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Abstract 

One of the essential factors in analyzing urban environments is the presence of trees. Thus, the development of automatic or semi-
automatic tree detection strategies is important for monitoring and providing data for municipal authorities’ planning efforts. In this 
context, we propose an automatic method for detecting trees using LiDAR data collected by airborne platforms. The proposed strategy 
uses the omnivariance as a key attribute, which is estimated locally from eigenvalues. Additionally, it utilizes an adaptive process to 
determine the optimal radius, followed by successive filtering based on the majority filter and mathematical morphology operators. 
The effectiveness of the proposed approach was evaluated on six study areas from two distinct datasets (Presidente Prudente/Brazil 
and Palmerston/New Zealand). In general, the results indicate a completeness rate around 99% and a correctness rate around 91%, 
resulting in an average Fscore of 95%. These findings suggest that the proposed approach has potential to detect trees in urban regions 
using airborne LiDAR data. Compared to related works, the proposed strategy tends to have a better result in terms of completeness. 

1. Introduction

The automation of urban forest inventories plays a crucial role in 
the planning and ecological management of urban environments. 
In this context, cartographic mapping assisted by remote sensing 
data is a valuable tool for promoting the sustainable development 
of these environments (Hecht et al., 2008; Gupta et al., 2020). 
Urban forests contribute significantly to the aesthetics of the 
landscape and mitigating ecological problems, such as reducing 
the local temperature of the earth's surface and atmospheric 
pollution, for example (Zhang et al., 2015; K. Wang et al., 2018).  

Several studies have used remote sensing data collected by 
different platforms, such as satellite, aerial or UAV (unmanned 
aerial vehicles) imagery, and LiDAR (Light Detection and 
Ranging) data, for a wide range of applications associated with 
urban forests (Yan et al., 2015). Due to the increasing availability 
of LiDAR technology, point cloud generated by laser scanning 
systems have gained significant attention (Fekete and Cserep, 
2021). Unlike optical data, LiDAR data is unaffected by 
variations in lighting conditions. Additionally, LiDAR data 
offers high geometric quality since the 3D point cloud is obtained 
directly from the integration of sensors such as laser scanning 
unit, Global Navigation Satellite System (GNNS) and Inertial 
Measurement Unit (IMU). This enables the generation of a point 
cloud with high positional quality, allowing the precise extraction 
of geometric parameters such as tree height, base height, crown 
depth, crown diameter (Secord and Zakhor, 2007; Hecht et al., 
2008; Zhang et al., 2015), as well as the possibility of estimating 
biomass and carbon stock. For these and other purposes, the stage 
of tree detection points is essential. 

These strategies can be divided into two main classes: machine 
learning-based and geometry-based approaches (Hui et al., 

2021). Machine learning-based approaches are usually powerful 
(Weinmann et al., 2015; Niemeyer et al., 2016; Chen et al., 2021), 
but their performance can be susceptible to incorrect information 
in the data or insufficient training sets (Z. Wang et al., 2023). The 
second category relies on analyzing the spatial arrangement of 
points in 3D space within a local neighborhood (Özdemı̇r et al., 
2021; Alencar et al., 2023). The main limitations of geometry-
based approaches are usually associated with the empirical 
definition of parameters (local neighborhood definition and 
segmentation threshold selection). 

Most of the approaches for the detection of trees have been 
developed for applications in the forest environment (Gupta et 
al., 2020). Zhang et al. (2015) consider three main challenges in 
using LiDAR data for urban forest inventories: the complexity of 
urban areas, the spatial heterogeneity of the urban forest and the 
diversity of structure and shape of urban trees. These challenges 
persist, and the development of general approaches for dealing 
with them continue to be a source of research. In this sense, we 
propose an automatic tree detection based on geometric 
characteristics. The main contributions of this work are the 
following: 

i) The detection of tree points directly on the original point
cloud;
ii) The use of the optimal neighborhood concept to calculate
ominivariance and the intuitive definition of
thresholds/parameters based on geometric characteristics of
trees (crown area) and in the sampling rate of the available
point cloud (point density and average point spacing); 
iii) Proposal of a refinement strategy based on majority filter
(MF) and mathematical morphology (MM) to improve the
classification results.
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Figure 1 - Proposed approach for automatic tree detection. 
 

