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Abstract 

The era of Artificial Intelligence ‘AI’ with all the benefits brought along, has raised new and additional challenges to the ongoing 

efforts of assessing, defining, formulating, and implementing the quality aspects of geospatial remote sensing data. Developed practices 

using artificial intelligence leveraged techniques such as image interpretation, classification, thematic mapping, and even image quality 

enhancement, necessitating by that the reassessment and redevelopment of some of the related emerging quality aspects. Moreover, 

technology also made the generation of false images and false data possible, this matter constrained and increased precaution and 

doubtfulness, altogether making some practices based on that data almost halt to further notice.  

This paper presents the collaborative research work to assess and clarify the quality aspects that arose with the advent and 

implementation of AI and associated technologies; the concerns and issues that can accompany the generation of false satellite and 

aerial images including the generated geospatial data out of which,  how the new emerged quality aspects fit into the currently existing 

methods through the lifecycle of remote sensing data production and usage, and consequently how the quality dimensions are affected 

and should be further developed and improved to tackle the changes and innovations. Also, lame a bit on investigating how to 

accommodate the new challenges in standards, and practical procedures and raise the awareness to users, the level of dependency on 

improved and enhanced satellite images when it comes to data collection interpretation and classification, and finally define the 

research gaps, future expected challenges and thus enclose suggestions and recommendations in that respect. 

1. Introduction

It’s evidently approved through current practices that the era of 

Artificial intelligence has brought many positive advantages and 

profited the world in many aspects like advancing technologies, 

automating processes, and generating new data and information 

that couldn’t have been possible otherwise. However, it also 

started to appear that favourableness in this theme is not always 

the case, as some AI's undesirable effects began creepily 

sweeping and climbing many technology disciplines, procedures, 

analysis, and data productions including those related to 

geospatial science and technology. Thus, unless proper measures 

are taken and quality inovated standards and procedures are 

upgraded to cope with issues, unpleasant consequences can 

occur.  

Actually, the remotely sensed products are not exempted either, 

as the new technology benefited many operations including 

image interpretation and classification also image quality 

enhancement, but again simultaneously became susceptible to 

being victimized too. The necessary need for revised quality 

regulations and practices strongly imposes itself, especially with 

the existence of AI generativity which indisputably can lead to 

improper decision-making, which then tends to cause risk 

probability for natural and artificial calamities and destruction 

scenarios, unless proper actions are taken against which 

[Aleissaee et al., 2023; Janga et al., 2023].  

The conventional quality aspects of data produced via the 

technology of remote sensing are looked into for addressing the 

new challenges that evolved with the advent of the integration 

and implementation of AI machine learning, deep learning 

algorithms, and generative AI.  This sistering and merging of 

technologies had escalated the challenges of assuring the 

reliability of the remote sensing data and the geospatial data in 

general, and thus the information and knowledge produced out of 

that.  

The flow representing this work shall start by addressing the era 

of AI and how it affects remote sensing in general and discuss 

some possible future aspects of this not-totally new but rapidly 

emerging relationship. This will take you on a trip through 

artificial intelligence, types and usage, discussions, and future 

trends. 

 This is followed by a chapter dedicated to AI interactions with 

the lifecycle of the remote sensing process and how that affects 

individual data dimensions. 

 Further, a chapter is dedicated to a bit deeply indulging into how 

generative AI could be harmful unless carefully handled with 

knowledgeable notions and precaution.  

The final chapter before the conclusion and closer will then 

discuss the data quality aspects of the practical implementation 

of AI and deep learning in data interpretation and classification, 

which particularly discusses certain aspects related to the 

workflow of implementing remote sensing for detecting urban 

changes and mapping thematic land use \ Land cover maps in a 
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topographic scale if scale makes sense in the era of AI 

applications as many users consider that as history. 

This will open the stage for practically analyzing how the 

implementation of AI technology in image interpretation and 

classification affects the reliability and quality aspects of the 

resulting data, and what types of metrics portray the quality. 

 

2. The application of Artificial Intelligence in Remote 

Sensing and the effect on data quality and the use of deep 

learning 

Artificial Intelligence (AI), particularly deep learning, has 

significantly impacted remote sensing across various aspects, 

including data acquisition, processing, analysis, and 

interpretation. The integration of AI, particularly deep learning, 

in remote sensing enhances data quality by automating data 

processing, improving feature extraction and classification, 

facilitating change detection, enabling data fusion, and 

automating quality control processes. These advancements 

contribute to more accurate, comprehensive, and timely analysis 

and interpretation of remote sensing data for various applications. 

By leveraging AI techniques such as deep learning, remote 

sensing practitioners can improve data quality, extract valuable 

insights, and automate various aspects of data analysis and 

interpretation, thereby advancing the capabilities of remote 

sensing technology for diverse applications. 

