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Abstract

ARC is a new method to generates time series of a full set of biophysical parameters derived from optical EO. Here, we examine
relationships between this ‘full’ set and maize yield. 15 Parameters per pixel are estimated over the US corn belt using ARC, to
fully describe the phenology, soil, and crop status over time for typical behaviour. ARC is tested for a new model over an area of
irrigated and rain-fed winter crop in South Africa. We find that care must be taken for episodic events, and robust filtering methods
should be developed for ARC, but average magnitude and timing is well-expressed. We find that a robust yield model (over time
and space) can be created at the county-level for maize using only EO parameters with RMSE of 704-938 kg/ha using a non-linear
model, but the results are only slightly poorer if a linear model is used. It compares well to a model that also includes weather data,
showing that a model can be driven by optical EO data alone.

1. Introduction

1.1 The Remote Sensing Problem for Crop Monitoring

The remote sensing (RS) problem for crops involves estimating
a (desired) set of crop descriptors D (e.g. crop yield, water use)
from measurements y and other information W . This latter may
include crop growth models, meteorological data and/or predic-
tions, and other environmental factors (Desloires et al., 2023).
The observations are physical measurements, that themselves
depend only on some set of intrinsic (bio)physical parameters,
C. So only C is directly accessible from y. The ‘Physical‘
RS problem involves estimating C from y, with models that re-
late D = m(C,W) separate processes, whether explicit or not.
Here, we ask the questions: how can we obtain wider inform-
ation on C from optical EO, and how well can estimates of C
alone be used to estimate D (yield here).

Most approaches to crop yield estimation from Earth Obser-
vation (EO) use time-series of vegetation indices (VIs), often
with smoothing of low-order function-fitting to give interpol-
ation and/or reduce ‘noise’ (Zhang et al., 2003; Roy and Yan,
2020). Relationships are calibrated between the implied phen-
ology (timing and/or mostly peak VI magnitude or a time-
integral of VI) and yield, broadly similar to Becker-Reshef et al.
(2010), mostly with some additional environmental data such as
temperature and rainfall or soil moisture. Temperature is some-
times used to normalise the phenological time in Growing De-
gree Days (GDD) (Skakun et al., 2019). Empirical relationships
vary from simple linear regression (Bolton and Friedl, 2013;
Johnson et al., 2021) to machine learning mappings (Luo et al.,
2022), though the advantage of the latter can be limited. A
smaller number of studies, e.g. (Skakun et al., 2019) use bioph-
syical parameters (mainly Leaf Area Index (LAI)) or reflectance
data directly rather than VIs to achieve similar or better results
for a more physical basis (Baez-Gonzalez et al., 2005; Lambert
et al., 2018). Some studies use mechanistic crop growth models
explicitly through data assimilation (DA) to model other crop

processes in D and/or calibrate for climate change studies, but
tend to be limited to EO information on LAI (Dorigo et al.,
2007; Machwitz et al., 2014; Huang et al., 2019; Dokoohaki et
al., 2022). Growth models can also be used to calibrate em-
pirical relationships with yield (Lobell et al., 2015). ‘Good’
results in this area can be as high as the root mean square er-
ror (RMSE) of 200 kg/ha in yield for a single year calibration,
but more typically, around 800-900 kg/ha (Khan et al., 2023),
with the coefficient of determination R2

⇡ 0.75 � 0.80 (e.g.
(Skakun et al., 2019; Luo et al., 2022)), and depend on method
and scale.

In the era of Analysis-Ready Data (ARD) (Frantz, 2019), y is
readily available as level-2 surface reflectance. For crop mon-
itoring, we can usefully split C into (P,S), with P and S the
properties of the target canopy and underlying soil, respectively,
and define y = f((P,S)) + "i with a radiative transfer model
(RTM) f(), with approximations and generalisations that give
random uncertainty "i. In the optical domain, for measurements
from sensors such as Sentinel-2 (S2) MSI (Drusch et al., 2012)
or Planet, RTMs such as PROSAIL (Jacquemoud et al., 2009)
are readily available to fulfil this role for crops and are widely
used. Recently, more ARD with finer spatial, temporal and
spectral sampling is becoming readily available, allowing more
comprehensive explorations and links to growth processes and
ultimately yield. But how much information on yield is con-
tained within the optical EO data themselves? On the one hand,
researchers such as Waldner et al. (2019) or Skakun et al. (2019)
show that useful yield mapping may be obtained using only lim-
ited EO data (normalised in time to GDD, using external tem-
perature data), but others such as (Desloires et al., 2023) suggest
that reliance on (optical) EO data alone will always be inad-
equate as biophysical parameters or VIs cannot express the full
impacts on yield. No previous studies look at using the ‘full’
set of biophysical parameters C, likely because of the perceived
difficulty in reliably extracting such information from the obser-
vations due to parameter coupling and limited but still relevant
sensitivity of some parameters causing confounding effects.
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1.2 Archetypes: A New Hope