2. Tree Detection Approach 

Figure 1 illustrate the proposed workflow for the automatic tree 
detection. It is divided into four main stages: estimation of the 
omnivariance attribute for each point based on the eigenvalues, 
using an optimal neighborhood; identification of potential tree 
points through K-means clustering; filtering based on the 
majority filter; and filtering guided by mathematical 
morphology. The input data is the original point cloud, whereas 
the output data corresponds to the points classified as tree. 
 
2.1 Geometric Feature Estimation and Tree Point 
Classification 

2.1.1 Omnivariance Feature and Optimal Local 
Neighborhood 
 
According to West et al. (2004), omnivariance feature can be 
estimated from eigenvalues (λ1, λ2, λ3) (Equation 1), with 
λ1 ≥ λ2 ≥ λ3 ≥ 0. These eigenvalues are derived from the local 
3D variance-covariance matrix, which describes how points 
spread around the local neighborhood of a given point i (dos 
Santos et al., 2022; Weinmann et al., 2014, 2017). 
 

Oλi
=ටλ1 λ2 λ3

3
 (1) 

 
This local characteristic allows tree points to be distinguished 
from other objects (dos Santos and Galo, 2021, 2024; Weinmann 
et al., 2017). As can be seen in Figure 1, points sampled on trees 
tend to have higher omnivariance values, whereas points sampled 
on building roofs tend to have lower values. 
 
In 3D point cloud processing, the neighborhood (Ni) of a generic 
point pi can be defined by number of adjacent points around pi, 
or by one sphere of radius r. In our work, a spherical 
neighborhood is utilized. To provide a more accurate local 
geometric description, we established a sphere with an adaptive 
radius (r*) centered on the point pi. The multiples neighborhood 
sizes are denoted by r1, r2, r3,...,rm, ranging from rmin to rmax. The 
increment of each radius is represented by Δr. 
 
The optimal neighborhood size (r*) is automatically obtained by 
using the entropy concept (Weinmann et al., 2014, 2015). This 
metric assesses the order/disorder of points within a local 
neighborhood and is estimated from the eigenvalues λ1, λ2, and λ3 
(Equation 2).  

 
Eλ i,r = - λ1ln(λ1) - λ2ln(λ2) - λ3ln(λ3) (2) 

 
The optimal r* is selected from Equation 3, where a minimum 
disorder is favored by minimizing the estimated entropy Eλ 
across multiples scales. 
 

ri
*=argmin ൫Eλ i,r൯, r∈ {r1, r2, r3, …, rm} (3) 

 
where r1 = rmin, r2 = r1 + Δr, r3 = r2 + Δr, ..., rm = rmax 

 

2.1.2 Classification using K-means 
 
According to previous studies (dos Santos, Galo, and Tachibana 
2018; dos Santos et al. 2019; dos Santos, Galo, and Habib 2022), 
K-means clustering has been shown to be an effective method for 
LiDAR point classification when dealing with a small number of 
classes. In our work, we assume two main categories (K=2): tree 
and non-tree points. Then, K-means clustering establishes the 
optimal separation between these two classes by analyzing the 
omnivariance feature (Johnson and Wichern, 2007). 
 
2.2 Tree Detection Refinement 

2.2.1 Majority Filtering 
 
Since neighboring points have a high probability of belonging to 
the same object, we use majority filtering (MF) to deal with 
classification inconsistencies. 
 
Although this filtering approach is typically used for noise 
reduction in images (Shokirov et al., 2021), we adapted the MF 
to be applied to 3D point clouds. First, a local neighborhood is 
defined by a sphere of radius rMF centered on a point of interest, 
where rMF is equal to rmax. Next, the predominant class within this 
local neighborhood is then assigned to the evaluated point. 
 