 

2.1 Applied AI Techniques in Remote Sensing 

 The effects on data quality and its application, starting from data 

acquisition and pre-processing where Automated Correction 

using AI algorithms can automatically correct various distortions 

in remote sensing data, such as atmospheric interference, sensor 

noise, and geometric inaccuracies. For instance, techniques like 

neural networks can learn to model and correct atmospheric 

effects in satellite imagery, improving data quality. Also, 

Resolution Enhancement where Deep learning-based super-

resolution techniques enhance the spatial resolution of remotely 

sensed imagery, allowing for the generation of higher-quality 

images from lower-resolution inputs. Generative adversarial 

networks (GANs) and convolutional neural networks (CNNs) are 

commonly used for this purpose. AI algorithms help improve 

data quality by automating the process of image correction, such 

as atmospheric correction, radiometric calibration, and geometric 

correction. 

 

 Deep learning models can enhance image resolution through 

techniques like super-resolution, enhancing the quality of 

remotely sensed data. In feature extraction and classification, 

Semantic Representation using Deep learning models, especially 

CNNs, are adept at learning hierarchical representations of 

features in remote sensing data. By processing raw imagery 

through multiple layers, CNNs can extract intricate spatial and 

spectral features, enabling more accurate classification of land 

cover types, terrain features, and objects of interest. Transfer 

learning techniques leverage pre-trained deep learning models on 

large datasets to adapt them to remote sensing tasks with limited 

labeled data. This approach is particularly useful in scenarios 

where acquiring labeled training data is expensive or time-

consuming.  

 

Deep learning techniques like Convolutional Neural Networks 

(CNNs) excel in extracting features from remote sensing 

imagery, enabling more accurate classification of land cover 

types, infrastructure, and other features.AI algorithms facilitate 

automated object detection and recognition in imagery, 

contributing to improved data analysis and decision-making. AI 

algorithms aid in change detection by comparing images from 

different periods and identifying areas of change or land cover 

transformation. Deep learning models can detect subtle changes 

in large-scale landscapes, improving the monitoring of 

environmental changes, urbanization, and natural disasters. 

Temporal Analysis is the application of  Deep learning models to 

analyze temporal sequences of satellite imagery to detect changes 

over time. Recurrent neural networks (RNNs) and Long Short-

Term Memory (LSTM) networks are commonly used for time-

series analysis of remote sensing data, enabling the identification 

of land cover changes, deforestation, urban expansion, and other 

dynamic phenomena. Unsupervised learning algorithms, such as 

autoencoders and clustering techniques, are employed for change 

detection without requiring labeled training data. These methods 

identify significant deviations between image patches or feature 

distributions in different periods, indicating areas of change (L. 

Zhang & L Zhang, 2022). 

 

AI techniques facilitate data fusion through the integration of 

data from various sources, including optical, radar, and LiDAR 

imagery, to create comprehensive and accurate datasets. Deep 

learning-based fusion methods enhance the synergistic utilization 

of different data modalities, leading to improved understanding 

and analysis of remote sensing data. Multi-Modal Fusion. Fusion 

methods based on deep learning, such as multi-sensor fusion 

networks, integrate diverse data modalities for applications like 

land cover mapping, disaster monitoring, and urban planning. 

Attention Mechanisms: Attention mechanisms in deep learning 

architectures allow models to selectively focus on relevant 

information from different data sources during fusion, enhancing 

the accuracy and robustness of fused datasets (Adel Mellit & 

Soteris Kalogirou, 2021). 

 

Deep learning models, particularly semantic segmentation 

networks like U-Net and object detection frameworks like YOLO 

(You Only Look Once), segment remote sensing imagery into 

pixel-wise categories, enabling detailed land cover mapping and 

feature extraction to enable precise delineation of objects and 

regions of interest in remote sensing imagery. These models 

leverage fully convolutional architectures and spatial-contextual 

information to produce high-resolution segmentation masks and 

contribute to improved data interpretation, land cover mapping, 

and infrastructure monitoring. Object Detection: Object detection 

frameworks like YOLO (You Only Look Once) and Faster R-

CNN (Region-based Convolutional Neural Network) enable the 

detection and localization of objects within remote sensing 

imagery, such as buildings, roads, vehicles, and natural features. 

These models employ region proposal methods and bounding 

box regression to identify objects of interest with high accuracy 

and efficiency (Adel Mellit & Soteris Kalogirou, 2021). 

Techniques such as gradient-based attribution methods and 

saliency maps highlight important pixels or regions in imagery, 

aiding in the interpretation of classification results and decision-

making.  