Recently, Yin et al. (2024) presented an approach to the inter-
pretation of EO data for crops that inverts time series of obser-
vations to an empirical parametric model describing the time-
course of P and call this an ‘archetype’ model. It is developed
from a ‘big data’ analysis involving the interpretation of large
numbers of pixels through inverse radiative transfer model map-
pings. An algorithm solving for estimates of a full set of P over
time and S is called ARC, with code and datasets made avail-
able (Yin and Lewis, 2023, 2024). ARC is initialised by a broad
a priori distribution to model the temporal trajectory of its 15
biophysical parameters. From this, candidate estimates of sur-
face reflectance are generated for known satellite observation
times and configurations. The resulting ensemble is matched to
the observations from any optical sensor operating in the 400
to 2500 nm regime (characteristics of the underlying PROSAIL
RTM (Jacquemoud et al., 2009)).

The a posteriori estimation of the 15 parameters gives a ‘full’
description of the scene (wrt the optical domain), which can
be seen as a statement of P in the context above. Here, P

”compresses” or summarises the complete spectral, temporal
and angular information about the canopy contained in the ob-
servations (on top of the prior). This statement is made within
the context of a particular RTM, so can only be valid as far that
RTM and its parameterisation allows a ‘full’ description of ra-
diative transfer within the defined domain. But the approach
allows an examination of the optical EO and yield relationship
with the lens of a small set of physically meaningful parameters
that completely define the observations.

Figure 1. S2 tiles over USA used in training of archetypes

1.3 Aim and Objectives

The aim of the study is to examine the role of the ‘full’ set of
ARC crop biophysical parameters in predicting crop yield. We
set two objectives to achieve this: (i) give further validation of
ARC to cover both irrigated and rain-fed crops; (ii) apply ARC
to crop yield mapping and compare the impact of using C alone
or in combination with environmental factors W .

1.3.1 ARC for Winter Wheat, using Planet data: Whilst
there is validation of ARC using the maize model at a site in
Germany using S2 data in Yin et al. (2024), more areas and
sensor configurations need to be tested to understand the ap-
plicability and reliability of the approach. Here, we develop a
Winter Wheat ARC model using a big data analysis over the
USA and validate the model using LAI and Cab time-series

data over one irrigated and one rain-fed field in South Africa
for validation. We drive ARC with 4 waveband Planet data.

1.3.2 ARC model parameter for maize yield estimation:
Since we suppose the ARC parameters to supply a ‘full’ de-
scription of the vegetation canopy and its dynamics, mappings
between these and crop yield should allow us to better under-
stand the applicability of the ‘full’ information content of op-
tical EO data to crop yield estimation. We know from previ-
ous empirical models that maximum and integral LAI (or its
surrogate, VI) are related to cereal yield, as does phenological
information. These are directly parameters of ARC, alongside
descriptions of dry matter, chlorophyll, leaf angle, etc. This
second part of the study will examine the relationship between
this fuller set of parameters, environmental factors, and crop
yield at the county level (where we have reliable statistics over
the USA).

2. Data and Method

2.1 Development of Archetype model for Winter Wheat

Yin et al. (2024) applied their maize model to a range of crops
and found that it mostly suffices for other crops. But, whilst
there is likely some value in using a generic archetype set over
a range of crops, a more focused representation can also be de-
veloped for specific crops. We apply their approach to develop
a Winter Wheat archetype with training data from the USA. The
archetypes in ARC are developed for average conditions, so it
is of interest to find any issues when dealing with crops with
suffer from episodic events. To this end, we gathered a data-
set over sites in South Africa for irrigated and rain-fed Winter
Wheat crops. We are further interested in exploring if we can
drive ARC with lower information content observations, so we
applied Planet data in this part of the study. We process S2 re-
flectance data for the year 2019, masked for Winter Wheat using
the NASS Crop Data Layer (CDL) (Boryan et al., 2011) over
the USA tiles shown in Figure 1. Inverse emulators using Arti-
ficial Neural Nets (ANNs) are trained using the PROSAIL RTM
and the parameters in P to give estimates of each biophysical
parameter given in Table 1. The resultant time series are norm-
alised with a double logistic model (4 time-based parameters)
to a common temporal framework following (Yin et al., 2024),
who show that the mean value for each sample in normalised
time gives rise to an optimal first-order scaling model. Figure 2
shows the development of a Winter Wheat archetype. Arche-
types are developed as averages from this (results below). A set
of 4 phenological parameters H = (n1, n2,m1,m2) describe
the time-mapping of the archetypes, and we have 8 parameters
for P as the model of the canopy state development.

