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Abstract 

The Zenith Total Delay (ZTD) is one of the primary error sources derived from the neutral atmosphere associated with the GNSS 

(Global Navigation Satellite Systems) technique. Zenith Wet Delay (ZWD) is the smallest part of the ZTD, but the high variability is 

caused by spatial-temporal variation, making the modelling of this component a challenging task. Although ZWD is considered an 

error in GNSS positioning, it is also a variable composed mainly of water vapour and can, therefore, be used for atmospheric 

investigations, and assists in climate studies for precipitation events. In this work, a model was trained to estimate the delay wet 

component from surface atmospheric parameters. The training data comes from 29 radiosonde stations around Brazil, for a six-year 

period (2017 to 2022), with data collected at 12 h UTC (Universal Time Coordinated). The model was validated using the holdout 

technique, with 70% of the data used in training and 30% for validation (cross-validation analysis). The generated model achieved a 

RMSE (Root Mean Squared Error) of approximately 38 mm, with an 81% of determination coefficient.  

1. Introduction

The neutral atmosphere is a gaseous layer extended from the 

Earth's surface to an altitude of approximately 50 km. This 

definition, assumed by the Geodesy, considers the presence or 

absence of ions (Seeber, 2003; Elgered and Wickert, 2017; 

Teunissen and Montenbruck, 2017). 

The neutral atmosphere is a non-ionized layer, i.e., it does not 

have the presence of ions, but it contains dry gases (hydrostatic 

component), mainly hydrogen and oxygen, and water vapour 

(wet component) (Davis et al., 1985; Vianello and Alves, 2000; 

Sapucci, 2001; Elgered and Wickert, 2017). In this layer, 

according to the level of existing water vapour, combined with 

the presence of energy provided by solar radiation, a 

meteorological phenomena usually occur (Jacob, 1999; Vianello 

and Alves, 2000). In addition, electromagnetic signals travelling 

through the neutral atmosphere can be refracted (Davis et al., 

1985; Elgered and Wickert, 2017). 

The presence of the wet component in this layer does not occur 

uniformly. Its highest concentration is found mainly in the initial 

kilometres, extending from the surface to approximately 4 km in 

height, gradually decreasing up to 10 km (Vianello and Alves, 

2000; Wallace and Hobbs, 2005). In higher altitudes, their 

presence is very low or non-existent. The geographical location 

is also relevant because in tropical regions, characterized by hot 

and humid climates, the concentration tends to be higher due to 

the evaporation of water. The opposite can be stated in desert and 

pole regions. Related to the hydrostatic component, it behaves in 

a more homogeneous way (Vianello and Alves, 2000; Wallace 

and Hobbs, 2005; Elgered and Wickert, 2017). 

The effects caused by the neutral atmosphere can impact the 

propagation of the GNSS (Global Navigation Satellite Systems) 

signal, with errors ranging from a few meters to approximately 

30 m, with the wet component accounting for 10 % of the total 

errors. In addition to the variation in different atmospheric 

conditions, this magnitude is also associated with the elevation 

angle of the observed satellites. Near the zenith, this delay can 

cause errors of more than 2.5 m. This effect, known as ZTD 

(Zenith Total Delay), is influenced by atmospheric elements such 

as pressure, temperature, and water vapour. It occurs due to 

atmospheric refraction, which causes a delay in the signal 

reception, when passing through the neutral atmosphere. The 

variation of the refractivity index along this path is due to the 

presence of hydrostatic and wet components. When this effect is 

primarily influenced by gases, it is called ZHD (Zenith 

Hydrostatic Delay), and when influenced by water vapour, it is 

called ZWD (Zenith Wet Delay) (Thayer, 1974; Mendes, 1998; 

Vianello and Alves, 2000; Sapucci, 2001; Seeber, 2003; 

Hofmann-Wellenhof et al., 2007; Monico, 2008; Nievinski, 

2009; Gouveia, 2013; Gouveia et al., 2020). 

The ZWD values exhibit high spatio-temporal variability, 

making it difficult to determine this component using surface 

measurements. The wet component can be obtained by 

radiometers or radiosonde data through the numerical integration 

of atmospheric profiles (Sapucci, 2001; Nievinski, 2009). 

Although instruments such as radiometers and radiosondes can 

provide accurate measurements of the wet component, their high 

costs can limit their use, preventing high sampling rates (Bevis et 

al., 1992; Sapucci et al., 2006). 