 

Finally, AI-based quality control methods help identify and 

correct errors in remote sensing data, ensuring data accuracy and 

reliability. Deep learning models can detect anomalies, such as 

sensor malfunctions, data artifacts, and unexpected 

environmental changes, and inconsistencies in imagery, 

enhancing data quality assurance processes. These techniques 

leverage unsupervised learning and anomaly-scoring 

mechanisms to flag data instances requiring further investigation 

or correction. AI algorithms aid in error correction and artifact 

removal in remote sensing imagery through techniques like 

inpainting, where missing or corrupted regions are filled in based 

on surrounding context learned by deep neural networks. This 
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process helps enhance the visual quality and integrity of remote-

sensing datasets. (Y. Xu et al., 2023). 

 

2.2 Future Aspects 

Looking ahead, the application of Artificial Intelligence (AI) in 

remote sensing is poised for significant advancements, 

accompanied by both opportunities and challenges. Addressing 

these challenges will require interdisciplinary collaboration 

among researchers, practitioners, policymakers, and stakeholders 

to develop robust, transparent, and ethically sound approaches to 

the application of AI in remote sensing. By overcoming these 

challenges, AI has the potential to revolutionize remote sensing, 

enabling more accurate, timely, and actionable insights into our 

changing planet's dynamics and supporting sustainable 

environmental management and decision-making. Future 

applications will increasingly leverage the integration of multi-

modal remote sensing data, including optical, radar, LiDAR, and 

hyperspectral imagery. 

 

 AI techniques will play a crucial role in fusing and analyzing 

diverse data modalities to extract comprehensive and accurate 

information about the Earth's surface and atmosphere. Enhanced 

Spatial and Temporal Resolution through Deep learning 

algorithms will continue to improve the spatial and temporal 

resolution of remote sensing data, enabling finer-grained analysis 

and monitoring of dynamic environmental processes, urban 

development, and natural disasters. Real-time monitoring and 

Response using AI-driven remote sensing systems will facilitate 

real-time monitoring and rapid response to environmental 

changes, such as deforestation, wildfires, floods, and pollution. 

Autonomous drones equipped with AI-powered sensors will 

enable agile and adaptive environmental monitoring and disaster 

management. Also, the Semantic Understanding and contextual 

reasoning of AI models will exhibit improved reasoning 

capabilities, enabling a more nuanced interpretation of remote 

sensing data. These models will understand complex spatial 

relationships, temporal dynamics, and environmental contexts, 

leading to more accurate and insightful analysis (Adel Mellit & 

Soteris Kalogirou, 2021). 

 

Interpretability methods will enable users to understand how AI 

models arrive at their predictions and decisions, fostering 

confidence in AI-driven analyses. Automated Data Quality 

Assurance driven by AI techniques will become increasingly 

sophisticated, automating the detection and correction of errors, 

artifacts, and anomalies in remote sensing data. Future efforts 

will focus on addressing data bias and improving the 

generalization capabilities of AI models in remote sensing. 

Techniques such as domain adaptation, transfer learning, and 

synthetic data generation will help mitigate biases and enhance 

the robustness of AI-driven analyses across diverse geographic 

regions and environmental conditions. Finally, as AI becomes 

more pervasive in remote sensing applications, there will be a 

growing need to address ethical and societal implications, 

including privacy concerns, data ownership, and equitable access 

to technology and information. Responsible AI frameworks and 

governance mechanisms will be essential to ensure the ethical 

and equitable deployment of AI in remote sensing (Jose Garcia-

del-Real & Manuel Alcaráz, 2024). 

 

2.3 Further Reliability & Quality Challenges: 

Despite advances in automated data processing, ensuring the 

quality and consistency of remote sensing data remains a 

challenge. Labeling large-scale datasets for training AI models 

can be labor-intensive and costly, especially for specialized tasks 

and rare phenomena. The black-box nature of some AI models 

poses challenges for interpretability and trustworthiness, 

particularly in critical applications such as environmental 

monitoring and disaster response. Balancing model complexity 

with interpretability will be crucial for fostering trust in AI-

driven analyses. The increasing volume of remote sensing data 

raises concerns about data privacy and security, especially when 

sensitive or personal information is inadvertently captured. 

Developing robust data anonymization and encryption 

techniques will be essential to protect privacy while maximizing 

the utility of remote sensing data. 

 

 AI algorithms trained on biased or unrepresentative datasets can 

perpetuate and exacerbate existing biases in remote sensing 

analyses. Addressing algorithmic bias and ensuring fairness and 

equity in AI-driven decision-making will require careful 

attention to data collection, model training, and validation 

processes. Deploying AI models for large-scale remote sensing 

applications poses challenges in terms of scalability and resource 

constraints, particularly in resource-limited environments or 

developing regions. Optimizing AI algorithms for efficiency and 

scalability will be essential to enable widespread adoption and 

deployment. Regulatory frameworks and ethical guidelines for 

AI in remote sensing are still evolving, leading to uncertainties 

and ambiguities in terms of legal and ethical responsibilities. 

Clarifying regulatory requirements and ethical norms 

surrounding AI-driven remote sensing will be essential to ensure 

responsible and accountable use of technology. 

