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Abstract 

 

This work proposed and evaluated methods for real-time leaf segmentation using a single-board computer. The main aim was to explore 

the state-of-the-art techniques based on the YOLO algorithm for real-time operation. For this purpose, the available variants of 

YOLOv8 and YOLOv9 were evaluated, and a semi-automatic labelling method based on the Segment Anything Model (SAM) 

algorithm was used. Given the need to delimit the leaf contour for labelling, it was possible to create a larger and more accurate dataset 

compared to the purely manual procedure. In addition, the cost-benefit of the applied algorithms and methods were assessed, 

considering the computational demand required, as well as the accuracy, recall, and precision delivered by these techniques. In this 

study, both quantitative analysis of the trained architectures' metrics and qualitative examination through direct observation of images 

were conducted to identify crucial aspects. The experiments were conducted with a post-processed dataset and the suitability for real-

time applications was based on the elapsed time for segmentation. We concluded that the YOLOv8n architecture is the best one among 

those tested, presenting a precision and recall of 0.9064 and 0.7233, respectively. This architecture represents the best cost-benefit 

ratio between computational cost and real-time performance, being able to perform segmentation in 310 ms with the NVIDIA Jetson 

Nano board. Furthermore, when computational cost is not a problem or even when segmentation time can be higher, the YOLO8m 

network may be recommended when the recall metric is more important than precision. This network presented a precision and recall 

of 0.8556 and 0.7726, respectively, and presented a better performance in segmenting leaves located in more complex parts of the 

image and with a higher recall.  

 

1. Introduction 

Promoting sustainable agriculture, optimizing crop yield and 

plant phenotyping are crucial needs. Characteristics such as 

colour, shape, plant height, leaf area index, and growth rate are 

essential data for the phenotypic assessment. In this regard, the 

automated extraction of leaves from plant images can 

significantly boost phenotypic analysis with the advantage that it 

is a non-destructive technique (Li et al., 2014). With this 

approach, it becomes feasible to monitor the growth cycle of 

crops, identify plant health problems, and optimize agricultural 

practices (Ghazal et al., 2019). A particular problem is the 

automatic leaf segmentation in images of plants with complex 

backgrounds. 

 

The advances in image processing technology and deep learning 

algorithms have enabled several researches to identify and 

segment multiple leaves in a single image. Aich and Stavness 

(2017) employed a deep-learning architecture to count leaves in 

plant images. Kuznichov et al. (2019) enhanced leaf 

segmentation accuracy using data augmentation methods. In a 

comparative study, presented by Scharr et al. (2016), four leaf 

segmentation methods for digital plant images using deep 

learning were evaluated, resulting in an average accuracy 

exceeding 90%. However, researchers noted that a complex 

background could affect this accuracy. To cope with these 

challenges, Yang et al. (2020) proposed leaf image segmentation 

and classification with complex backgrounds using Mask R-

CNN (Mask Region Convolutional Neural Network) (He et al., 

2017) to recognize and extract object regions from the 

background at the pixel level. According to the authors, this 

method is suitable for leaf segmentation, having fewer 

parameters and lower depth architecture. 

 

However, in real-world applications such as agricultural fields, 

small and low-latency models are often required, explicitly 

tailored for devices with limited memory and computational 

power while maintaining comparable or better accuracy. In this 

context, Cao et al. (2023) proposed the use of Mask R-CNN for 

the detection and segmentation of strawberries in an orchard 

using images. This model combines features from different scales 

and was implemented on a Jetson Nano board, achieving 19 

frames per second (FPS) and a mean average precision (mAP) of 

79.7%. Liu et al. (2023) proposed the use of a model called 

NanoSegmenter, based on the Transformer structure, for 

segmentation and disease detection in a tomato plant. This model 

can run on Jetson Nano, achieving an inference speed of 37 FPS 

with a precision of 98%. Additionally, Ji et al. (2022) proposed a 

detection and localization method for a harvesting robot based on 

Shufflenetv2-YOLOX, built upon YOLOX-Tiny in conjunction 

with Shufflenetv2. This method achieved an average precision of 

96.76% and a detection speed of 65 FPS. These models can be 

efficiently deployed in the field using single-board computing 

(SBC) platforms like Jetson Nano, ensuring practical 

applicability in real-world agricultural environments as 

mentioned in Assunção et al. (2022). 

