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Abstract

Semantic segmentation is essential in the field of remote sensing because it is used for various applications such as environmental
monitoring and land cover classification. Recent advancements aim to collectively classify data from diverse sensors and epochs to
improve predictive accuracy. With the availability of vast Satellite Image Time Series (SITS) data, supervised deep learning meth-
ods, such as Transformer models, become viable options. This paper introduces the Temporal Vision Transformer(ViT), designed
to extract features from SITS. These features, capturing the temporal patterns of land cover classes, are integrated with features
derived from aerial imagery to improve land cover classification. Drawing inspiration from the success of transformers in Natural
language processing (NLP), Temporal ViT concurrently extracts spatial and temporal information from SITS data using tailored
positional encoding strategies. The proposed approach fosters comprehensive feature learning across both domains, facilitating
seamless integration of encoded data from SITS into aerial images. Furthermore, a training strategy is proposed that supports the
Temporal ViT to focus on classes with a changing appearance over the year. Extensive experiments carried out in this work indicate
the enhanced classification performance of Temporal ViT compared to existing state-of-the-art techniques for multi-modal land
cover classification. Our model achieves a 3.8% increase in the mean IoU compared to the network solely relying on aerial images.

1. Introduction

Semantic segmentation is a task in photogrammetry, remote
sensing, and computer vision in which a class label is assigned
to each pixel in the image. In the field of remote sensing, se-
mantic segmentation has a long history and has always been
key to extracting detailed information from satellite or aerial
imagery for various applications such as environmental monit-
oring and land cover analysis (Blaschke et al., 2000; Yuan and
Sarma, 2010; Yang et al., 2016). Semantic segmentation based
on a single data source such as aerial or satellite images from
a single point in time has been extensively investigated (Mar-
manis et al., 2016; Favorskaya and Zotin, 2021; Niu et al., 2021)
Many works have shown that the results of the classification can
be improved by combining data from multiple sensors (Bene-
detti et al., 2018; Bergamasco et al., 2023; Garioud et al., 2023)
. Over the past few years, there has been a growing interest in
jointly classifying data from different sensors, and time steps
(Benedetti et al., 2018; Bergamasco et al., 2023; Garioud et al.,
2023; Yan et al., 2023). The heterogeneous nature of remote
sensing data, which includes variations in spectral, spatial, and
temporal resolution, comes along with both strengths and lim-
itations for each type of data. Aerial imagery, with its remark-
able spatial resolution, faces challenges in temporal frequency
due to the high costs of acquisition and the lack of consistently
available systems for capturing these images. This limitation
obstructs the thorough representation of temporal object char-
acteristics in remote sensing data, particularly affecting the ac-
curate distinction of classes such as vegetation, which undergo
varying appearances over time. Conversely, SITS data provide
high temporal frequency and the capacity to capture temporal
changes. This enables models to learn temporal patterns from
such data. However, it does suffer from lower spatial resolu-

tion, which compromises the precise distinction of highly de-
tailed objects. To benefit from the respective modality-specific
(in this paper, by different modalities, we specifically mean aer-
ial and satellite imagery) advantages, both satellite and aerial
images can be combined to improve the classification of land
cover.

The main objective of this paper is to present a method that
combines SITS and mono-temporal aerial images to obtain
a land cover map at the spatial resolution of the aerial im-
age while exploiting temporal information contained in SITS.
Given the remarkable achievements of deep learning techniques
(Yuan et al., 2020), current approaches dedicated to the se-
mantic segmentation of multi-sensor remote sensing data are
predominantly based on such deep learning architectures (Ienco
et al., 2019; Garioud et al., 2023; Yan et al., 2023). The re-
cent success of transformers (Vaswani et al., 2017) in Natural
Language Processing has been extended to computer vision
tasks. Vision Transformer (ViT)(Dosovitskiy et al., 2021) ad-
apts transformer-based architectures originally used for NLP to
process images by treating them as sequences of patches rather
than pixels, pioneering their application in image classification.
By partitioning an image into patches that are considered as
tokens, ViT facilitates the adaptation of transformer models to
vision-related tasks. However, very few research studies have
used self-attention approaches to jointly integrate SITS and aer-
ial images in classifying land cover (Garioud et al., 2023). The
study of (Garioud et al., 2023) incorporated a self-attention
module to process SITS only in the temporal dimension. The
results show improvements by integrating temporal information
compared to exclusively utilizing aerial images for land cover
classification. Leveraging the core concept of ViT, ViT vari-
ants have demonstrated effectiveness in handling SITS data,
particularly for the task of semantic segmentation. (Tarasiou

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3-2024 
ISPRS TC III Mid-term Symposium “Beyond the canopy: technologies and applications of remote sensing”, 4–8 November 2024, Belém, Brazil

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-3-2024-169-2024 | © Author(s) 2024. CC BY 4.0 License.