Although the neutral atmosphere represents a source of error for 

GNSS positioning (ZTD, ZHD and ZWD), for other sciences, 

such as Meteorology, it can represent a source of information, 

since delay values are associated with atmospheric behaviour. In 

this context, ZWD is an important variable in climatic studies of 

precipitation, due to its relationship with precipitable water 

vapour (PWV) (Bevis et al., 1992; Sapucci, 2001, 2014, 2019). 

Several studies have been conducted in order to model neutral 

atmospheric delay, focusing especially on ZWD. Some authors 

like De Oliveira et al. (2017) and Lu et al. (2017) have developed 

models for ZWD estimates in PPP (Precise Point Positioning) 

GNSS processing. However, the accuracy of existing models is 
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still limited due to their unsuitability to account for spatial 

variations in atmospheric water vapour (Davis et al., 1985). 

 

Recently, machine learning techniques have been employed to 

enhance ZWD modelling. Chen et al. (2022) and Xiong et al. 

(2021), for example, developed machine-learning techniques to 

model atmospheric parameters, while Gao et al. (2021), Li et al. 

(2024), and Li, Yuan, and Jiang (2023) proposed modelling ZWD 

through artificial intelligence. 

 

However, even with the advances made with ZWD modelling, 

current models have a major flaw in their ability to predict non-

stationary variations or short-term fluctuations in the neutral 

atmosphere. To solve this problem, it was proposed in the present 

study the development of a more accurate and flexible ZWD 

model, capable of predicting the temporal and spatial variations 

of atmospheric water vapour. 

 

There are about 100 radiosonde stations in Brazil, with an 

average sample of two daily releases (University of Wyoming, 

2024). There are also more than 500 INMET (Instituto Nacional 

de Meteorologia) automatic surface stations with hourly 

sampling (INMET, 2023). Obtaining a model capable of 

determining precise ZWD from surface measurements may 

represent a significant advancement not only for Geodesy and 

positioning studies but also for climatic and atmospheric research 

in Brazil. This advancement could enable the estimation of values 

in more isolated locations across the country within a much larger 

and cost-effective sample. 

 

In this context, this study investigates the hypothesis that it is 

feasible to develop a model for obtaining ZWD from surface 

measurements. The model development leverages advanced 

machine learning techniques, such as Random Forest (RF), to 

forecast the wet component of delay based on atmospheric 

parameters at the station level. 

 

The section 2 details the methodology employed in this study. 

Initially, the data used are presented in Section 2.1, which shows 

the sources of information, the temporal resolution of the data, 

and the study locations. The section 2.2 presents the methodology 

for obtaining the ZWD from radiosonde in-situ measurements. 

Subsequently, Section 2.3 addresses the method of applying 

random forest to the radiosonde data for estimating the wet 

component delay. Section 2.4 presents the methodology for 

validating the results using the holdout and cross-validation 

techniques. Section 2.5 shows a correlation analysis of the 

variables used to train the model. The section 3 presents the 

results obtained from the model trained using Random Forest. 

Section 3.1 discusses the results of the model validation phase, 

evaluating the variation of the estimates in comparison to the 

reference values. In Section 3.2, tests are conducted with surface 

stations (INMET) to estimate the ZWD using the trained model. 

These estimates are then evaluated using radiosonde stations as a 

reference, calculating the RMSE obtained at the test stations and 

representing the values on a map of the Brazilian territory. 

 

2. Methodology 

2.1 Dataset 

The main dataset used in this work were the atmospheric profiles 

obtained by radiosonde stations. The equipment consists of a 

weather balloon with an attached sensor (radiosonde) that allows 

the measurement of atmospheric information in situ as it gains 

altitude. Based on the radiosonde profiles, data on atmospheric 

pressure, dew point temperature, relative humidity, geopotential 

height, wind speed, directions, and other parameters can be 

obtained in a series of layers that reach high levels of the neutral 

atmosphere (Sapucci, 2001). 

 

The radiosonde data used in this work was provided by the 

University of Wyoming from 29 radiosonde stations in the 

Brazilian territory, over 6 years (2017-2022) (University of 

Wyoming, 2024). The collections were performed at 12h UTC 

(Universal Time Coordinated). The stations and the data period 

were selected based on availability, seeking the maximum 

number of stations with the least data absence and the largest 

continuity during the years. 

 

In addition, surface weather data from INMET stations were used 

as input to the model. The data used was from 2023, collected at 

12 UTC. Ten stations were used for the tests, and the stations 

were chosen based on their geographic location in the Brazilian 

regions: North, Northeast, Midwest, Southeast, and South. 