 

Hence, it is apparent that current studies in this field tend to 

favour simpler architectures to attain optimal performance in 

frames per second (FPS), often relying on outdated and 

streamlined neural network architectures. Given this perspective, 

the contribution of this work involves using deep learning 

networks for real-time implementation and assessing their 

viability for deployment on the Jetson Nano board. This method 

will be utilized to perform leaf instance segmentation in 

terrestrial images captured under ambient lighting conditions, 

thereby addressing variations induced by natural illumination and 

object occlusions commonly faced in natural scenes. These 
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scenes often involve partial occlusions, shadows, and notable 

differences in illumination levels.  

 

The remainder of the paper is organized as follows: in Section 2, 

the theoretical foundations regarding the artificial intelligence 

methods that were investigated are presented, as well as the 

single board computer (SBC) that was used for the application of 

the trained methods. In Section 3, the materials and methods used 

in the present study are presented, including the libraries, 

programming language, and configurations employed to achieve 

the presented results. In Sections 4 and 5, the results and 

conclusions are presented, respectively. 

 

2. Background 

2.1 YOLOv8 

YOLO (You Only Look Once) was originally an object detection  

method designed to meet various demands, aiming to locate and 

label objects directly in a single pass through the network, 

enabling satisfactory performance in object detection in general 

images (Adibhatla et al., 2020). However, over the years 

variations and adaptations have emerged to use YOLO in other 

tasks than detection, such as segmentation. Therefore, a series of 

YOLO network versions have been widely used in the industry, 

including the latest variants YOLOv8 (Jocher et al., 2023) and 

YOLOv9 (Wang et al., 2024). YOLOv8 was released in January 

2023 by Jocher et al. (2023).The version v8 has five different 

scales, i.e., network depth and number of neurons and 

parameters: YOLOv8n (nano), v8s (small), v8m (medium), v8l 

(large), and v8x (extra-large). YOLOv8 supports various 

computer vision tasks such as object detection, segmentation, 

pose estimation, tracking, and classification. Despite the different 

names and applications, obtaining any of these outputs requires 

passing through the network only once, making it a single-step 

process. 

 

Figure 1 illustrates the detailed architecture of YOLOv8, which 

employs a backbone similar to YOLOv5, with some changes in 

the CSPLayer, now called the C2f module. This module 

combines high-level features with contextual information to 

enhance detection accuracy. Additionally, YOLOv8 utilizes an 

anchor-free model with a decoupled head to process detection, 

classification, and regression tasks. This design allows each 

branch to focus on its respective task, contributing to improving 

the overall model accuracy (Jocher et al., 2023). 

 

In the output layer of YOLOv8 (Head), the sigmoid function is 

adopted as the activation function for the score, which represents 

the probability that the bounding box contains a given object. 

Additionally, the softmax function is applied to calculate class 

probabilities, indicating the likelihood of an object belonging to 

a certain class.  Finally, the Dynamic Focal Loss (DFL) and 

Completed Intersection over Union (CIoU) loss functions are 

used for bounding box loss, while binary cross-entropy is 

employed for classification or segmentation loss, being that the 

cross-entropy calc will change depending on the network 

application. These losses are chosen to enhance object detection 

performance, especially in cases involving smaller objects 

(Terven et al., 2023). 

 
Figure 1. Architecture of YOLOv8. Source: Adapted from Jocher et al., (2022). 
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2.2 YOLOv9 

On the other hand, YOLOv9 incorporates the concept of 

Programmable Gradient Information (PGI), aimed at addressing 

the challenge of data loss in deep neural networks. In traditional 

architectures, as information passes through various layers, there 

are some losses, resulting in less efficient learning and model 

performance degradation. PGI allows for more precise control 

over gradients during the training process, ensuring that critical 

information is preserved and used more effectively. This results 

in improved learning outcomes and model accuracy (Wang et al., 

2024). 