2.2.2 Mathematical Morphology-Guided Filtering 
 
The final refinement is divided into four main steps: grid 
generation; median filter application; MM filtering; and 3D point 
cloud refinement. In the first step, a 2D grid is created along the 
XY plane from the potential tree points resulting from MF. The 
average point spacing (psavg) is used as the size of each grid cell 
(sgrid). A cell becomes active (assigns the value “1”) when it 
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contains at least one potential tree point, otherwise it remains 
inactive (assigns the value "0"), as illustrate in Figure 2a. 
 
In the second step, a median filter (ws x ws) is applied for sparse 
noise reduction and elimination. In third step, the refined image 
is then derived from the morphological opening filter (Figure 2b). 
This operation involves eroding and dilating the input image 
using a predefined structuring element (se). Assuming that in 
general each canopy has a circular shape, we have chosen a disk 
as a shape for the structuring element. 
 
In the final step, non-tree points are removed from the point cloud 
using the refined image as a guide. This stage is denoted as 
Mathematical Morphology-Guided refinement/filtering, or 
simply MM-guided filtering. For all potential tree points, it is 
checked if there is a corresponding active cell in the refined 
image. A planimetric distance threshold (txy) is utilized to define 
a valid classification, i.e., if the criterion is met, the point is 
retained in the cloud as a tree point; otherwise, it is labeled as a 
non-tree point. Figures 2c and 2d illustrated the tree points (top 
view) before and after MM-guided filtering.  
 

 
Figure 2 - Illustration of MM filtering effects on potential tree 
points (top view). 2D grid generated from tree candidate points 
(a), refined grid resulting from morphological opening filtering 
(b). Tree points before (c) and after (d) MM-guided filtering. 

 
3. Experiment Design and Quality Assessment  

3.1 Study Areas and Datasets 

To evaluate the proposed approach in regions with distinct 
characteristics, six study areas located in two different countries 
(Figure 3) were utilized in the experiments. These areas are 
situated within urban regions, comprising a variety of objects 
(cars, buildings, trees, walls, undergrowth, power lines, and 
ground). In addition, the selected areas have trees with different 
geometric characteristics in terms of size, height, shape, and 
foliage density. 
 
Table 1 provides details on each dataset, including the assigned 
names, study area ID, scanning system used in data collection, 
flying altitude, average point spacing (avg. pt. spa.), and average 
point density (avg. pt. den.). For clarity and ease of reference, the 
datasets were named according to their respective locations: 
Presidente Prudente/Brazil dataset (Tommaselli et al., 2018), and 
Palmerston/New Zealand dataset (Open Topography, n.d.). It is 
important to mention that the Presidente Prudente/Brazil dataset 
was originally captured at different flight altitudes (550 m, 900 
m, 1330 m), generating clouds with different densities (12, 6 and 

3 points/m2) and average point spacing (0.4 m, 0.5 m, and 0.6 m), 
respectively. 
 

 
(a) 

 

 
(b) 

Figure 3 - Study areas. Presidente Prudente/Brazil (a) and 
Palmerston/New Zealand (b). 

 

Information on 
data collection 

Datasets 
Presidente 

Prudente/Brazil 
Palmerston/New 

Zealand 
Study areas 1, 2, 3 4, 5, 6 

Scanning system 
RIEGL LMS-

Q680i 
Orion H300 

Flying height (m) 550 - 
Avg. pt. spa. (m) 0.4 

Avg. pt. den. 
(points/m2) 

12 22 

 
Table 1 - Information on data collection and airborne LiDAR 

dataset characteristics. 
 
3.2 Quality Assessment 

Qualitative and quantitative analysis were performed to evaluate 
the performance of the proposed approach. In this stage, the 
detection results were compared to manually generated reference 
building maps. 
 
