 seconds, making it 
the primary bottleneck in the pipeline. This section was found to 

be highly sensitive to external factors such as network 

conditions, storage delays, and file conversion overhead. To 
optimize this stage, improvements in network speed, 
restructuring of the upload process, algorithm lightweighting, 
and the introduction of parallel processing are required. 

 
In contrast, Stage 3 and Stage 4 demonstrated relatively stable 
processing times of 0.532 seconds and 1.402 seconds, 

respectively. These results indicate that the cloud-based 

computing environment and the optimized architecture of the 
YOLOv12 model contribute to the consistency and reliability of 
real-time detection. Moreover, in nighttime experiments using 
IR sensors, human subjects were clearly identifiable even under 

low illumination and complex background conditions, with 
stable detection achieved in most images.  

 
This experimentally validates the effectiveness of the IR-based 

detection system for search-and-rescue operations conducted in 
low-light and challenging environments. 
 
The training data used in this study consisted of infrared images 
collected under a single condition at a specific time point, which 

has limitations in terms of generalization to various periods and 
environmental settings. In particular, infrared-based detection is 
very sensitive to external factors such as temporal temperature 
changes, seasonal changes, and weather conditions, which can 

affect detection performance. Therefore, future research should 
focus on building an infrared-specific dataset that includes 
various temporal and seasonal conditions and improve the 

detection model to improve the robustness to environmental 

changes. 
 
In future research, we aim to enhance the performance of 
detection models that are robust to external environmental 

variations by constructing IR datasets that reflect temperature 

conditions across different seasons and time periods. 
Additionally, we plan to explore methods for optimizing the 
data transmission structure and improving the efficiency of the 
conversion process to address the bottleneck observed in Stage 

2, which accounted for the greatest delay in the entire pipeline. 
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