 

Another important concept is the use of Generalized Efficient 

Layer Aggregation Network (GELAN), which enhances model 

performance and efficiency by optimizing how different layers of 

the network aggregate and process information. The primary goal 

of GELAN is to maximize parameter utilization, ensuring that the 

model achieves higher accuracy without a proportional increase 

in computational resources or model size. This enables handling 

object detection tasks with greater precision and efficiency 

(Wang et al., 2024). 

 

As for the available versions of YOLOv9, there are also five 

scales, namely: YOLOv9-n (nano), YOLOv9-s (small), 

YOLOv9-m (medium), YOLOv9-c (compact), and YOLOv9-e 

(extended), each varying the number of parameters (complexity 

of the model) and consequently the performance. These models 

cater to diverse requirements, ranging from lightweight 

applications to more extensive and high-performance 

applications. Figure 2 provides a visualization of the comparative 

performance between YOLOv8, YOLOv9, and the latest models 

released for the MS COCO dataset. The performance of the 

models is presented using the Average Precision (AP) metric, i.e., 

the fraction of correct predictions (true positives) among all 

predictions made by the model for MS COCO dataset. 

Furthermore, these values are presented using a standard video 

card, thus allowing a comparison of the performance of each 

architecture. 

 

 
Figure 2. Performance of the latest models released for object 

detection running on an NVIDIA V100 graphics card, including 

YOLOv8 and YOLOv9. 

 

2.3 Single Board Computers 

There are numerous embedded devices that can be used in 

various applications, depending on the function they perform, 

their complexity, and supported technology, among other factors. 

Due to the rapid evolution of technology in recent decades, it has 

been possible to integrate most of the functional elements of an 

electronic system into a single chip. Thus, Single Board 

Computers (SBCs) emerge as complete computers built on a 

single printed circuit board that contains memory, processor, 

input/output devices, and other components. They are based on 

System-on-a-Chip (SoC), which has all the integrated 

components  (Murshed et al., 2021). 

 

The main function of these devices is to reduce device size and 

costs and increase efficiency and performance. The key 

components included in these devices are CPU, RAM memory, 

input and output controllers, Graphics Processing Unit (GPU), 

communication controllers, and, in some cases, Tensor 

Processing Unit (TPU). In general, SoCs do not have an operating 

system embedded in the chip itself; instead, the system that runs 

at initialization on the SoC’s CPU loads the operating system to 

the memory when the device is powered on or rebooted (Garcia-

Perez et al., 2023). 

 

3. Material and Methods 

3.1 NVIDIA Jetson Nano 

The NVIDIA Jetson Nano, a Single-Board Computer, was 

chosen for the current application due to its ability to provide 

significant computational power in a compact and energy-

efficient form factor. The decision was strongly influenced by the 

presence of the NVIDIA Maxwell GPU, which enables efficient 

execution of deep learning models such as YOLO, which are 

used for real-time object segmentation. This hardware integration 

offers a powerful and efficient solution to meet the demands of 

real-time artificial intelligence processing. 

 

3.2 Dataset and Preprocessing 

In this study, the main component used for image acquisition was 

the multispectral camera, Sony A7R Multispectral Sextuple 

model, equipped with a six-lens system developed by Agrowing. 

This system has different lenses to produce six distinct quadrants, 

each one with different spectral bands. Table 1 presents the 

specifications of the sensor used, according to (Agrowing, 2024). 

 

Parameter Specification 

Type 
Single assembly with six 

lenses 

Field of view 

Diagonal 40.8º 

Horizontal 25.0º 

Vertical 25.0º 

Lens distortion < 2% 

Multispectral bands 

Q1 (405, 570, 710nm)  

Q2 (525, 630nm) 

Q3 (850nm) 

Q4 (430, 550, 650nm) 

Q5 (490, 732nm) 

Q6 (450, 560, 685nm) 

Focal length 21.8mm 

Aperture Fixed at F/6 

Dimensions 64.5x35 mm 

Table 1. Specifications of the Multispectral Camera, Sony A7R 

Multispectral Sextuple model.  
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Regarding the dataset, ground acquisition was performed 

manually with the Sony A7R Multispectral Sextuple camera 

without the use of a tripod or any type of support. The collected 

data is a citrus orchard located in the countryside of São Paulo 

state, in the municipality of Matão (Lon. -48. 3665 and Lat. -

21.6034).  