 
169



et al., 2023) introduced Temporal-Spatial Vision Transformer
(TSViT) for SITS network for handling SITS data, and they
demonstrated that the order of factorization; i.e., extracting tem-
poral then spatial information from SITS data is more important
for downstream tasks such as semantic segmentation. This net-
work architecture showcases the promising utilization of trans-
former blocks in synthesizing SITS data, thus offering an av-
enue to enrich spatial details extracted from aerial imagery by
incorporating temporal information extracted from SITS. Pre-
vious approaches for integrating self-attention into SITS data
(Tarasiou et al., 2023; Voelsen et al., 2023) have often followed
a two-step approach. Such approaches generally involve en-
coding images separately, first in the spatial domain, then in the
temporal domain, or vice versa. While processing spatial and
temporal information concurrently enables a model to capture
intricate interactions and obtain comprehensive representations
of data spanning both domains, the sequential nature of existing
approaches introduces challenges in directly computing atten-
tion weights across both domains, potentially impeding effect-
ive encoding. The present work aims to overcome this limita-
tion.

Motivated by the improvements demonstrated in prior research
employing transformers for extracting temporal features from
SITS data, we introduce our Temporal ViT network. Draw-
ing inspiration from self-supervised pre-training (Cong et al.,
2022), the positional encoding is adapted in both temporal and
spatial dimensions. This enables collective tokenization of the
entire set of time series input, which is subsequently processed
by a ViT encoder. Such simultaneous processing of spatial and
temporal data promotes comprehensive global receptive fields
in both domains. Consequently, our approach facilitates feature
learning across both temporal and spatial dimensions of SITS.
The extracted features from SITS data are seamlessly combined
with features learned from aerial images, enhancing the feature
maps of the latter with encoded information from SITS to im-
prove the final land cover classification. The scientific contri-
butions of this work can be summarized as follows:

• We propose a Temporal ViT encoder for SITS so that we
can combine spatial and temporal features from SITS with
aerial imagery to improve the results of land cover clas-
sification. At the core of the Temporal ViT are a spatio-
temporal positional encoding and an additional learnable
classification token, from which we derive the pixel-wise
label map.

• We investigate various positional encoding schemes and
show that integrating both the spatial and temporal posi-
tion of each patch in the image of the SITS data can im-
prove the performance of the classifier in correctly predict-
ing land cover classes.

• Furthermore, a training strategy is proposed that guides
the Temporal ViT to focus on classes with a changing ap-
pearance in SITS, while simultaneously detailed geomet-
rical information about all classes is forced to be extrac-
ted from aerial images, aiming at high-quality multi-modal
land cover prediction.

2. Related Work

In this section, we review related work that focuses on the in-
tegration of multi-sensor and multi-temporal data for classific-
ation. We start by looking at existing approaches that use con-
ventional machine learning models, then we introduce models

based on convolutional neural networks (CNNs; (LeCun et al.,
1989; Krizhevsky et al., 2012)) and how they are used to jointly
combine data from multiple sensors. Finally, we discuss the
few existing approaches that utilize attention-based modules to
jointly fuse aerial and satellite image time series data.

2.1 Classical machine learning methods

Machine learning methods have been used to classify multi-
modal data. For instance, Campos-Taberner et al. (2019),
stacked multi-temporal Sentinel-2 and Sentinel-1 images,
which were then utilized to train diverse traditional machine
learning classifiers, including decision tree ensembles and Sup-
port Vector Machines. Moreover, to enhance crop type predic-
tion, a discriminative linear chain Conditional Random Field
is employed to model temporal dependencies (Giordano et al.,
2018). However, such traditional models rely on hand-crafted
features extracted from the input images, which is why they
have mostly been supplanted by deep learning architectures that
can learn to extract relevant features through convolutional lay-
ers, leading to better performance for the task of classification
(Rußwurm and Körner, 2018; Turkoglu et al., 2021).