 

 

3. Effects of AI technology on RS data quality dimensions 

and data life cycle 

A general approach to clustered data and information quality 

dimensions has been developed by Batini and Scannapieco 

(Batini and Scannapieco, 2016). It has been adapted to remote 

sensing data by [Barsi et al., 2019]; in their paper, the authors 

gave detailed definitions for each component of the individual 

data dimension clusters and presented the related dimension 

metrics for it. In this context, the remote sensing data life cycle 

phases were also defined. Based on the previous findings the 

current paper reviews the effect of AI on those mentioned 

measures. 

 

3.1 Data quality dimensions 

The Resolution cluster (spatial, radiometric, spectral, temporal 

resolutions, and point density) is an important quality measure of 

the data acquisition process, even though it accompanies the 

entire life cycle. Currently, AI is having a major impact on the 

spatial resolution of imageries in addition to the point density 

dimensionality of 3D point clouds (e.g. from different laser 

scanning technologies). As processing tools were developed to 

target superresolution at these characteristics and strive to 

improve them [Li et al., 2019; Li et al., 2022; Romero et al., 2019; 

You et al., 2023; Zhang et al., 2022]. 

 

Accuracy cluster dimensions such as geometric, spatial, 

radiometric, spectral, temporal precisions, spatial, radiometric, 

and temporal accuracies are similarly related to the acquisition 

and, therefore the effect is again less significant. On the other 

hand, the remaining two dimensions specifically – classification 

and semantic accuracy – are of extreme importance when it 

comes to their relation to AI and associated effects, and that’s 

because they are derived using Remote Sensing data processing 

and are crucial in expressing the quality of the output. It is 

common knowledge that the AI tools used for thematic mapping 
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of remotely sensed images became widely applied, which 

enhanced quality characteristics compared to traditional 

processing methods. Relevant papers on this topic are 

[Anilkumar et al., 2021; Chen et al., 2021; Jiang et al., 2023; Sen 

and Keles, 2020; Song et al., 2019; Thapa et al., 2023]. 

In the case of the Completeness dimension cluster (data, spatial, 

stereo, temporal completeness), thematic completeness can be 

impacted, since it is the only dimension that is interpreted in the 

processing chain; others are characterizing data acquisition. 

The Redundancy cluster (spatial and temporal redundancy) 

provides information on the nature of the processing 

preconditions; in this topic, AI can be studied more in terms of 

how its specific features (especially the accuracy dimension) 

relate to these dimensions. 

 

The Readability cluster with spatial readability and radiometric 

readability expresses how objects can be identified/separated in 

a spatial and radiometric context for data interpretation. 

Unfortunately, in the majority of cases AI for remote sensing 

image analysis delivers quality measures solely in the form of 

confusion matrices (see the Accuracy cluster) and some 

additional measures derived from them. Thus no further 

dedicated readability measures are computed. Other approaches, 

like object detection, provide basic statistics about certain object 

types occurring in the images. 

The Accessibility cluster (temporal and data accessibility) only 

qualifies access to remotely sensed data as sources not relevant 

to this study. 

 

The Consistency dimension cluster includes the geometric, 

thematic, topological, and temporal dimensions. By its nature, 

this cluster strongly characterizes the quality of image 

interpretation/understanding. In remote sensing, spatial 

consistency encapsulates geometric, thematic, and topologic 

consistencies within the cluster. This measure assesses the 

quality of image interpretation, specifically the comprehensive 

recognition and evaluation of distinct objects or classes. 

Thematic consistency pertains to the integrity of recognition, 

reflecting the uniformity with which thematic classes are 

identified across the area of interest. Topologic consistency 

measures the connectivity and validity of object topology. In the 

context of urban mapping, particularly with respect to built-up 

environments, the inclusion of house parcels is characterized by 

the consistency dimension. As it follows from the above, the 

various AI-based image analysis techniques, especially object 

recognition solutions, can of course be considered by these 

dimensional elements. 

 

3.2 Data life cycle 

As discussed by the authors in the [Barsi et al., 2019], there are 

four major data life cycle phases in remote sensing. Having 

reviewed these, we now can describe the role and impact of AI 

on the phases. 

In the Data acquisition phase, data source selection, data 

reading/data capture and sensor calibration are included as part 

of the life cycle. The first two specifically discuss the acquisition 

of data. Since the primary purpose of remote sensing is to collect 

data about the real world, artificial intelligence does not play a 

role here. AI-generated fake space images may appear among the 

available data, which will be discussed later. 

Traditional sensor calibration typically relies on hand-crafted 

features and complicated mathematical models. Learning-based 

methods provide a fully automatic camera calibration solution 

without manual intervention or calibration targets, which sets 

them apart from traditional methods. An excellent review paper 

is provided by [Liao et al., 2023] on the general objective of 

camera calibration which can also be easily adapted to remote 

sensing devices. 

