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Abstract 

 

Tropical montane forests are vital ecosystems globally, preserving biodiversity, carbon stocks, and capturing moisture. We employed 

two airborne laser scanning (ALS) data sets to study changes in montane forest canopy heights in the Taita Hills, Kenya between 

2014/2015 and 2022. We studied two forests, Ngangao (129 ha) and Yale (57 ha), which encompassed both indigenous montane 

forest and exotic plantations. First, forest types were mapped using field observations and aerial imagery, and then, canopy height 

changes were analysed using canopy height models at spatial resolution (i.e. the cell size) ranging from 1 m to 20 m. The results 

revealed overall increase in canopy height in the studied forests, with considerable spatial variation between the forest segments and 

main tree species. Planted exotic tree species, particularly eucalyptus but also pine and cypress, exhibited faster growth rates than 

native tree species. Point density differences between the ALS data sets can cause bias to estimation of canopy height changes. 

However, we observed that reducing the cell size of the canopy height models from 1 m to 10 m and 20 m, decreased the positive 

trend between point density difference and overestimation of canopy height change due to higher point density of more recent ALS 

data set. These findings contribute to our understanding on spatial complexity of montane forest ecosystems dynamics and help 

informing forest monitoring and development of management strategies for fragmented forests in montane regions. 

 

 

1. Introduction 

Tropical montane forests (TMF) represent globally critical 

ecosystems that present diverse and complex interplay of 

environmental factors and rich biodiversity (Bruijnzeel et al., 

2010). TMFs are characterized by varying topography, high 

levels of precipitation, and mist formation due to the interaction 

between lower altitude clouds and mountains. The presence of 

mist creates a moist microclimate, which contributes to the 

unique biodiversity. In addition to their ecological significance, 

TMFs play crucial roles in climate regulation, and act as 

reservoirs for water, providing constant stream flows and 

improving water quality (Martínez et al., 2009). Furthermore, 

TMFs are carbon-rich ecosystems with exceptionally high 

aboveground carbon stocks (Cuni-Sanchez et al., 2021). 

 

Moreover, TMFs support the livelihoods of local communities 

by providing essential resources such as water, timber, and 

forest products. The forests also contribute to ecotourism, 

attracting visitors who seek to explore their diverse flora and 

fauna. However, despite their ecological and socio-economic 

importance, TMFs are increasingly threatened by human 

activities, including deforestation, land-use changes, and 

fragmentation (Cuni-Sanchez et al., 2021). Also, indigenous 

tree species can be replaced or mixed with plantations of exotic 

tree species, such as eucalyptus and pine (Pellikka et al., 2009). 

While fast growing, these plantations are less valuable 

ecologically and for the biodiversity. Therefore, there is a 

pressing need for effective monitoring methods and 

management strategies to conserve TMFs. 

 

LiDAR (Light Detection and Ranging), in particular airborne 

laser scanning (ALS), is a well-established technique to collect 

3D point clouds. Those can be analysed to produce digital 

terrain models, and to assess forest canopy structure and 

attributes, such as aboveground carbon stocks (Adhikari et al., 

2017). When multitemporal, repeat ALS data are available, also 

changes in forest structure can be monitored (Zhao et al., 2016). 

Repeat ALS data has great potential to provide insights into the 

ecological processes shaping TMFs and to assess the impacts of 

human activities on these ecosystems. Furthermore, it can 

facilitate the monitoring of forest restoration efforts and the 

evaluation of interventions to mitigate deforestation and habitat 

loss. However, such studies remain few as repeat ALS data has 

been only rarely collected over TMFs. Furthermore, quality of 

the ALS data sets from different year might differ, for example, 

in terms of flying height and point density, which can 

complicate interpretation of observed changes. 

 

In this study, our main objective was to study changes in forest 

canopy height in the Taita Hills, Kenya using repeat ALS data. 

More detailed objectives were: 

 

1. Assess canopy height changes in Ngangao and Yale 

forest fragments; 

2. Compare canopy height change rates between 

indigenous montane forests and exotic plantations; 

3. Evaluate impact of ALS point density variation on 

observed canopy height changes. 

 

To reach these objectives, we analysed repeat ALS data from 

years 2014/15 and 2022, and prepared a forest type 

segmentation based on aerial imagery and field observations to 

study changes by forest type. By addressing these objectives, we 

seek to enhance our understanding on the dynamics of TMF 

ecosystems in the study area and contribute to their 

conservation and sustainable management. 