2.2 Deep learning methods

Fully Convolutional Networks have frequently been employed
in remote sensing applications for the task of semantic seg-
mentation (Long et al., 2015; Marmanis et al., 2016; Ma et al.,
2021; Voelsen et al., 2022). Those networks utilize convolu-
tional kernels with learnable parameters that are shifted across
the input data to extract discriminative features. In the realm
of multi-modal data, two different principles have been used
to fuse data from multiple sources. On the one hand, features
from different sources can be combined and provided as a joint
input to a network for further processing. For instance, in (Ad-
rian et al., 2021), Principal Component Analysis is employed
in Sentinel-2 and Sentinel-1 images to convert the original data
into a new set of features. The resultant features are then used
as inputs to a SegNet (Badrinarayanan et al., 2017) to generate
pixel-wise label maps at the geometrical resolution of Sentinel-
2 imagery. This approach is recommended when the inputs
from both data sources have the same spatial resolution. On
the other hand, other works adopted a two-branch architecture
where each data modality is separately processed by a dedicated
CNN-based network. In (Benedetti et al., 2018), a Gated Recur-
rent Unit network is used to process Sentinel-2 time series data
and a 2D-CNN network to extract spatial features from SPOT-
6 mono-temporal images. Features computed separately from
both branches are then concatenated to predict land cover at the
spatial resolution of Sentinel-2 imagery.

Very few CNN-based approaches combine aerial images and
SITS data for pixel-wise classification. In (Bergamasco et al.,
2023), a 3D-CNN network is utilized to extract spatio-temporal
features from Sentinel-2 SITS data which are combined with
features learned from aerial images processed by a 2D-ResNet
(He et al., 2016). The extracted features from each modality
are then combined and used as input to the decoder for the final
classification (Bergamasco et al., 2023). The results show that
combining aerial images and SITS data improves the classific-
ation results compared to uni-modal classification. However,
the method shows limitations in distinguishing classes that are
semantically similar.
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2.3 Attention-based models for SITS

Attention mechanisms, initially developed in the field of nat-
ural language processing (Vaswani et al., 2017), have been ef-
fectively adopted in computer vision with the emergence of
ViT. By substituting convolutional layers with self-attention
modules, ViTs facilitate the comprehensive modeling of inter-
dependencies among image patches on a global scale. Inspired
by ViT, the original ViT network was adapted to handle SITS
data (Tarasiou et al., 2023). Each image in the SITS is divided
into non-overlapping patches and multiple ViT blocks are ex-
ecuted in parallel for each timestep, where attentions are com-
puted between all timesteps of the corresponding patches at the
same spatial location in the image. Afterward, the outputs are
reshaped and the attentions are computed between all patches
of the same timestep to learn spatio-temporal characteristics of
SITS data. Following a different method, in (Voelsen et al.,
2023), a spatio-temporal transformer block (ST-TB) is intro-
duced in the standard Swin Transformer (Liu et al., 2021a), ini-
tially designed for mono-temporal images, to adapt it to SITS
data. ST-TB is employed in conjunction with the standard
Swin-Transformer blocks (STB), where the parallel STBs en-
code individual timesteps. Subsequently, the outputs of all time
steps are fused and encoded by the ST-TB. The two approaches
mentioned above fall short of establishing direct global recept-
ive fields in time and space, which prevents the use of interac-
tions and the acquisition of representations covering spatial and
temporal domains. Although factorizing SITS can be compu-
tationally efficient, this technique is more appropriate for data
types like videos (Arnab et al., 2021), which typically have
higher spatial and temporal resolutions. Tokenization and en-
coding of all temporal epochs of data with such high spatial and
temporal resolutions collectively would result in a large number
of tokens, potentially making it computationally expensive due
to the quadratic complexity of the attention mechanism. How-
ever, this challenge is less significant with satellite images since
they usually have lower spatial and temporal resolutions than
videos.

Distinguished from two-step encoding methodologies, Gao et
al. (2022) introduces a paradigm facilitating space-time atten-
tion through Cuboid Attention. By extracting tokens from
spatio-temporal input cuboids, this method encodes data. Nev-
ertheless, it is important to highlight that this methodology still
lacks direct interaction among patches from diverse spatial and
temporal positions, and further it does not address semantic
segmentation. Masked autoencoders (MAEs) (He et al., 2022)
have emerged as a powerful paradigm in self-supervised learn-
ing, capable of learning rich representations by reconstructing
masked input data. Building upon this foundation,SatMAE
(Cong et al., 2022) employs MAEs to handle temporal and
multi-spectral input data effectively. SatMAE incorporates a
positional encoding for the spatio-temporal or spatio-spectral
dimensions, enabling attention in the respective two domains.
However, it’s essential to note that SatMAE’s primary focus re-
mains on self-supervised learning and is not suitable for tasks
requiring the generation of pixel-wise label maps from SITS. Ir-
respective of the approach employed in leveraging ViT variants
for processing SITS data, there is a need to design a method
for encoding SITS with ViT and merging this feature map with
single-time aerial images to enhance the network’s capacity to
attain land cover classification prediction.