 

The image processing was carried out using the Agrowing Basic 

software. The individual spectral bands are extracted with this 

software. Originally, the image contained information regarding 

six lenses, and through the initial processing, it was possible to 

split the image into 14 distinct images corresponding to specific 

wavelengths. 

 

In this study, RGB compositions were used as input for the 

models to be close to those contexts of real-time applications with 

ordinary onboard cameras. An important aspect was to adjust the 

contrast of the images to improve visualization and 

understanding of the image contents, thereby facilitating the 

targets’ distinction. To achieve this, a brief study of possible 

methodologies was conducted, and among them, histogram 

stretching using the 2% and 98% percentiles was chosen 

(Langarizadeh et al., 2011). Thus, the process was carried out for 

image bands corresponding to 430, 550 and 650 nm wavelengths.  

 

To perform histogram stretching, we first identified the lowest 

and highest pixel values in the image, denoted as 𝑐 and 𝑑, 

respectively. Then, each pixel 𝑃 is scaled using Equation 1. 𝑃𝑜𝑢𝑡 

is the normalized pixel value, 𝑎 and 𝑏 are the two extreme gray 

values, for example, in an 8-bits image, these are 0 and 255 

(Jensen, 2015). Additionally, image cropping was performed to 

enhance the visualization and avoid the detection, classification, 

and segmentation over the original full-size image.  

𝑃𝑜𝑢𝑡 = (
𝑃 − 𝑐

𝑑 − 𝑐
) × (𝑏 − 𝑎) + 𝑎 (1) 

 

This step, when carried out in real-time on the NVIDIA Jettson 

Nano, will be used as a calibration step for the image acquisition 

parameters. 

 

3.3 Artificial Intelligence Frameworks, Data Collection, and 

Conducted Experiments 

The YOLO approach was adopted as the main technique. For the 

implementation and execution of YOLO, the Ultralytics library 

was used, recognized for its efficient implementations and pre-

trained models, which provide accurate and reliable object 

segmentation results. In addition to Ultralytics library, the 

PyTorch (Paszke et al., 2017, 2019) and TorchVision libraries 

were used. PyTorch is an open-source deep learning framework 

that offers flexibility and ease of use in AI model research and 

development. TorchVision is a complementary library to 

PyTorch, providing common computer vision datasets and 

models, as well as image transformations for data preprocessing.  

 

After the object detection and segmentation, a thorough 

evaluation was necessary to ensure the quality of the results. For 

this analysis, the Pandas (McKinney, 2010) library was 

employed, known for its flexibility and data manipulation 

capabilities. Through Pandas, we could examine and visualize the 

YOLO model's output data, allowing for a deeper understanding 

of the detection and segmentation, and the identification of code 

snippets for improvement. Additionally, the NumPy (Harris et al. 

2020) library played a fundamental role in various steps of the 

process. 

 
Figure 4. YOLOv9c-Seg architecture used. Source: Adapted from Wang et al., (2024)  
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Based on this, the dataset was created using the collected data. 

This step was conducted through a semi-automatic collection 

methodology with the assistance of the Segment Anything Model 

(SAM) algorithm (Kirillov et al., 2023). SAM is an image 

segmentation model that allows for immediate segmentation of 

desired features to serve as training data. Subsequently, the 

segments created by SAM were visually evaluated to verify if 

they presented satisfactory results or if they needed manual 

refinement. This semi-automatic labelling process provided a 

significant gain in time for dataset generation for training, 

validation, and testing. While the fully manual process is 

burdensome, there is still a step of manual evaluation and 

adjustment if necessary. Using this method, we obtained 1203 

leaf segments used for training, validation, and testing, 

distributed in 60%, 20%, and 20%, respectively.  

 

It is important to highlight that the SAM algorithm is used solely 

to construct the dataset for building the models, and it is executed 

only in the training environment. The training was conducted on 

the Google Colab platform, and only the final model was 

transferred to the NVIDIA Jetson Nano. Therefore, only 

inference is performed on the SBC. The training environment 

consists of an Intel Xeon Platinum, an NVIDIA T4, and 25 GB 

of RAM.  