 

The Data storage phase includes data format management, data 

compression, data replication, and data distribution. AI-based 

image compression methods such as the transformer neural 

network solutions are efficient technologies for managing large 

image collections. The technology offers several pre-trained deep 

neural network models with various compression efficiency and 

stored image quality. Learning-based image compression can be 

characterized as utilizing advanced, adaptive algorithms that 

significantly enhance the efficiency and quality of compression 

compared to traditional techniques. These advanced methods 

dynamically optimize compression in real-time, resulting in 

higher-quality images at lower data sizes [Balle et al., 2018; 

Bégaint et al., 2020; Cheng et al., 2020; Horváth and Barsi, 2022; 

Toderici et al., 2016]. 

The most common and most diverse data life cycle group is the 

Data preprocessing, processing, and analysis phase. This 

includes the following groups of procedures: 

 

• restructuring  

• data selection  

• sampling, resampling  

• filtering  

• feature extraction  

• segmentation  

• clustering  

• classification  

• sensor/data fusion  

• optimisation  

• abstraction. 

 

As this group is widely applied and diverse, we will focus on 

brevity for reasons of brevity. For the discussion of sampling and 

resampling operations, we emphasize procedures specifically 

aimed at increasing resolution (upsampling, superresolution) as 

already described in the dimensions section. 

 

An extremely interesting issue is the feature extraction processes. 

The most common approach in processing remotely sensed 

images is to extract thematic information in the form of maps, 

possibly recognizing certain types of objects. However, 

traditional methods cannot directly deliver a solution and a 

feature extraction step is needed beforehand. However, recent 

ML-based algorithms, in particular, convolutional neural 

network (CNN) and deep learning-based deep neural network 

(DNN) tools, combine the traditional classification with a feature 

extraction step; feature vectors that are computed and extracted 

separately are not included in the method, they are only used in 

its intermediate memory usage without external storage. 

 

Segmentation plays a critical role in interpreting and managing 

vast amounts of data captured by satellite or aerial sensors. AI-

based segmentation in remote sensing data processing uses 

machine learning and deep learning techniques to automate and 

improve the segmentation process. These AI methods learn from 

large datasets to identify patterns and features that may be 

difficult to detect using manual methods or traditional automated 

techniques. The best-known and rapidly spreading methodology 

is semantic segmentation. Semantic segmentation is called 

"semantic" because it involves understanding and labeling each 

pixel of an image with meaningful class-specific information, 

such as distinguishing roads from buildings [Huang et al., 2023; 

Lv et al., 2023; Yu et al., 2023; Yuan et al., 2021]. 
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Clustering in image analysis has a long history dating back to the 

early ages of remote sensing. To set an example ISODATA, k-

means are implemented in many tools; including the very old AI-

based solutions, like fuzzy k-means [Gustafson and Kessel, 

1978]. 

 

Nowadays, clustering can be based on various AI-based 

algorithms like K-Means Clustering, Fuzzy C-Means Clustering, 

Hierarchical Clustering, Spectral Clustering or Deep Learning-

based Clustering (using autoencoders, convolutional neural 

networks, etc.). Extensive state-of-the-art literature is available 

on that; just a few articles to illustrate this range are: [Johnson, 

1967; Li and Qiu, 2022; Ng et al., 2001; Venkata et al., 2020; 

Zhao et al., 2022]. 

 

Classification of remotely sensed images means the translation of 

the acquired image/raster/point cloud data into different 

(thematic) categories. This is certainly the processing with the 

highest incidence of AI tools developed in RS image data 

analysis. These include shallow and deep neural networks, 

convolutional neural networks, recurrent neural networks, graph 

neural networks, autoencoders, support vector machines, or 

random forests. [Adegun et al., 2023; Ball et al., 2017; Belgiu 

and Dragut, 2016; Chen et al., 2024; Hu et al., 2022; Ishikawa et 

al., 2023; Lyu et al., 2016; Ma et al., 2019; Mountrakis et al., 

2011; Phan et al., 2020; Piramanayagam et al., 2016]. 

 

4. AI can not only be used for good purposes 

4.1 Fake satellite imagery 

Introducing the research work of Yunya Gao, Dirk Tiedea, and 

Stefan Lang which dug deeply into assessing the quality of 

images in the era of generative AI, and how can fake images be 

harmful rather than only beneficial, perhaps can be recapitulated 

as follows: 

 

• Image-to-image (I2I) translation approaches in deep 

learning, made it possible to translate satellite imagery 

directly to map-like images which can save much 

effort. (Even though these I2I approaches have not 

been fully applied in reality, they have a high potential 

for fast urban mapping in the future. 

 

• While fake satellite imagery is not a new problem 

(Abady et al., 2022), many variants of the segment 

anything model (SAM), Grounded SAM in particular, 

make it much easier than before to produce such fake 

satellite imagery. 