 

Figure 1 shows the map of stations used in the study. The 

radiosonde stations were used for training the model (shown in 

red), while in blue are shown all the automatic surface stations 

available in Brazil. In green are the automatic stations tested in 

the training model obtained. 

 

 

Figure 1. Map of INMET and radiosonde stations and surface 

meteorological stations in Brazil. 

 

In order to mitigate large atmospheric variations, radiosonde and 

INMET station pairs were selected with distances smaller than 

50 km (Monico, 2008). Due to the high density of INMET 

surface stations, it was feasible to select stations within distances 

smaller than 10 km (Table 1). The ZWD obtained from the model 

was compared with the on-site measurements obtained by the 

nearest radiosonde on the same date and time. 

 

Due to the data sources employed, the final model must ensure a 

temporal resolution of 24 hours and a spatial resolution 

dependent on the number of stations. 
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Local 
Stations Distance 

(km) Radiosonde INMET 

Manaus (AM) SBMN A101 6.57 

Natal (RN) SBNT A304 9.28 

Brasília (DF) SBBR A001 7.86 

São Paulo (SP) SBMT A701 2.81 

Santa Maria (RS) SBSM A803 2.06 

Belém (PA) SBBE A201 5.68 

Corumbá (MS) 83554 A724 3.44 

Porto Velho (RO) SBPV A925 7.98 

Boa Vista (RR) SBBV A135 1.77 

Cruzeiro do Sul 

(AC) 
82705 A705 1.61 

Table 1. Location of the radiosondes from INMET and surface 

stations, along with the distance between them. 

 

2.2 ZWD-Radiosonde 

Using the tool improved by Lima (2020) and developed by 

Sapucci (2001) in MATLAB software, it was possible to perform 

the processing of radiosonde data, obtaining the components of 

the zenith delay, including the ZWD. The tool obtains the values 

from the integration of atmospheric radiosonde profiles, from the 

surface (ℎ𝑠) to the top of the neutral atmosphere (ℎ𝑡𝑜𝑝), based on 

Equation 1 (Sapucci, 2001; Nievinski, 2009; Elgered; Wickert, 

2017b; Gouveia et al., 2020). 

 

𝑍𝑊𝐷 =  10−6 ∫ (𝑘2
′

𝑒

𝑇
𝑍𝑤

−1 + 𝑘3

𝑒

𝑇2
𝑍𝑤

−1) 𝑑ℎ         (1) 
ℎ𝑡𝑜𝑝

ℎ𝑠

 

 

In which, 𝑇 and e represent the absolute temperature in [K] and 

the partial pressure of water vapour in [hPa] in the atmosphere, 

respectively; 𝑘2
′ , 𝑘3 are the atmospheric refractivity coefficients 

determined by Rüeger (2002). Finally, 𝑍𝑤
−1 is the inverse of 

compressibility factor of atmospheric water vapour that indicates 

the deviation of the atmosphere from an ideal gas. 

 

2.3 Random Forest 

For this work, the random forest (RF) algorithm was chosen for 

modelling. The selection of RF was based on the results obtained 

by Li, Yuan and Jiang (2023) and Li et al. (2024), who also 

proposed the generation of machine-learning models for the 

estimation of ZWD, using data from radiosondes.  

 

The RF technique consists of a combination of learning methods 

for classification, regression, and other tasks that operate by 

building a multitude of decision trees at the time of training. For 

sorting tasks, the random forest output is the class selected by the 

majority of trees. For regression tasks, the mean predictions of 

the individual trees are returned. This is a very interesting method 

because random decision forests correct the tendency of decision 

trees to overfitting their training set (Breiman, 2001). 

 

Before estimating the ZWD values, the data was filtered based 

on the quality of the radiosonde data. The raw data was filtered 

to remove noisy profiles, which made it impossible to calculate 

the ZWD due to the low amount of atmospheric information 

collected. In this way, only stations with the least amount of 

missing data in the selected period were used, in order to obtain 

greater continuity. Then, with the removal of outliers caused by 

failures in data collection with the radiosonde, modelling was 

carried out using the RF algorithm in the R environment. For this 

task, the packages Caret and Random Forest were used (Liaw & 

Wiener, 2002; Kuhn, 2015; R Core Team, 2017). The number of 

trees constructed was 500, and the number of variables selected 

in each node of the tree was one-third of the number of input data. 

The input data, that is, predictor variables, to estimate the ZWD 

(output variable in m) were day of the year, ZHD (m), average 

temperature (°C), Dew point temperature (°C), Atmospheric 

pressure (hPa), mean relative humidity (%), Latitude (°dec), 

Longitude (°dec), Altitude (m), Surface water vapour, Surface 

wet delay. 