 

Although Ultralytics has already published the YOLOv9-Seg 

model, at the time this paper was being written, it was not 

possible to train it using their library. Therefore, it was necessary 

to manually construct the architecture for training. The 

architecture used to conduct the experiments is presented in 

Figure 4. Notice that this architecture was built based on 

YOLOv9c, and attempts were also made to construct the 

YOLOv9e variation. However, due to the lack of documentation 

on the latter, a variation was proposed for training execution. The 

proposal involves using information at the P3, P4, and P5 

extraction levels, i.e., in multi-resolution, as often employed in 

YOLO. This information was extracted from layers 15, 18, and 

21. Additionally, Figure 4 presents the generic block of GELAN, 

used as the basis for the proposed architecture, along with a 

convolutional block consisting of a set of operations. Thus, it 

became feasible to use the YOLOv9c architecture to perform all 

necessary processes, including detection, classification, and 

realising instance segmentation. 

 

4. Results 

Tests were carried out on each of the YOLOv8 and YOLOv9 

architecture variations to select those that would be viable for 

real-time inference, that is, the time that each of these 

architectures would take to perform inference once the data are 

collected. Average elapsed times are presented in Table 2. It was 

observed that as the complexity (number of parameters) of the 

architecture increased the processing time also increased 

proportionally. In addition, despite the increased complexity of 

the YOLOv9-based versions, there was no significant increase in 

inference time, which was equivalent to that of the YOLOv8 

versions.  

 

Model Detection 

Segmentation 

(Detection 

included) 

Parameters 

(Complexity) 

YOLOv8n 220ms 310ms 3M 

YOLOv8s 482ms 645ms 11M 

YOLOv8

m 
1086ms 1385ms 27M 

YOLOv8l 1773ms 2427ms 45M 

YOLOv8x 2939ms 3455ms 71M 

YOLOv9c 1222ms 1685ms 27M 

YOLOv9e 2493ms 3131ms 59M 

Table 2. Average inference times for each of the architectures 

running on the Jetson Nano. 

 

Analysing the results, it is notable that any of the architectures 

can be used if the processing time can exceed 3455 ms. In such 

cases, the smallest architecture can be used, enabling execution 

in about 310 ms. Therefore, these architectures are suitable for 

real-time implementation, with the main difference between 

them being the inference quality and the amount of training data 

required. Table 3 presents the average confidence (probability) 

levels, mAP50, and mAP50-95, and the number of measurements 

(objects) achieved. The mAP50 (mean Average Precision 50% 

confidence) is a metric used to evaluate the accuracy of object 

detection models. It measures the average precision of detection 

across all classes when the confidence threshold is set to 50%. 

mAP50-95 (mean Average Precision between 50% and 95% 

confidence) is similar to mAP50 but considers the precision 

across a range of confidence thresholds, from 50% to 95%. This 

metric provides a broader understanding of the model's 

performance across different confidence levels, capturing its 

robustness and reliability in various scenarios. It is important to 

note that the images used have dimensions of 2252×2252 and are 

divided into several 640×640 patches to enable proper execution 

and feature extraction. Therefore, the construction of patches 

without overlapping between them and the excess part is 

discarded. The confidence and quantities presented in Table 3 are 

based on three different image examples, which are images from 

the test dataset Predictions are then performed on the test data 

and the metrics presented in the table are obtained from those 

predictions. 

 

Model mAP50 mAP50-95 
Conf. 

(mean) 

Measurements 

(leaves 

identified) 

8n 0.6825 0.4106 0.7551 32 

8s 0.7150 0.4443 0.7284 27 

8m 0.7465 0.4589 0.6922 25 

8l 0.7002 0.4084 0.7226 26 

8x 0.3703 0.1612 0.8891 95 

9c 0.4475 0.2127 0.2999 17 

9e 0.6601 0.3919 0.6214 20 

Table 3. Metrics obtained during the tests of the YOLO 

architectures. 