 

• Fake satellite images can pose a threat to the reliability 

of mapping results generated by I2I approaches. 

Despite the stunning performance of these artificial 

intelligence (AI) techniques, we cannot ignore their 

potential danger of creating fake satellite imagery more 

easily and thus more fake geo-information for 

malicious purposes. 

 

• Isola et al., 2017 proposed an I2I translation approach 

named Pix2Pix GAN (Generative Adversarial 

Network) that can directly translate satellite imagery 

into map-like images, which can jump over several 

steps and save a lot of time for map generation. 

 

 

 

• Therefore, the reliability of input satellite imagery can 

be substantial for crosschecking by humans before 

publishing the generated maps to the public. 

Nevertheless, the fast development of variants of 

SAM, especially Grounded SAM, facilitates the easy 

production of fabricated satellite imagery, which 

brings more unreliability to the generated maps. 

 

 

Over the last few years, deep learning methods enabled the 

automated processing and analysis of large satellite image 

datasets. Hundreds of applications and operational solutions 

validate various benefits of deep learning (DL) methods, 

particularly for large datasets.  

 

DL has initially been widely associated with convolutional neural 

networks (CNN). Today, a variety of neural network 

architectures of DL are widely used in image analysis, including 

CNN, recurrent neural networks (RNN), long short-term 

memory, encoder-decoder, and autoencoder models, generative 

adversarial networks (GAN), vision transformers (ViT), capsule 

networks, and gated recurrent units. 

 

But as with any technology, misuse or use that harms the public 

cannot be completely prevented. In particular, Generative 

Adversarial Networks (GAN) are known for their potential to 

generate something that does not exist or to alter an image 

showing a real-world situation. They can therefore be used for 

the production of fabricated satellite imagery that shows an 

“alternative reality”. This potential is not necessarily bad. It can 

be used for scientific simulations, e.g., within the realm of 

climate change modeling. However, GANs can also be used to 

create deepfake satellite imagery.  

 

The term deepfake refers to synthetical media (e.g., images, 

audio, videos) that digitally alter the original content to 

something else. A well-known example is to manipulate a photo 

of a person to get the impression of being another person or to 

manipulate the context and the interpretation of the particular 

situation. While such techniques can be employed for the better 

or worse, a severe danger arises if such powerful methods are 

used for malicious purposes or to disseminate misinformation. 

  

Unlike images of persons, attempts to fake satellite images are so 

far rare, but there is a need for developing methods to verify or 

falsify images – a topic that was hardly been thought of some ten 

years ago.  

 

The few examples that are documented (see e.g., Zhao et al. 

2021) mainly use deep learning algorithms, e.g., Cycle-

Consistent Adversarial Networks (CycleGAN) that is one of the 

vibrant of the GAN family. It is documented that these algorithms 

are capable of replacing objects on the ground with different 

objects seen from other high-resolution satellite imagery. 

  

This matter has evoked geographers’ concern about the spread of 

the fabricated satellite imagery, and thus, misleading people in 

multiple ways by hoaxes (GeographyRealm 2021). Still, as a 

brief search in Scopus and Google Scholar shows, the topic yields 

very few hits within the six-digit number of satellite image 

analysis related literature over the last five years.  

 

Nevertheless, it will be an important research topic over the next 

upcoming years, also with security and defence angels if political 

adversaries use fake imagery to fool their enemies with deepfake 

satellite imagery. The US National Geospatial-Intelligence 

Agency projected a scenario where military forces who followed 
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a wrong route provided by military planning software based on 

fake imagery are at serious risk (TheVerge.com 2021).  

 

The recent development of the Segment Anything Model (SAM) 

makes it even easier to create such deepfake satellite imagery. 

This will likely attract more attention of geoinformation users 

worldwide. SAM is a powerful AI model designed by Meta AI 

that can segment any object from images by several clicks. 

Grounded-SAM combines Grounding DINO and SAM to allow 

users to detect objects by text inputs as well as replace the target 

objects with other objects by text inputs.  

Algorithms such as CycleGAN can produce deepfake satellite 

imagery but they still require sufficient deep learning knowledge, 

adequate computing resources, and longer training time. For 

Grounded-SAM users, all they need to do is to change prompt 

text inputs for detecting target objects and replacing them with 

other objects within minutes. 

 

Within her PhD work, Yunya Gao and her supervisors Prof. 

Stefan Lang and Prof. Dirk Tiede tested the capability of the 

current Grounded-SAM demo to produce deepfake satellite 

imagery with multiple examples from refugee camps through 

Google Earth software. Refugees belong to a vulnerable group 

that requires humanitarian aid from organizations such as the 

United Nations or non-governmental organizations. These 

organizations rely on satellite imagery to a great extent to design 

logistics planning due to the difficult access of these areas and 

lack of on-site information. 