Quantitative analysis was conducted using the following quality 
metrics: completeness (Comp.), correctness (Corr.), and Fscore 
(Wiedemann et al., 1998; Sokolova et al., 2006). These metrics 
range from 0 to 1, with values closer to 1 indicating a high degree 
of agreement between the results and reference. In our paper, we 
represent these quality metrics as percentages, ranging from 0% 
to 100%. 
 

Comp. = TP/(TP + FN) (4) 
  

Corr. = TP/(TP + FP) (5) 
  

Fscore= 2 TP/(2 TP + FP + FN) (6) 
 
A XY-distance threshold was adopted to compute the numbers of 
true positive (TP), false positive (FP), and false negative (FN). If 
the distance between the detected and reference point is smaller 
than the pre-defined threshold, they are assumed to be a valid 
pair, i.e., a TP. In this work, the XY-distance threshold was set to 
the average point distance within the corresponding point cloud. 

(a) (b) 

(c) (d) 
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3.3 Selection of Thresholds/Parameters 

The recommendations for the prediction and the adopted values 
for the thresholds are listed in Table 2. Most part of the thresholds 
can be set intuitively estimated from a superficial knowledge of 
the dataset, i.e., average point distance and point density, and also 
on the geometry of the tree of interest, i.e., the minimum size of 
the canopy. 
 

4. Results  

Figure 4 illustrates the results derived from the proposed 
approach for the selected areas (Areas 1-6). To facilitate the 
visualization, the results were superimposed on the original point 
cloud (colorized according to its intensity). In this representation, 
the detected tree points are associated to the green color. In 
addition, Figure 5 illustrates some commission errors (red 
arrows) and omission errors (blue arrows). 
 
 

Thresholds/Parameters, with 
unit 

Recommendations for prediction Adopted values 

rmin (m)) 
Should contain enough points for meaningful definition of the 3D 

structure tensor. Depends on point spacing 
2 psavg

* 

rmax (m) Depends on the size of the object of interest and/or point spacing 4 psavg 
Δr (m) Depends on the number of multiple local neighborhoods to be tested 0.1 
rMF (m) Based on the maximum neighborhood used rMF = rmax 
sgrid (m) Depends on point spacing sgrid = psavg 

se (pixels) Based on the smallest canopy to be detected 
radius disk (2 pixels 

= 2 psavg) 
ws (pixels) Empirically defined 3x3 pixels 

txy (m) Depends on point spacing txy = 2 psavg 
* psavg - Average point spacing 

Table 2 - Recommendations for the prediction and the adopted values for the thresholds. 
 
 

Presidente Prudente/Brazil 
 

 
(a) 

 
 

Palmerston/New Zealand 
 

  
 

(b) 
Figure 4 - Tree detection results for both datasets. Presidente Prudente/Brazil (12 points/m2) (a) and Palmerston/New Zealand dataset 

(22 points/m2) (b). Tree points (green) are displayed on the original point cloud (colored according to intensity). 
 

(II)  

 

(I) 

  

(III) (IV) 
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Figure 5 - Illustration of commission (false positive) and omission (false negative) errors. 

 
Aiming to analyze the impact of point density, we show the 
quality metrics for Area 1 (Presidente Prudente/Brazil) for 
different point densities (3 points/m2, 6 points/m2, and 
12 points/m2), as illustrated in Figure 6. 
 
 

 
Figure 6 - Quality metrics for Area 1 for point clouds with 

different point densities. 
 
As can be seen in Figure 6, although the correctness is high for 
all densities considered, the completeness, and consequently the 
Fscore, are low for densities of 6 and 3 points/m2, indicating that 
the better quality corresponds to the 12 points/m2 density. 
 

Table 3 lists the quality metrics estimated for all study areas, as 
well as the average for each dataset. It should be noted that Table 
3 shows the quality metrics of the Prudente Prudente/Brazil 
dataset with the highest density (12 points/m2). 
 