 

The comparative analysis between the YOLOv8 and YOLOv9 

architectures shows a pattern of progressive increase in 

segmentation time as the architecture complexity rises, as 

expected. For instance, the segmentation time of YOLOv8n was 

220 ms, while of YOLOv8x reached 2939 ms, representing a 

substantial increase of approximately 1236%. However, it is 

worth noting that, for our dataset, this increased complexity does 

not necessarily translate into proportionally better performance 

in terms of precision metrics. For example, although YOLOv8x 

has the longest segmentation time, its mAP50 only reaches 

37.03%, compared to YOLOv8m, which achieves a mAP50 of 

74.65%, with a segmentation time of 1086 ms, representing a 

gain of approximately 101.62%. Regarding precision, for both 

mAP50 and mAP50-95, it is evident that YOLOv8m stands out, 

presenting the best performance with a mAP50 of 74.65% and a 

mAP50-95 of 45.89%. On the other hand, YOLOv8x achieved 

the lowest scores, with a mAP50 of 37.03% and a mAP50-95 of 

only 16.12%. Compared with YOLOv8n, we observed that 

YOLOv8m represented a gain of approximately 9.20% in 

mAP50 and 11.39% in mAP50-95, highlighting its superiority in 
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terms of object segmentation precision. Regarding the 

confidence of predictions, it is interesting to note that, despite the 

high confidence of YOLOv8x (confidence of 88.91%) its overall 

precision is considerably lower compared to YOLOv8m, which 

has a confidence of 69.22% and offers more consistent 

performance in terms of mAP50 and mAP50-95. The analysis 

suggests that YOLOv8m is the best choice in terms of object 

segmentation precision, as it presents a favourable balance 

between segmentation time and performance of precision 

metrics. However, if segmentation speed is the priority, 

YOLOv8n or YOLOv8s can be considered, although there is a 

precision loss. 

 

In addition, Figure 5 shows the training and validation metrics 

over the epochs for each architecture. It can be observed that as 

the model complexity increases (as shown in Table 2), more 

epochs are required for training and more computational 

resources are used. The training step exhibits a noisy behaviour, 

i.e., convergence based on loss is achieved, but accuracy and 

recall do not fully stabilize over time. This can be justified since 

a small dataset was used. Even though, the results are satisfactory 

and can be used. The YOLOv8n (blue line) and YOLOv8s (red 

dashed line) networks, on the other hand, show a reasonable 

performance, and the YOLOv8m (green dashed line) architecture 

achieves the best results. This architecture presents high 

precision and recall values, but also the smallest possible 

architecture in relation to the number of parameters and layers. 

During training, we made an intentional choice to prioritize 

precision over recall. This decision was driven by the need to 

ensure more accurate and reliable predictions from the model. As 

a result, recall values tend to be lower, as expected and modelled, 

as it can be seen in Table 4. This emphasis on precision is 

particularly crucial in our current context, where false positives 

could have significant consequences, especially in agricultural 

applications where misidentification might impact critical crop 

management decisions. 

 

 
Figure 5. Precision and recall curves obtained during the 

validation and loss during the training of each of the models.  

 

Model Precision Recall Number of epochs 

8n 0.9064 0.7233 745 

8s 0.8212 0.6454 944 

8m 0.8556 0.7726 738 

8l 0.8842 0.7575 1235 

8x 0.4596 0.4668 302 

9c 0.4894 0.1800 1286 

9e 0.8440 0.7545 2480 

Table 4. Precision, recall, and number of epochs needed for 

training, obtained during the training and validation of the 

proposed architectures using Early Stopping. 

 

However, if the goal is to run in the shortest possible time, the 

YOLOv8n architecture has approximately 0.7233 percentage 

points of recall but surpasses 77% in execution time, going from 

1385 ms with YOLOv8m to 310 ms with YOLOv8n. It is 

important to note that although YOLOv8x is the most robust of 

all and presents the best performance when analysed on the 

COCO dataset (Lin et al., 2014), it requires a huge volume of data 

that was not available in this work. Observing the losses over the 

epochs, this architecture neither converged nor achieved a good 

result, as depicted in Figure 5. Regarding the YOLOv8s 

architecture, although it is intermediate between YOLOv8n and 

YOLOv8m, it presented a worse result for both recall and 

precision. Therefore, it can be concluded that increasing the 

architecture parameters was not beneficial in this study case. In 

addition, Table 4 shows the precision and recall values 

considered for each model using the Early Stopping method. 