 

2. Material and methods 

2.1 Study area 

The studied forests are located in the Taita Hills, Taita-Taveta 

County, Kenya, approximately 150 km from the Indian Ocean 

(Fig. 1). Covering an area of about 1000 km² with an average 

elevation of 1500 meters, the Taita Hills experience a unique 
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climate influenced by the Intertropical Convergence Zone and 

the nearby Indian Ocean (Pellikka et al., 2013). Rainfall, 

occurring in two seasons - long rains between March and June 

and short rains between October and December - varies 

annually, with significant differences observed between the 

plains and the hills, where annual rainfall can exceed 1200 mm. 

This moisture, originating from the Indian Ocean, interacts with 

the rising hills, leading to mist and cloud precipitation 

throughout the year (Pellikka et al., 2013). The Taita Hills form 

part of the Eastern Arc Mountains (EAM), a mountain chain 

stretching from Eastern Tanzania to Southern Kenya, renowned 

for its biodiversity and numerous endemic species (Burgess et 

al., 2007). Despite the ecological significance, the Taita Hills 

have experienced significant forest loss, with up to 50% of 

indigenous forest areas disappearing between 1955 and 2004 

due to agricultural expansion and human population growth. 

The remaining forest patches face ongoing threats from 

agricultural encroachment and exotic tree species, such as 

cypress, eucalyptus, and pine, introduced for commercial 

purposes since the 1950s (Pellikka et al., 2009). 

 

 
 

Figure 1. Location of study area, Ngangao and Yale forests, in 

Taita-Taveta County, Kenya (Google Satellite Imagery 2020 © 

CNES / Airbus & © Maxar Technologies). 

 

We focused on two forest fragments in the Taita Hills, Ngangao 

and Yale, which are both subject to human-induced changes. 

Ngangao locates on the eastern slope of a north-south oriented 

mountain ridge (Pellikka et al., 2009). This drier lower montane 

forest has multi-layered canopy and it is composed of 

indigenous forest and planted exotic forest patches (Adhikari et 

al., 2020). Ngangao’s altitude ranges from 1700 m to 1952 m. 

Yale is located on a north-south oriented mountain ridge and it 

has large areas of bare rock and heathland (Pellikka et al., 

2009). Remaining native montane forest patches are small 

compared to Ngangao and area of exotic plantations. The 

altitude varies from 1750 m to 2104 m. Both Ngangao and Yale 

are gazetted forests. Some typical indigenous tree species in the 

montane forests include Tabernaemontana stapfiana, 

Macaranga conglomerata, Albizia gummifera, Oxyanthus 

speciosus, Xymalos monospora and Celtis africana (Amara et 

al., 2023; Pellikka et al., 2009). 

2.2 Airborne laser scanning (ALS) data 

We employed two discrete return ALS data sets (Table 1). The 

first (ALS1) was based on the scannings completed during two 

years, early 2014 and early 2015 (Adhikari et al., 2020). The 

second (ALS2) was collected seven years later, in early 2022. 

Both data sets were scanned using the same Leica ALS60 

sensor. A maximum of four returns per pulse were recorded. 

However, the resulting point densities differed because of the 

difference in flying altitude, and hence, the more recent data set 

had higher point density and smaller footprint (Table 1). Both 

data sets were pre-processed by the data vendor and delivered 

as georeferenced point clouds in UTM projection and WGS84 

reference system with ellipsoidal heights. 

 

Attribute ALS1 ALS2 

Acquisition year 2014 and 

2015 

2022 

Sensor Leica 

ALS60 

Leica 

ALS60 

Mean flying height AGL (m) 1460 800 

Mean footprint size (cm) 32 18 

Pulse rate (kHz) 58 99 

Scan rate (Hz) 66 59 

Scan angle (°) ±16 ±20 

Mean point density (points m-2) 5.7 11.3 

Table 1. Summary of the ALS data sets. 

 

2.3 ALS data processing 

We employed LAStools software (rapidlasso, 2022) to generate 

elevation models at 1 m cell size for both ALS1 and ALS2 data 

sets. The classification of points into ground and non-ground 

classes was performed using lasground_new using parameters 

optimized through experimentation (step size 10). Given the 

multi-layered, dense forest cover in the studied forests, finding 

bare ground points posed a challenge. To address this, we 

combined ground points from both ALS data sets, which is 

similar to earlier studies using repeat ALS data for change 

detection (Nunes et al., 2021; Riofrío et al., 2022). Then, a 

digital terrain model (DTM) with a 1 m cell size was created 

using the combined ground points and the blast2dem tool. The 

option ‘thin_with_grid 0.5’ was used to equilibrate differences 

in point density before TIN generation. 