A work that is relatively close to our approach to integrating
SITS data using an attention-based approach for multi-modal

data is (Garioud et al., 2023), where a two-branch architecture
based on U-Net is used to fuse SITS and aerial images. One
U-Net network with lightweight temporal attention (L-TAE;
(Garnot and Landrieu, 2020)) is used for the SITS branch and
a standard U-Net is used for aerial images. A fusion module
is inserted to merge features resulting from both branches. The
module first refines information from SITS data before being
injected through skip connections in the network processing
aerial images to finally produce multi-modal land cover predic-
tions. Furthermore, (Kanyamahanga and Rottensteiner, 2024)
examine the effectiveness of the Swin Transformer (Liu et al.,
2021b) and the method proposed by (Tarasiou et al., 2023) as
SITS encoders within the framework of (Garioud et al., 2023).
However, their approach lacks simultaneous encoding in the
spatio-temporal dimensions.

To the best of our knowledge, none of the existing methods have
examined the utilization of transformer-based models to joint
extraction of spatio-temporal features in the multi-modal land
cover classification task. In this paper, we extend the approach
in (Garioud et al., 2023) by introducing a transformer model,
Temporal ViT, for processing SITS. Unlike previous works,
where spatial and temporal features are extracted one after an-
other, our approach extends ViT, enabling direct and simul-
taneous learning of spatio-temporal representations. Moreover,
we propose a training strategy for the Temporal ViT that aims
at focusing on classes with a changing appearance to extract
the most information through SITS for multi-modal land cover
classification.

3. Methodology

The main goal of our method is to use SITS data and an aer-
ial image to predict one land cover map at the spatial resolu-
tion of the aerial image while exploiting the temporal informa-
tion contained in the SITS. The key idea of our approach is to
use a spatio-temporal positional encoding strategy to effectively
leverage the information contained in SITS data. The proposed
architecture is based on the one proposed in (Garioud et al.,
2023), where our novelty is the design of a fully transformer-
based network for encoding SITS data. Thus, we aim to extract
representative features of objects with a changing appearance
in a better way.

The proposed method, as depicted in Figure 1, consists of
two components: one for processing aerial images, denoted
as Aerial branch, and one for processing SITS denoted as
Satellite branch. Those two branches are connected by a fu-
sion module adopted from (Garioud et al., 2023) to fuse features
learned from both branches which are afterward used to pro-
duce a pixel-wise label map at the spatial resolution of the aerial
image. The Aerial branch is identical to the one in (Garioud
et al., 2023). In Section 3.1, a brief description of the Temporal
ViT, which is the novelty in this paper is provided. More pre-
cisely, our first contribution is a spatio-temporal positional en-
coding in the context of supervised learning, which is described
in Section 3.1.1. The end-to-end encoder-decoder structure of
our network is described in Section 3.1.2, where the SITS de-
coder is our second contribution to the model architecture. The
training procedure used for our approach is described in Section
3.2.

3.1 Temporal ViT for SITS data

In this part, we focus on the Satellite branch also presented in
Figure 1. The input to the Temporal ViT is defined as Xsat ∈
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Figure 1. Network architecture for the joint classification of aerial and of SITS data, adapted from Garioud et al. (2023) . The model
architecture consists of two main branches: the satellite branch and the aerial branch. In the satellite branch, the proposed Temporal
ViT is utilized to encode SITS. Meanwhile, the aerial branch processes aerial image. The encoded SITS data is then fused with the

output of the U-Net encoder through the skip connections, facilitated by a fusion module adopted from Garioud et al. (2023).

RT×Csat×Hsat×Wsat , i.e. T satellite image time steps X of
size Hsat × Wsat with Csat channels. Similar to ViT, each
satellite image X ∈ Xsat is partitioned into N non-overlapping
patches of size N × (B2 × Csat) as shown in Figure 3. Here
N represents the total number of patches in each image and B
denotes the number of pixels in width and height of each patch.