 
Presidente Prudente/Brazil dataset (12 

points/m2) 
Study 
areas 

Comp. (%) Corr. (%) Fscore (%) 

Area 1 97.01 91.49 94.17 
Area 2 98.84 83.94 90.78 
Area 3 98.64 96.32 97.47 
Mean 98.16 90.58 94.14 

 
Palmerston/New Zealand dataset (22 

points/m2) 
Study 
areas 

Comp. (%) Corr. (%) Fscore (%) 

Area 4 99.35 87.27 92.92 
Area 5 99.41 94.40 96.84 
Area 6 98.99 93.89 96.37 
Mean 99.25 91.85 95.38 

Table 3 - Quality metrics estimated for study areas. 
 

5. Discussion 

Based on the visual analysis, it is possible to observe that the 
proposed approach produced consistent results since most of the 
trees were detected. However, some inconsistencies occur as 
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illustrated in Figure 5, which are related to commission and 
omission errors, affecting the quality metrics (Table 3). 
 
Regarding to the quality metrics (Table 3), it can be noticed that 
the proposed approach tends to produce better results in terms of 
completeness (around 99%), indicating a low occurrence of 
omission errors (around 1%). In terms of correctness, the 
proposed approach shows average value around 91%, which 
indicates commission error rate around 9%. In addition, the 
results obtained in different urban areas and with different data 
sets were similar, indicating the robustness of the approach. 
 
Conducting a comparative analysis for different densities, as 
shown in Figure 6, we can observe that the proposed method is 
directly impacted by the point density. In general, it tends to 

result in better metric parameters for point clouds with higher 
point density. In addition, a decrease in point density has a greater 
impact on the completeness metric, having a significant increase 
in omission errors. In general, the proposed method is suitable for 
datasets with a point density greater than 12 points/m2. However, 
it presents limitation for datasets with lower point density (less 
than 6 points/m2). These results indicated the impact of point 
density in tree detection. 
 
Comparing the obtained metrics with those found in the 
literature, as shown in Table 4, it is possible to conclude that the 
proposed approach is found to be consistent with similar works. 
These results indicate the potential of the proposed approach for 
automatic tree detection in urban environments. 

 

Approaches Data 
Strategy considered by 

the authors 
Type of 
detection 

Point density used 
in the experiments 

(points/m2)  

Quality metrics 
Comp. 

(%) 
Corr. 
(%) 

Fscore 

(%) 
Niemeyer et 

al. (2016) 
Airborne 

LiDAR data 
Conditional Random Field 

Supervised 

≈ 8 95.1 95.9 95.5 

Chen et al. 
(2021) 

Airborne 
LiDAR data 
and optical 

imagery 

Deep convolutional neural 
network (DCNN) and the 
3D deep neural network 

(DNN)  

≈ 8 80.7 85.5 83.0 

Özdemı̇r et al. 
(2021) 

Airborne 
LiDAR data 

Geometric characteristics 

 ≈ 8 86.8 93.1 89.8 

Alencar et al. 
(2023) 

Unsupervised ≈ 12 92.5 73.5 81.9 

Our approach  up to 12 98.7 91.2 94.8 
Table 4 - Quality metrics for related works and our approach. 

 
6. Conclusions 

This paper proposes a geometry-based approach for identifying 
trees from airborne LiDAR point clouds. Conducted experiments 
indicates the potential of proposed strategy in different urban 
environments, presenting Fscore around 95%. In addition, the 
strategy had a better performance in terms of completeness, 
indicating a low occurrence of omission errors. However, a 
drawback of this approach is its limited performance to detect 
trees in datasets with low point density (less than 6 points/m2). 
For future investigations and aiming to broaden the applicability 
of the proposed approach and also to validate its efficacy across 
diverse scenarios, we suggest using other datasets (terrestrial 
LiDAR data and photogrammetric point clouds); and consider 
different environments, such as natural and plantation forests.  
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