 

Next, we generated canopy height models (CHMs) at 1 m cell 

size using two different approaches - one using spike-free and 

the other using pit-free method - for comparative analysis. For 

CHM production, we thinned point clouds to constant point 

density using lasthin tool, retaining only the highest point per 

0.5 m cell. The spike-free method (Khosravipour et al., 2016) is 

executed during digital surface model (DSM) creation using 

las2dem and it utilize all returns instead of just first returns to 

reduce spikes in the TIN. CHM is then created by subtracting 

the DTM from the DSM. Conversely, the pit-free method 

(Khosravipour et al., 2014) employs height-normalized points 

and partial CHMs at various thresholds to mitigate pits and 

enhance CHM quality. For generating the pit-free CHM, ground 

normalised elevations were generated with lasheight and 

combined ground points.  

 

2.4 Canopy height change detection 

The resulting CHMs were visualized and analysed in QGIS and 

R software environment to assess canopy height changes 
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between the two data sets and forests. Canopy height model 

change (CHMC) was calculated using both the spike-free and 

pit-free CHMs. The CHMs from 2014/15 were subtracted from 

the 2022 CHMs. The elevation models express the height 

difference between the CHMs. Simple Filter with the smoothing 

option in QGIS was applied to the spike-free CHMC raster at 1 

m cell size to reduce noise. Finally, based on the visual analysis 

of the change detection results, we selected pit-free CHMs for 

further analyses. Only those results are reported later. 

 

2.5 Sensitivity of canopy height change to point density 

difference 

ALS1 point density was on average smaller than that of ALS2, 

which can cause bias to estimation of canopy height changes 

(Nunes et al., 2021). However, because of spatial variation in 

point density, in some area, point density in ALS2 might be 

higher than in ALS1. Whatever the case, when calculating 

CHMC, the values might be over- or underestimates of canopy 

height change because of the difference. To tackle this, we 

studied how CHMC depends on the point density difference. 

We did the analysis by comparing CHMC and point density 

difference at 1 m, 2 m, 5 m, 10 m, 20 m and 30 m cell size 

similar to the analysis by Nunes et al. (2021). The spatial 

resolution was lowered by aggregating 1 m cells to coarser cell 

size. After selecting the spatial resolution based on the 

sensitivity analysis, we created CHMC layers for the further 

analysis at 10 m and 20 m cell size. These layers were done in 

QGIS using resampling -tool with weighted means. 

 

2.6 Forest type segmentation 

In order to study CHMC by forest type, we segmented forest 

types in QGIS, primarily relying on visual interpretation of 

false-colour aerial imagery with a 10 cm cell size. Ground 

reference data on forest types was collected 2226 January 

2022 in Ngangao (85 points) and Yale (47 points) using GNSS 

devices. Furthermore, an earlier segmentation of Ngangao and 

Yale by Adhikari et al. (2020) was used as a baseline. The 

segments were digitized based on clear boundaries identified in 

the images. Notably, distinct features observed in the imagery, 

for example, unique canopy formations of certain tree species, 

such as pine, exhibiting crown shyness, aided in the 

segmentation process. Moreover, recognizable features such as 

distinct tree plantation areas, for example, eucalyptus 

plantations, were identified in the CHM due to their similar 

heights. 

 

To capture potential CHMC trends across different parts of the 

Ngangao forest, we divided the montane forest part of the forest 

into four segments: northwest, north, middle, and south. This 

division aimed to delineate areas with potentially different 

CHMC patterns and facilitate a more detailed analysis of the 

forest dynamics. 

 

Forest type distribution differs substantially between the two 

forests (Fig. 2). Ngangao has mostly indigenous montane forest 

with small segments of exotic forests: pine, cypress, and 

eucalyptus (Table 2). The indigenous montane forest dominate 

and covers the area from north to south. Based on the 

segmentation, its area is 118.5 ha. 