The resulting sequence of flattened time series images is then
concatenated constituting an input vector with dimensions
V × (B2 × Csat), where V = T · N denotes the total num-
ber of patches in the time series. Linear transformations are
applied to these flattened patches to generate the patch embed-
dings ev ∈ Rd with v = 1, ..., V , where d denotes the em-
bedding dimension. Recognizing the permutation invariance of
transformer models, it becomes essential to incorporate posi-
tional information into the input, ensuring the network’s aware-
ness of spatial and temporal relationships. Unlike standard ViT,
originally designed to handle one image, where the positional
encoding encodes the position of each patch within the image
and thus provides the model with the required information with
respect to the order of token, dealing with sequences of time
series requires a different tokenization approach. To achieve
this, a spatial-temporal positional encoding is adapted from
(Cong et al., 2022). In the rest of this paper, we refer to PES−T

as the spatial-temporal positional encoding, as described in Sec-
tion 3.1.1. Moreover, a learnable token, denoted as cls ∈ Rd,
is concatenated to the input patch embeddings to aggregate all
feature maps from the patches and facilitate the generation of
the pixel-wise label map at the end of the network. The input
sequence undergoes processing by the transformer encoder, ad-
hering to the method outlined in (Vaswani et al., 2017). The
generation of the pixel-wise label map is deduced from the out-
put class token, originating from the transformed encoder, as
elaborated in Section 3.1.2.

3.1.1 Spatio-Temporal Encoding The goal of the spatio-
temporal encoding PES−T is to encapsulate information about
the spatial and temporal positions of each patch in each image in
a SITS, which are concatenated together as presented in Figure
2. The mathematical formulation is given as follows:

PES−T (t, s) =

[
PEtemp(t)
PEspatial(s)

]
(1)

In Equation 1, PEtemp denotes the temporal positional en-
coding (see Equation 2), and the spatial positional encoding
PEspatial follows the original ViT positional encoding.

With s in PEspatial denotes the spatial position of the patch
within the image. Where in PEtemp, the t is defined by the
elapsed number of days since the first image acquisition, where
the initial satellite image serves as the temporal reference point,
i.e. day = 0. This specification guarantees the model’s access
to accurate and informative prior knowledge about the temporal
position of each patch in the sequence, where the encoding is
defined as follows:

PEtemp(day, i) =

sin
(

day

100002i/d

)
, if i is even

cos
(

day

100002i/d

)
, if i is odd

(2)

Here, d is the dimensionality of the input embeddings, i is the
dimension index with i ∈ {0, ..., d

3
− 1}. The length of the

temporal positional encoding is defined to be one-third of the
spatio-temporal encoding, as proposed in (Cong et al., 2022),
and 10, 000 is a scaling factor.

As mentioned above, the spatio-temporal positional encoding
PES−T is added to the patch embeddings ev , such that the in-
put to the transformer encoder can be represented by
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Figure 2. Spatio-temporal positional encoding PES−T is
constructed by concatenating spatial positional encoding

PEspatial (blue) and temporal positional encoding PEtemp

(green) , as illustrated in the figure. Here, e represents the
embedded patch.

E = {ev + PES−T (t, s)}t=1,...,T ;s=1,...,N (3)

where E represents a set of all input tokens. the Thus, the model
gains the ability to discern not only spatial but also temporal
relationships between images captured at different acquisition
times.

3.1.2 Encoder - Decoder To grasp the global context across
SITS and abstract both spatial and temporal information, sim-
ilar to ViT, we add a (cls) token to the sequence of patch embed-
ding (E), the result of which is provided to the encoder where
the attention mechanism weighs the importance of each token
in the input sequence to every other token in the input sequence
enabling the encoder to capture spatial-temporal patterns. The
encoder produces a (1 + V )× d-dimensional output, which en-
codes SITS information. Only the class token, cls ∈ Rd, is
preserved from the output sequence as a singular representa-
tion of the learned feature map of the input sequence. Further,
these features have to be redistributed in the spatial domain,
such that a Hsat×Wsat dimensional feature map is obtained to
be integrated with aerial imagery. To do so, this class token is
presented to a multi-layer perceptron (MLP), realizing a trans-
formation f : Rd → RHsat·Wsat , such that a new vector suitable
for subsequent operations is obtained. Following this, the res-
ulting vector undergoes a reshape operation to generate a two-
dimensional feature map of dimensions Hsat ×Wsat, which ful-
fills the desired spatial requirements. Subsequently, the feature
map obtained is further refined through convolutional layers,
resulting in C feature map dimensions of the U-Net model. Fi-
nally, the outputs of the Satellite branch are fused with the
aerial features learned by the U-Net encoder, processing aerial
images. Both the fusion of SITS feature maps and the extrac-
tion of aerial features by a U-Net are identical to (Garioud et
al., 2023).