 

 
Figure 01: Example refugee camp real image 

 

 Operationally, we only need to ask the model to detect white, 

bluish, or greyish rectangles or patches and replace them with 

barren land or grassland from the background.  

 

The Grounded-SAM can usually generate highly deceivable 

satellite imagery after several trials, which can be a significant 

threat to organizations that rely on accurate geoinformation.  

 

We save the real and output fake satellite imagery together with 

their locations in KMZ format that can be opened by Google 

Earth software in this Google Drive link.  

 

The locations of selected examples can also be opened through 

these links directly, example 1 2 3, example 4, example 5, 

example 6, example 7. 

 

After analyzing these real and fake satellite imagery examples 

(Fig. 01 and Fig. 02), the team around Yunya Gao considers this 

fake satellite imagery from Ground-SAM to be potentially 

harmful such data becomes open-sourced in social media or 

press.  

 

 
Figure 02: Example refugee camp faked image 

 

However, from these very short, preliminary observations and 

tests we can conclude with certainty that these developments 

create a great need for research into the verification and 

falsification of satellite images (Abady et al. 2022). Likewise, the 

scientific community needs to develop ethical regulations for 

using such powerful SAM models for satellite imagery or 

developing even more powerful algorithms to identify the nature 

of open-sourced satellite imagery. 

 

 
Figure 3. Examples of real satellite images from Google Map 

satellite imagery, fake satellite images produced by Grounded 

SAM, real maps from Google Map, generated maps based on real 

and fake satellite imagery by Pix2Pix GAN.  

 

Red arrows highlighted the main changes in fake satellite 

imagery compared to real satellite imagery. 
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5. Quality Aspects Related to Applying AI in Data   

Acquisition   

The automation of data acquisition has been looked into 

continuously by scientists since the beginning of the era of 

applying the technology of surveying till date 

(https://en.wikipedia.org/wiki/Surveying) and is certainly kept 

further developing to date, aiming to overcome the direct 

physical interaction with all types of city objects and 

infrastructure elements. Hence, satellites are also set to orbit the 

Earth continuously and collect data using a variety of sensors that 

serve a certain range of acquisition demands (Danielle et al, 

2018). 

 

However, satellite-based data collection alone isn’t enough to 

satisfy all scales and details, so other means of automated data 

collection also exist and are continuously being developed. 

Examples of that are field surveying, different types of mobile 

laser scanners, transactional updates, indoor mapping, drone 

photography, aerial photography, public or crowed source data 

acquisition, and finally IoT Internet of Things via sensors and Big 

Data. 

 

AI and its sub-applications machine and deep learning also 

occupied its place on the deck of development, and it’s becoming 

the most significant method of development and innovation in the 

field of geospatial science and technology likewise in other 

disciplines. 

 

Among the significant areas of applications perhaps remote 

sensing got the largest slice, as AI got implemented in image 

interpretation and classification, image enhancement including 

image generation, also in interpreting and automating data 

collections from lidar point clouds, and many more (Bhargavi et 

al., 2023). 

 

The quality of interpretation and classification workflow is 

subject to the elements discussed in Table- 1. 

 

Those elements and more affect the quality of the image 

interpretation and classification process. Some of these elements 

are highlighted here to lift the curtain on a play that the geospatial 

community is expected to investigate further. 

  

The procedure of implementing AI for classification in many 

practical cases starts with selecting the method/methods and 

systems, this can be either an open method or an open method 

that is embedded into a system or commercial software.  

 

The quality of the results thus, at first is subject to the AI deep 

learning method used or embedded within a system, a 

comprehensive explanation including using Deep Learning for 

image interpretation and classification was provided by (Gui et 

al, 2024). The method used for reliability is certainly evaluated 

through the level of conformity of its produced results with 

reality or the truth. 

 

For example, U-Net and other sister methods are special types of 

Convolutional Neural Networks (CNN) that have proven 

advancement in the semantic classification of pixels. The 

methods proved reliable in classifying certain thematic 

infrastructure layers, which was also proved when tested in 

combination with other methods within a short study to assess the 

results of a thematic mapping project conducted by the AI team 

of GISCD in Dubai. (The methods and corresponding layers are 

illustrated in Table_2. 