 

When analysing the YOLOv9-based models, it is observed that 

there is a significant increase in the number of epochs required 

for training. Even though the developed model presented a 

satisfactory result. Nevertheless, when compared to YOLOv8l, 

for example, there is a decrease of 4, 1, and 10 percentual points 

for mAP50, mAP50-95, and confidence, respectively. In 

addition, there is an increase of approximately 100% in training 

time and 29% in execution time on the NVIDIA Jetson Nano. 

Therefore, it is justified that for the present dataset, it is better to 

use the YOLOv8 architectures, since they present a shorter 

response time, which is suitable for real-time inference, and 

slightly superior performance. Finally, in Figure 6, there is an 

example that includes leaves that are straightforward to segment 

and leaves that, due to the complex scenario, are hard to segment. 

Figure 6 shows the bounding boxes from the detection process, 

the segments obtained (red masks on objects detected) for each, 

and the confidence scores for each of these. With these results, it 

is possible to verify the performance of each of the models. The 

best results were achieved with YOLOv9, which identified more 

leaves, but these results are often incorrect, as shown in Table 3, 

where 95 leaves were measured with a high confidence level 

when compared to the other models. However, it is possible that 

these are false negatives, based on Table 4, due to the low recall 

value of this model. However, for the other models, the result, 

despite presenting different behaviours for each one, highlights 

that the best architectures were YOLOv8l and YOLOv8n, as 

previously mentioned. With respect to YOLOv9c, it can be noted 

that it was able to segment some leaves, but the performance was 

not comparable to YOLOv9e. In addition, it is noted that the 

training of this model ends up having a different behaviour; after 

approximately 1300 epochs, the accuracy of the model tends to 

improve, but the recall starts to drop, reaching 0.1800, as can be 

seen in Table 4. 
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Figure 6. Bounding boxes, segments (masks) and confidence 

levels obtained from predicting architectures for a test image.  

 

5. CONCLUSION 

This study introduced and evaluated techniques for real-time leaf 

detection and instance segmentation with inferences running on 

a single-board computer. The primary objective was to 

investigate cutting-edge approaches utilizing the YOLO 

algorithm and its real-time capabilities. To achieve this, various   

YOLOv8 and YOLOv9 scaled models were examined, alongside 

employing a semi-automatic labelling approach based on the 

Segment Anything Model (SAM) technique. By focusing on 

delineating leaf outlines, a method was devised to generate more 

extensive and precise datasets compared to conventional 

methodologies, particularly concerning labelling. Furthermore, 

the study assesses the cost-effectiveness of the implemented 

techniques, considering their computational requirements and the 

confidence, recall, and precision they provide. 

 

The models built based on the YOLO v8 and v9 architectures 

were experimentally assessed, and some metrics were presented 

and analysed. Although the inference time can reach 3455 ms, 

real-time applications in agriculture are viable, as confirmed in 

the experiments. It was also concluded that the YOLOv8 variant 

architectures have presented slightly superior performance when 

compared to the YOLOv9-based architectures, probably due to 

the amount of data used. It is also observed that the dataset, even 

having more than 1200 segments, is still considered small, 

compared to datasets required for training deep learning models. 

Therefore, for future work, it is recommended to augment the 

dataset. 

 

This work proposes a large-scale and real-time data collection 

technique for obtaining phenotypic characteristics. With this 

technique, it is possible to monitor the growth cycle of crops, 

identify plant health problems early on, and optimize agronomic 

management, such as irrigation, fertilization, and pest control. In 

addition, it is noteworthy that this technique can contribute to the 

mapping of vegetation cover, biomass, productivity estimation, 

and weed identification. Although this work has focused on 

utilizing a citrus orchard, the proposed techniques for real-time 

leaf detection and instance segmentation are applicable to various 

other tree types, as they involve the extraction of leaf 

information. Consequently, the presented method has potential to 

support the estimation of the production of many other fruits, 

while also serving as a foundation for extending into other 

computer vision methodologies.  It is recommended for future 

work to use the other bands of the Agrowing camera since this 

study only used the bands of the visible spectrum. It is also 

important to study issues such as the SBC system's onboard 

power supply and continuous operation time. 
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