3.2 Network Training

To train our network, a loss function L comprises a weighted
sum of two losses, i.e. one for the Aerial branch (Laer) and
one for Satellite branch (Lsat). The total loss is minimized
using mini-batch Stochastic Gradient Decent (Ruder, 2016).
Both loss functions, Laer and Lsat, are based on the categorical
Cross Entropy loss, where Laer is selected to be the standard
variant of that loss. In contrast, weights are considered in Lsat.
The loss terms in Lsat belonging to pixels i of a certain class k
are equally weighted, except for loss terms belonging to pixels

Figure 3. Temporal ViT processes a sequence of SITS images,
denoted as t0 to tT , as input. Each image is partitioned into

non-overlapping patches, which are then linearly projected as
depicted by the yellow blocks in Figure. Spatio-temporal

positional embeddings are incorporated into these projected
patches. A cls token is is added to the beginning of the sequence

before feeding it into the Transformer encoder. This token,
representing the final output of the Transformer, has a

dimensionality of 1024.

of the set of classes Cstatic, where no changes in their appear-
ance are expected over time; the loss weight of such pixels is
set to zero, i.e. they do not contribute to the weight update of
the SITS encoder, encouraging to focus on dynamics in appear-
ance. Thus, Lsat becomes

Lsat = −
P∑

i=1

K∑
k=1

yik log(pik)wik (4)

where wik is weight belonging to pixels i for a class k, and
wik = 0 in case the ith sample belongs to a class k ∈ Cstatic

and wik = 1 in all other cases. M is the total number of pixels
in the mini-batch, and K represents the total number of classes.
The binary indicator variable yik denotes whether the target
class label of a pixel i is k (yik = 1) or not (yik = 0). pik is
the softmax output for pixel i to belong to class k.

As the ground truth labels are only provided for aerial images,
covering a smaller area compared to SITS, the predictions of
the SITS branch are first cropped to the small area and then up-
sampled to the spatial extent of the aerial image through bilin-
ear interpolation before computing the loss Lbranch for Satellite
branch. For the aerial branch, the parameters of the network
are initialized starting from the weights pre-trained on the Im-
ageNet dataset (Russakovsky et al., 2015), while for the SITS
branch, the parameters are randomly initialized.

During inference, only the aerial branch predictions are con-
sidered as the final output. Lsat softmax score serve as an aux-
iliary loss function only during the training phase.

4. Experiments & Results

4.1 Dataset

We use the French Land cover from Aerospace ImageRy
(FLAIR) dataset (Garioud et al., 2023), consisting of mono-
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temporal aerial imagery acquired between April 2018 and
November 2021 and Sentinel-2 time series images over one
year tailored for semantic segmentation tasks. The dataset con-
tains 77,762 image patches, each with an aerial image, a SITS,
and a ground truth label map, where the patches are distributed
across 50 regions in France. For aerial images, patches of 512
x 512 pixels with a ground sampling distance (GSD) of 0.2m
are used. Each aerial image contains four channels (red, green,
blue, and near-infrared) and a digital surface model. For SITS,
an image patch of 40 x 40 pixels is considered at a GSD of
10m. Bands originally captured at a ground sampling distance
of 20m are resampled to 10m using bilinear interpolation. The
time series covers the entire year during which the correspond-
ing aerial image was acquired and comprises between 20 and
110 images. Pixel-wise annotations are provided for each patch
at the spatial resolution of the aerial image. These annotations
distinguish between 13 classes, namely: building, pervious sur-
face, impervious surface, bare soil, water, coniferous, decidu-
ous, brushwood, vineyard, herbaceous vegetation, agricultural
land, plowed land and other.

4.2 Experimental Setup

Following the splitting protocol established in (Garioud et al.,
2022), the dataset is divided into three subsets: training, val-
idation, and test set, containing 48,812, 12,900, and 16,050
patches, respectively, summing up to a total of 77,762 patches.
We apply various data augmentation strategies to the training
dataset, namely rotations by 90◦, 180◦, 270◦, horizontal and
vertical flipping, as well as color augmentation which randomly
alters the brightness and contrast of images which results in a
wider range of input variations. In our training procedure, the
batch size used for each epoch is fixed to 4, and the learning
rate is set to 0.01. Furthermore, we utilize a learning rate decay
schedule, reducing the learning rate by a factor of 0.1 every 10
epochs. However, to further prevent over-fitting, early stopping
is employed; training is stopped if there is no decrease in the
validation set loss over 30 consecutive epochs. Regarding the
hyper-parameters of ViT, we opt for patch of the size B = 16
pixels, a depth of 24 (number of transformer blocks), and em-
ployed 16 self-attention heads. All these hyper-parameters were
selected based on their performance on the validation dataset.
The hyper-parameters of the aerial branch are identical to those
in (Garioud et al., 2023). Our method was implemented using
PyTorch Lightning framework (Falcon and The PyTorch Light-
ning team, 2019) and the training is carried out on 2 Nvidia
A100 GPUs.