 

2.4 Model Validation 

The observations were divided in a 70:30 ratio, with 70% being 

used for model training and 30% for validation. The use of cross-

validation was also defined in order to evaluate the performance 

of the generated model in an unseen dataset. 

 

Finally, the 10 stations at INMET, presented in Table 1, were also 

used in order to perform a validation with data that the model did 

not have contact during the training. Thus, the aim was to verify 

if the input variables used for the validation of the model are 

consistent with real-use situations. It is worth noting that these 

stations were selected so that they had geographic proximity to 

radiosondes and data availability during the same period from 

2017 to 2022. 

 

2.5 Variable correlation analysis 

To avoid using highly correlated variables, which would not add 

much information to the trained model, a correlation analysis was 

performed to identify the predictors that are highly correlated 

with each other. Predictors with correlations higher than 0.70 or 

lower than -0.70 were eliminated (Figure 2).  

 

Figure 2. Correlation between predictor variables and response 

variables. 
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3. Results 

3.1 Validation of the trained model 

Table 2 presents the statistics obtained in the validation of the 

model, including the Root Mean Square Error (RMSE) in meters, 

the coefficient of determination (R²) of the model and the Mean 

Absolute Error (MAE). 

 

Model RMSE (cm) R² MAE (cm) 

Random Forest 3.82 0.81 2.94 

Table 2. Results of the validation of the model for the 

determination of ZWD from Random Forest. 

 

The model presents 3.82 cm of RMSE, showing that the 

predictions of the RF-trained model present this deviation in 

relation to the values of the sample selected for validation. This 

value is within the expected range since the difference between 

models used in practice is centimetric (Wu et al., 2024). Related 

to the R², a value of 0.81 suggests that the model explains about 

81% of the variability in the data, which is close to what was 

obtained by Wu et al. (2024), which was approximately 90%. The 

model presented by Wu et al. (2024) demonstrated improved 

performance, likely credited to the density of stations used in 

training, which provided extensive geographical variability of the 

data and positively contributed to model training. Additionally, 

the Brazilian territory exhibits high atmospheric variability due 

to the Amazon rainforest, characterized by complex variations in 

temperature and humidity that may pose challenges to model 

training. 

 

Figure 3 shows the dispersion analysis between the observed and 

predicted values in the validation. In general, it can be seen that 

the dots are fairly evenly distributed along the trend line, 

indicating the predictions have good accuracy and without 

expressive bias. In addition, the presence of outliers is not 

observed. 

 

 

Figure 3. Dispersion of the predicted ZWD values from the 

model and the real values. 

 

Based on the time series of data predicted and used for the 

training (Figure 4), it is possible to observe that the model 

behaves similarly to the real data. This fact becomes clear when 

noticing the great overlap between the values presented. 

 

 

Figure 4. Time series of ZWD data estimated from the model 

and calculated in radiosonde. 

 

In order to complement the previous analysis, a quantile 

evaluation was performed on the predicted data provided for 

validation (Figure 5). When looking at the graph, it is noted that 

the model faced significant challenges in determining values at 

the extremes (less than 10 cm and above 40 cm.), explaining the 

coefficient of determination obtained. In general, it is observed 

that a part of the predicted values follows the diagonal line, while 

many values deviate significantly from this line, indicating that 

the set does not follow the theoretical normal distribution.    

 

 

Figure 5. Quantile analysis for the ZWD data estimated and 

calculated in radiosonde. 

 

3.2 Surface Station Testing (INMET) 

INMET's surface meteorological stations were used as inputs to 

the ZWD determination model. The model evaluated in 10 

stations obtained a maximum RMSE of 4.8 cm in the Santa Maria 

region (RS), while the lowest value was approximately 2.7 cm in 

Brasília (DF), as shown in Table 3. From these values, it can be 

concluded that the RMSE value obtained for the RF model 

matches the results obtained when using a different source of 

information, such as surface weather stations. On the other hand, 

the bias shows that, except in the region of Boa Vista – RR, it 

tends to be mostly negative, which means that the predictions of 

the trained model tend to underestimate the values used in the 
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validation. In other words, the model is predicting lower values, 

which was observed in Figure 3, in which the data respect a 

certain range. 