 

Yale is more patched and consists of smaller segments (Table 

3). Indigenous montane forest is only left in a few parts of the 

forest whereas eucalyptus dominates the area, especially, in the 

western and southern part of the mountain. Eastern part has 

more variance as there are different types of forests with smaller 

area. There are also areas of mixed forest, where it was not 

possible to differentiate the dominant tree species based on the 

material used. Those areas could include both indigenous and 

exotic tree species, or just exotics. The area of indigenous 

montane forest in Yale is estimated as 7.2 ha.  

 

 

 
 

Figure 2. Forest types in (A) Ngangao and (B) Yale forests.  

 

Forest 

type 

Area 

(ha) 

Area 

(%) 

Number of 

segments 

Range of 

area (ha) 

Montane 118.5 91.6 4 14.4–43.2 

Eucalyptus 0.7 0.5 2 0.2–0.5 

Pine 6.8 5.3 5 0.1–4.0 

Cypress 3.3 2.6 3 0.3–1.9 

Total 129.3 100 14 0.1–43.2 

Table 2. Forest type statistics for Ngangao forest. 

 

Forest 

type 

Area 

(ha) 

Area 

(%) 

Number of 

segments 

Range of 

area (ha) 

Montane 7.2 12.6 8 0.3–1.8 

Eucalyptus 33.2 58.3 10 0.2–10.0 

Pine 2.3 4.0 5 0.2–1.1 

Cypress 5.4 9.5 3 0.5–3.3 

Mixed 8.0 14.0 6 0.3–3.1 

Cinnamon 0.9 1.6 1 0.9 

Total 57.0 100 33 0.2–10 

Table 3. Forest type statistics for Yale forest. 

 

3. Results 

3.1 Canopy height models 

The CHMs revealed differences in canopy heights between 

Ngangao and Yale as notable in the CHMs for 2022 (Fig. 3). 

Yale exhibits a higher proportion of taller canopies, particularly 

in the areas dominated by eucalyptus. Within Ngangao, there is 

variation in canopy height between the indigenous montane 

forest segments, with taller forest found in the southern part and 

lower forest in the northwestern part.  

 

When comparing the canopy height distributions between the 

two data sets (Fig. 4), the difference in canopy heights is more 

noticeable in Yale where heights show apparent increase 

compared to Ngangao with greater cover of indigenous species. 
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Figure 3. Canopy height model of (A) Ngangao and (B) Yale at 

1 m cell size for 2022. 

 

 
 

Figure 4. Density distribution of canopy heights in (A) Ngangao 

and (B) Yale in 2014/15 and 2022. 

3.2 Impact of variable point density on observed canopy 

height changes 

Point density varied between the two ALS data sets on average 

but also spatially as shown in Fig. 5. To mitigate uncertainties 

in CHMC due to variable point density, we studied how CHM 

spatial resolution affect to the observed changes. Coarsening of 

the cell size reduced extreme values. As a result, the standard 

deviation of CHMC reduced from 5.3 m to 2.2 m when cell size 

was decreased from 1 m to 30 m. When analysing the 

relationship between CHMC and point density difference, a 

clear positive trend was revealed at finer cell sizes of 1 m, 2 m 

and 5 m (Fig. 6). In other words, when the point density of the 

more recent data set was greater, observed CHMC was also 

greater, indicating possible bias. However, at 10 m and 20 m 

cell sizes, the trend could not be observed, indicating more 

stable results for subsequent analyses. 

 

 
 

Figure 5. Difference in point density between ALS data sets in 

(A) Ngangao and (B) Yale. 

 

 
 

Figure 6. Relationship of point density difference between 

ALS2 and ALS1 and canopy height model change (CHMC) at 

different cell sizes (1 m  30 m). 
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3.3 Canopy height model changes 

Based on the results above, we used 10 m cell size for the later 

analyses. That cell size reduce the details but still contains 

adequate information about spatial variation and forest gaps. 

The results differed only little between 10 m and 20 m cell 

sizes, further justifying the use of fine spatial resolution (20 m 

results not shown here).  

 

 

 

Figure 7. Canopy height model change (CHMC) between ALS1 

and ALS2 at 10 m cell size in (A) Ngangao and (B) Yale. 

 

Fig. 7 display the final CHMC maps for the studied forests. 

Yale with greater human influence and presence of exotic 

plantations has been clearly more dynamic during the studied 

period than more stable Ngangao, with greater cover of 

indigenous forest. Notable features in the CHMC maps include 

eucalyptus plantations in northern Yale and southern Ngangao 

showing the greatest tree growth rates in the 78 years period. 

Negative changes, mostly indicating treefall gaps, are evenly 

distributed, particularly in Ngangao. 