We conduct three sets of experiments. In the first set of experi-
ments, we use the U-Net (Garioud et al., 2022), to predict land
cover only based on the aerial images; its results are compared
against those of the other methods, which use SITS data and
aerial images, to assess the impact of the SITS on the classi-
fication. To evaluate the influence of Temporal ViT, we also
consider the second set of experiments based on the U-TAE
and U-Net architectures (U-T&T) as detailed by (Garioud et
al., 2023), which incorporates both aerial images and SITS, as
our baseline. The last set of experiments, referred to as Tem-
poral ViT are described in section 3.1. Moreover, we conduc-
ted a series of experiments employing diverse positional encod-
ing schemes to assess the impact of spatio-temporal positional
encoding on our proposed Temporal ViT network. Here, the
class plowed land is considered in the set Cstatic for training
the Temporal ViT; all other classes are either considered to un-
derlay visual changes over time in SITS or are not considered

in that, because it is assumed that they cannot be recognized in
utilized satellite images, such as building.

To provide a more accurate representation of the model’s per-
formance, each experiment is repeated three times, each time
starting from a different random initialization of the weights
and using random shuffling for batches, to assess the impact of
these random components on the classification results.

To assess the performance of the conducted experiments, the
classification results computed on the test image patches are
compared to the ground truth labels, and the intersection over
union (IoUc) of each class is reported:

IoUc =
TPc

TPc + FPc + FNc
(5)

TPc, FPc, and FNc denote the number of pixels that are true
positives, false positives, and false negatives, respectively, for
a class c. We also report the mean intersection over union
(mIoU ), which is computed by taking the mean of the (IoUc)
values of all classes excluding the class (other) despite its con-
tribution to the loss function.

4.3 Results & Discussion

In this section, we present the results achieved by different net-
works described in the previous section 4.2.

4.3.1 Impact of multi-temporal satellite imagery Table
1 shows the IoUc and respective mIoU achieved in the first
three sets of experiments described above, demonstrating the
impact of SITS data on classification and in particular, of the
proposed Temporal ViT. The numbers show that the use of
SITS data as an additional source of information leads to an
increase in overall performance compared to U-Net; when us-
ing only aerial imagery with U-Net, a mIoU score of 54.5%
is achieved. The U-T&T model, incorporating SITS data, yiel-
ded improved mIoU of 56.0%, indicating a statistically signi-
ficant enhancement over the baseline U-Net model. Addition-
ally, our Temporal ViT model achieved a slightly better mIoU
score of 58.1%, demonstrating the advantage of the proposed
SITS encoder. These results are further supported by hypo-
thesis testing (t-test), which confirmed the statistically signific-
ant improvement in performance at a 95% confidence level. The
improvement underscores the significance of learning spatio-
temporal features, made feasible by employing spatio-temporal
positional encoding that takes into account the acquisition date
of the SITS data, as well as by the utilized training strategy.
Notably, while U-Net comprises 27.5 million parameters and
U-T&T 33.5 million, our Temporal ViT model features a sub-
stantially larger parameter count of 330 million, indicating a
significant increase in model parameters, which contributes to
its superior performance.

By looking at the class-specific metrics, It can be seen that the
U-Net model outperforms other models with a large margin of
(6.1%) on only one class herbaceous vegetation. Herbaceous
vegetation, found in locations like gardens, public parks, and
recreational fields utilized for sports, due to the heterogeneous
type of this class, doesn’t follow distinct temporal and spatial
patterns in satellite images. Consequently, the feature map de-
rived from the temporal branch for this specific class may con-
tain misleading data.