 

Table- 1 ( Brainstorming quality aspects for Interpretation) 

 

  

 

Type Characteristics Geo-classes 

Model 1 - 

UNET  

 

Multi Class  

 

Car Parks  

Buildings  

Road Network  

Vegetation Land  

Trees  

Grassland  

Model 2 - 

BarchNorm 

UNET  

 

Multi Class  

 

Water Body Layers  

Open areas  

Bare earth  

Vegetations  

Model 3 - 

Mask 

RCNN  

 

Binary &  

potentially 

Multi Class  

Buildings  

Potentially also:  

Water bodies Layers  

Open areas  

Bare earth  

Vegetations  

Model 4 – 

SpaceNet  

 

Binary  

 

Roads  

 

 Table 2: Models compared for reliability in interpretation 

  

 As shown above, the study yielded that different methods are 

more reliable in specific types of classes, but this is just an 

example and yet needs more testing to prove the level of 

effectiveness as many other factors play roles in changing the 

game of reliability. Factors such as the type of image and the 

Topic Note 

Image Characteristics Effects of geometric and 

radiometric parameters 

Data classes Defining classes that make 

sense 

Data quality aspects Can the produced results be 

reliable for usage and to 

what limits? 

Purpose of usage Targets defined paths 

Change Detection Decide when and where a 

change matters 

Conventional classification 

methods 

What’s new with AI versus 

conventional 

Labeling and manual work Why AI if we are labeling 

everything, what are the 

elements of a good labeling 

practice 

AI and models Modelling aspects 

Model limitations How and who decides that 

Model transferability Good models can be reused 

Model reliability The environment matters 

Quality Assurance Workflow based 

Quality control Before usage and aft 

Quality of produced data  Affects decision making 

Resource and Time quality 

aspects 

Who, how many, how long 

Open source Imagery  Is it enough? 

High-resolution imagery and 

applications 

Needed for some 

applications 

Produced Vectors Cartography and 

enhancements 

Bands Is RGB enough for AI  

Attributes Can I automate that? 
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characteristics of the area are among many factors that can 

increase or decrease the values measured via the confusion 

matrix like accuracy, precision, recall, or another evaluation 

method.  

 

The purpose of mapping define many facts like what type of 

image is to be classified. The spectral resolution plays a big role 

in this manner as AI can only produce what can be seen or 

observed. But in many cases, budgets and image availability can 

cause selecting a different path. What you can teach the machine 

is what can be labeled, and only observed objects on an image 

can be labeled, but the number and type of bands can play a 

hidden role in the learning process.  

 

Further, how much percentage of the image should be labeled and 

how well should it cover the different variety of objects will also 

affect the reliability of the final model. Then a certain area of the 

image is to be left unlabeled so that it can later be used to assess 

the results of interpretation and classification (Nuaimi et al, 

2024).  
   

 

6. Discussion & Conclusion 

 

Remote Sensing Data quality is certainly largely affected by the 

thriving AI and the Deep learning era. Many aspects and 

considerations are open to scientific research and testing 

including the effects of Generative AI, the effectiveness of using 

the models for mapping, vector data production, change 

detection, the evaluation of the so-called super-resolution and 

enhanced images, and how it adds to the ability of interpretation 

and classification. The ability to judge produced images and 

produced data, and subsequences to decision-making is also 

hectic to smart city management. 

 

Moreover, it is clear that further consideration should be given to 

analyzing data quality in the remote sensing lifecycle and how 

the different quality measures are correlated with the advent of 

AI and implementations. 

 

The following points are open for further discussion; 

Generative AI for Data Augmentation: Can Generative 

Adversarial Networks (GANs) be effectively leveraged to create 

synthetic satellite imagery that supplements real-world data? 

How can this synthetic data be used to improve the training and 

performance of feature extraction models? 

AI-powered Mapping and Vector Data Production: How can 

AI models be optimized to produce high-quality, accurate maps 

and vector data from remote sensing imagery? What are the 

limitations and potential biases to consider? 

Change Detection with Enhanced Efficiency: Can AI models 

be used to streamline and improve change detection processes, 

allowing for more timely and accurate monitoring of Earth's 

dynamic landscapes? 

Super-Resolution and Enhanced Imagery: A Double-Edged 

Sword: While super-resolution techniques can increase image 

detail, how can we ensure these enhancements don't introduce 

artifacts or mislead interpretations? How can we effectively 

judge the quality and reliability of such enhanced data? 

AI-Driven Decision Making: The Need for Critical 

Evaluation: As AI plays a growing role in interpreting and 

classifying remote sensing data, developing robust methods to 

assess the quality and trustworthiness of AI outputs becomes 

crucial. This ensures that downstream decision-making processes 

rely on reliable information. 

Beyond these specific areas, the paper emphasizes the need for a 

broader look at data quality throughout the entire remote sensing 

lifecycle. How do established quality metrics need to be re-

evaluated and potentially redefined in the context of AI-driven 

data processing and analysis? How can we ensure that AI itself 

doesn't inadvertently introduce new quality concerns? 

In conclusion, the relationship between AI and remote sensing 

data quality is symbiotic. AI offers powerful tools to enhance 

data quality, but it also necessitates reevaluating traditional 

quality assessment methods. By fostering ongoing research and 

collaboration between AI experts and remote sensing specialists, 

we can unlock the full potential of this transformative era in Earth 

observation. 
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