 

The violin plot in Fig. 8 shows the distribution of CHMC for by 

forest types. The width represents the data density. Narrow ends 

correspond to only a few or single values and might be errors. 

The black rectangles describe quartiles and the white dots are 

median values. All medians are above zero, which implicates 

growth in all forest types. 

 

 
 

Figure 8. Distribution of the canopy height changes between 

different forest segments at 10 m cell size in (A) Ngangao and 

(B) Yale. 

 

Based on Fig. 7 and Table 4, it is evident that eucalyptus forests 

show the fastest growth. In Ngangao, eucalyptus stands out as 

most of the changes are positive and the values highest. 

Indigenous montane forests in Ngangao has more even 

distribution of positive and negative values but the median 

values are still positive. The mean and median values for 

indigenous montane forests are the smallest among all the forest 

types in Ngangao (Table 4). The patterns remained similar even 

when negative changes corresponding to the treefall gaps were 

removed from the analysis.  

 

In Yale, eucalyptus forests have a very wide range of both 

positive and negative values but the median and mean are still 

the highest among the forest types (Table 4). Large negative 

values might correspond to logging activities in the western 

parts of Yale. Similar to Ngangao, indigenous montane forests 

have the lowest median and mean values. 
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Forest/ 

Forest type 

Median (m) Mean (m) 

Ngangao   

Cypress 1.37 1.09 

Eucalyptus 5.79 6.06 

Montane (NW) 0.46 0.20 

Montane (N) 0.77 0.54 

Montane (Middle) 0.97 0.70 

Montane (S) 1.24 0.78 

Pine 1.67 1.26 

Yale   

Cinnamon 3.47 3.08 

Cypress 3.42 2.94 

Eucalyptus 3.61 3.78 

Montane 2.11 2.25 

Mixed 2.66 2.52 

Pine 3.00 2.29 

 

Table 4. Median and mean canopy height model change by 

forest type for Ngangao and Yale. Indigenous montane forest 

was analysed separately for four parts in Ngangao. 

 

4. Discussion 

We investigated canopy height changes in Ngangao and Yale, 

which are two forest areas in the Taita Hills, Kenya, within the 

Eastern Arc Mountains biodiversity hotspot. While forest cover 

changes have been extensively studied (Pellikka et al., 2009; 

Pellikka et al., 2018; Wekesa et al. 2019), little attention has 

been given to forest height changes in TMFs in Africa.  

 

Repeat ALS data from 2014/15 and 2022 revealed an overall 

positive CHMC trend between the ALS acquisitions (78 

years), indicating forest height growth. This is positive result as 

negative changes could indicate forest degradation. The fastest 

growth rates were observed in young eucalyptus forest in Yale, 

while taller and older plantations of cypress and pine showed 

smaller growth rates. However, the lowest growth rates were 

observed consistently for indigenous montane forest type. 

Further research is needed to study how growth rates depend on 

tree age in different forest types.  

 

The point density differed between the data sets on average but 

also spatially. Our results showed that comparison of high 

spatial resolution CHMs (cell size < 10 m) overestimated 

change as larger positive changes were observed when more 

recent data set had greater point density than older data set. This 

has been observed also earlier (Zhao et al., 2018; Nunes et al., 

2021). Higher point density increases the probability that the 

highest part of the crown is hit by laser pulse. Here, we were 

able to reduce the effect by lowering the cell size of the CHMs. 

As repeat ALS data sets remain scarce, novel approaches to 

mitigate point density differences are required.  

 

Furthermore, tree growth is also not just vertical, and lateral 

growth of crowns can affect results by causing overestimation 

of height changes (Senécal et al., 2018). Individual tree 

detection based methods and direct comparison of point clouds 

could be studied as alternatives for CHM based approach to 

reduce both problems. Field based tree height monitoring in 

permanent plots could be also useful for calibrating change 

detection models. 

 

5. Conclusions 

Our study provides valuable insights into canopy height 

changes and variations in TMF human modified landscapes 

with forest plantations. Repeat ALS data proved useful, but 

future studies should consider the various uncertainties and 

factors affecting the results. Further research with more detailed 

forest type analysis could provide deeper understanding for 

sustainable forest management in the Taita Hills. Overall, our 

findings advance our comprehension of the spatial complexity 

of forest ecosystem dynamics, offering valuable insights for 

forest monitoring and the development of management 

strategies. 
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