On the other hand, Temporal ViT yielded better performance,
notably for classes that evolve with temporal variations over
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Class U-Net U-T&T Temporal ViT (Ours)
building 81.5± 0.2 80.9± 0.4 82.0 ± 1.0

pervious surface 49.5± 0.1 49.1± 1.1 52.7 ± 1.0
impervious surface 72.5 ± 0.2 71.0± 0.2 72.0± 1.0

bare soil 41.3± 3.0 39.8± 5.0 49.8 ± 5.0
water 83.4± 2.0 83.0± 1.9 85.2 ± 0.7

coniferous 35.8± 7.0 58.2± 3.5 63.6 ± 2.0
deciduous 67.2± 2.0 70.2± 1.9 71.1 ± 1.0
brushwood 23.4± 0.7 24.2± 2.5 24.3 ± 3.0
vineyard 62.0± 0.7 63.1 ± 2.9 62.9± 2.0

herbaceous vegetation 48.9 ± 0.4 41.4± 5.2 42.8± 3.0
agricultural land 50.7± 2.0 52.9± 0.9 54.5 ± 2.0

plowed land 37.8 ± 2.0 37.0± 2.0 36.8± 2.0
mIoU [%] 54.5± 1.0 56.0± 0.9 58.1 ± 1.0

Table 1. Mean Class-wise IoU values [%] and additionally, the corresponding standard deviations obtained from repeated training
sessions. On the test set of the FLAIR #2 dataset produced by different methods. The models compared here are U-Net model trained
solely on aerial images, U-T&T, the baseline from (Garioud et al., 2023), and Temporal ViT, our model which incorporates both aerial

and SITS data.

Model Input PE mIoU [%]
U-Net aerial - 54.5± 1.0

U-T&T aerial + sat Temporal 56.0± 0.9
Temporal ViT aerial + sat Spatial 50.4± 1.1
Temporal ViT aerial + sat Learnable 54.2± 0.8

Temporal ViT (Ours) aerial + sat Spatio-Temporal 58.1 ± 1.0

Table 2. Semantic segmentation results achieved by using U-Net (Garioud et al., 2022) and U-T&T (Garioud et al., 2024) as baseline
models, alongside our Temporal ViT model with different positional encoding schemes. PE refers to the type of positional encoding.

The mIoU and standard deviation are derived from repeated training sessions.

the year, such as bare soil, coniferous, and agriculture land,
where accuracy is significantly improved. These results under-
line the importance of temporal information contained in these
classes, which is captured by the Temporal ViT and U-T&T,
where Temporal ViT significantly outperformed U-T&T.

4.3.2 Impact of Spatio-Temporal Positional Encoding
We investigate the influence of spatio-temporal positional en-
coding, by running multiple experiments with different types of
positional encoding, the results of which are presented in Table
2. Initially, we introduced PEspatial where only the spatial po-
sition of each patch in the image is considered, and a mIoU of
50.4% is achieved. Following this, we implemented a learnable
positional encoding mechanism (Gehring et al., 2017), treat-
ing positional encoding vectors as model parameters. These
parameters were then updated during training, alongside the re-
mainder of the model parameters. This adaptive approach resul-
ted in an improvement of 3.8%, compared to a fixed spatial po-
sitional encoding. Finally, we applied PES−T encoding, which
takes into account the spatial and temporal position of each
patch in the SITS, and achieved a significance improvement of
7.7%, i.e., 58.1% mIoU . As can be expected, incorporating
the relative or absolute spatio-temporal position of each image
patch helps the classifier to gain a better understanding of the
context in which pixels evolve, which in return, can be used
to separate pixels that may have similar characteristics, even
though they belong to two different classes.

5. Conclusions & Outlook

In this work, we proposed a method named Temporal ViT,
capable of simultaneously learning feature representations in
spatial and temporal domains to integrate aerial images and
SITS data for multi-modal land cover classification. The ex-
perimental findings indicate an enhancement in performance
through the incorporation of SITS data, yielding a 3.8% in-
crease in mIoU compared to U-Net networks relying solely

on aerial images. While the U-T&T network has previously
demonstrated the efficacy of SITS data integration, our work
showcases that leveraging Temporal ViT for encoding SITS fur-
ther boosts land cover classification accuracy by an additional
2.1% over the U-T&T model.

Nevertheless, the quadratic complexity inherent in our atten-
tion mechanism imposes constraints on the spatial and tem-
poral resolution of input time series images, potentially lead-
ing to hardware bottlenecks and extensive GPU usage. Future
research endeavors could focus on optimizing our method for
satellite imagery with smaller GSD and higher temporal res-
olution. Furthermore, incorporating self-supervised techniques
for pre-training, which has demonstrated improvements in ViT
(Wang et al., 2023), could be explored. In addition, extending
our transformer-based approach to aerial imagery and using it
in combination with SITS data constitutes an intriguing avenue
for future research.
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