  

Local 
Stations 

RMSE 

(cm) 

BIAS 

(cm) 
Radiosonde INMET 

Manaus 

(AM) 
SBMN A101 3.13 -1.63 

Natal (RN) SBNT A304 3.27 -0.16 

Brasília (DF) SBBR A001 2.69 -0.10 

São Paulo 

(SP) 
SBMT A701 4.81 -2.37 

Santa Maria 

(RS) 
SBSM A803 4.87 -1.08 

Belém (PA) SBBE A201 2.87 -0.54 

Corumbá 

(MS) 
83554 A724 5.60 -3.75 

Porto Velho 

(RO) 
SBPV A925 5.03 -1.61 

Boa Vista 

(RR) 
SBBV A135 4.86 1.78 

Cruzeiro do 

Sul (AC) 
82705 A705 3.84 -1.89 

Table 3. INMET surface stations tested on the model with 

RMSE and BIAS calculated from the nearest radiosonde. 

 

Figure 6 shows the locations of the 10 INMET stations used in 

this study, and their respective RMSE, in order to verify any 

spatial pattern and the behaviour of the ZWD estimation. This 

fact is not easy to verify due to the low number of stations. 

However, it was observed that the best RMSE values are 

concentrated in the north region, while the highest are in the 

south. This may be due to insufficient information for modelling 

the region, since it is a region of high atmospheric variability. 

 

 

Figure 6. Cartographic representation of the behaviour of the 

RMSE for the INMET stations analyzed.  

 

4. Conclusion 

The wet component of atmospheric delay is an extremely 

important parameter for geodetic and meteorological studies. 

ZWD represents not only an error assessment in GNSS delay 

studies but also a crucial variable in climate studies due to its 

association with the water vapour. In this work, a decision tree-

based model was trained to estimate the wet component using 

only surface input values obtained by radio sounding. The results 

showed an accuracy of approximately 3.8 cm based on the RMSE 

of the model, obtained in the data validation, using the cross-

validation technique, with 30% of the observations used for 

validation. In addition, the model presented a coefficient of 

determination (R²) of 81% and an MAE close to 2.9 cm, 

characterizing the model's fit with the data as within the expected. 

 

The quantile analysis of the time series revealed that the model 

faced significant challenges in identifying extreme values, 

particularly those exceeding 40 cm of delay in the wet 

component. This result shows that the model fails to predict 

extreme events. Subsequently, an analysis was performed using 

2023 data from INMET surface weather stations as atmospheric 

input parameters to test the model with data from another 

technique. The tests were carried out in 10 locations around 

Brazil, where the stations were selected based on the availability 

of data and proximity of the radiosonde stations, looking for 

stations with a distance of less than 10 km.  

 

The results obtained using INMET data to obtain the ZWD 

showed values consistent with the model’s statistical evaluation. 

The region with the highest accuracy observed was Brasília (DF), 

with an MSR close to 2.7 cm. On the other hand, the municipality 

of Corumbá (MS) had the highest RMSE value of approximately 

5.6 cm. 

 

Based on the results obtained in this work, the model trained with 

the Random Forest technique indicates to be a useful tool for 

determining delay values of the wet component. The model 

consists of using surface atmospheric parameters as input values. 

This possibility represents an important advance since the density 

of surface stations is much higher compared to radiosonde 

stations. Although the radiosonde has a high quality due to its in-

situ measurements, there is a low density of stations and a high 

launch cost. In addition, the surface stations have hourly 

sampling, making it possible to estimate the ZWD up to 24 times 

a day.  

 

The random forest method offers several advantages over 

traditional models. Firstly, it is a robust ensemble learning 

technique that combines multiple decision trees to improve 

prediction accuracy and generalization. Unlike the deterministic 

nature of traditional models, RF can handle non-linear 

relationships and interactions between variables more 

effectively. This capability allows it to capture the complex 

dependencies between atmospheric conditions and ZWD, 

potentially leading to more accurate and reliable estimates. 

 

Given the significance of ZWD for studies in Geodesy and 

Meteorology, future research should focus on expanding and 

enhancing the model by increasing the number of stations and 

extending data coverage across South America. Enhancing the 

model is considered crucial through the integration of additional 

information sources in training, such as ZWD-GNSS, Radio 

Occultation, and other remote sensing techniques for obtaining 

water vapour values. The enhanced model can be tested in 

geodetic and meteorological applications, including nowcasting 

rainfall events. Furthermore, future work can explore alternative 
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machine learning techniques, which may yield different results 

due to the improved spatialization of training data. The 

development of models capable of accurately determining the 

wet component can significantly contribute to understanding 

atmospheric behaviour, thereby facilitating data acquisition in 

remote and challenging areas. 
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