2.2 ARC Solver

The ARC solver uses a Monte Carlo sampler to generate ran-
dom values over broad a priori distributions of (4) paramet-
ers H and (7) scaling parameters of P (see Table 1), along
with 4 parameters describing a constant soil reflectance func-
tion (S =(soil brightness B, soil shape parameter #1 �, soil
shape parameter #2 �, soil moisture SMp)), giving a total of 15
parameters to estimate. These are used with a PROSAIL emu-
lator to generate time courses of reflectance for the target sensor
(S2 here), as shown in Figure 3. The reflectance trajectories are
matched against observations from the target sensor, and the set
filtered to give a posteriori distributions of all parameters (Fig-
ure 3, bottom). With the priors alone, ARC should be capable
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of simulating any typical crop scenario observations at optical
wavelengths permissible with PROSAIL over the course of a
growing season (see top panels in Figure 3 for S2 wavebands
and related indices). We can think of this as the envelope of
trajectories in the top panels in Figure 3 that need to encom-
pass the full range of reflectance variation of all typical crop
scenarios we might encounter in this area. The addition of the
information in the observations should narrow this envelope to
more refined solution of the physical RS problem for the site
under study (bottom panels in Figure 3). How (un)certain that
is depends on the information content of the observations, but
we can state that the solution uses the ‘full information content’
of the data and prior, in that it cannot affect it more than this.
The solution is a estimate of 15 parameters, 7 of which are re-
lated to canopy parameters P that can be verified with ground
measurements, 4 of which describe phenology H and 4 with the
optical soil properties S. The approach is not tied to any partic-
ular optical sensor, although Yin et al. (2024) drive their study
with S2 data and provide validation of most parameters relative
to time series ground measurements at a site in Germany.

Figure 2. P from inverse emulators for Winter Wheat. Top:
time-series of P , every 5 days, with 25th � 75th centiles shown
in colour, with black lines showing range. Bottom: same data,
but time-normalised to display clearer synchronised patterns.

Symbol Description Range
in P

N mesophyll 1-3
structure coeficient (1-3)

Cab chlorophyll 0-120
a and b concentration (20-80) µg/cm2

Cm leaf dry matter 0-0.02
per unit leaf area (0.001-0.040) g/cm2

Cw leaf equivalent 0.000-0.060
water thickness (0.001-0.100) g/cm2

Cbrown brown pigment 0-1
content (0-1)

LAI leaf area index 0.0-8.0
(0.1-8.0) m2/m2

ALA average leaf 0-90
inclination angle (45-80) �

Table 1. Parameters of PROSAIL in P and related unit and
bound information in training (modelling).

2.3 Winter Wheat Archetype

Data for Winter Wheat LAI and Cab were collected for two
seasons in South Africa. The field for the 2022 measurements
is close to the town of Villiers and was a circular irrigated wheat

Figure 3. a priori (top) and a posteriori distributions (bottom)
over S2 bands and related indices

field, planted around the start of September 2022. Data for
2023 were collected at near Meets, Bethlehem, South Africa.
The study field was rain-fed wheat, planted in early September
2023. Harvesting for the crops spanned from the end of Novem-
ber to early December. LAI and Cab were measured at each of
the 11(9) sample times in 2022 (2023). Planet PS2.SD data
were collected on the sites for the growing seasons of 2022 and
2023, with 87 clear images for 2023 and 97 for 2022, available
as cross-calibrated S2 MSI reflectance, making it straightfor-
ward to use the ARC code (calibrated for S2). We used Planet
bands 2, 4, 6, 7 and 8 as surrogates for S2 bands 2, 3, 4, 5 and
8a. A 10% uncertainty was assumed for Planet surface reflect-
ance.

Figure 4 shows the red and near infrared (NIR) reflectance over
the 2023 sample field, with an estimate of soil moisture for
the site. The crop suffered a significant water deficit during
the green-up period, which is probably a factor affecting the
final LAI (around half the LAI of the irrigated crop). Since
the canopy cover for this field is quite low then, the crop re-
flectance maintains a sensitivity to soil moisture throughout the
season, although any more severe drought may also affect the
leaf reflectance. We can see this in the NIR Planet data in Fig-
ure 4 where some values suddenly drop (below the dashed line
shown) when conditions are very dry. We interpret these meas-
urements as ‘affected by low moisture’ and remove them from
the main analysis and fitting in ARC. We found that if such an-
omalous data were included, they could affect the result if they
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Figure 4. Planet red and NIR reflectance (dots) for 2023, along
with soil moisture (blue line)

appeared at critical times in the time series, e.g. in green-up or
in times of sparse sampling.

Figure 5. (a) NASS reported yield at the county level 2020, (b)
ERA-5 mean air temperature, 2020. The ARC retrieval of (c)
LAI max, (d) start of season (SOS) averaged at county level
during maize growing season in 2020 over the US Corn Belt.

2.4 USA Maize yield

The county-level yield data for maize in the US from 2017 to
2020 were obtained from NASS. For the subsequent analysis of
yield prediction, only counties that are more than 50% covered
by the 122 sampled S2 tiles are included, resulting in a total of
2,297 county yield samples.

2.5 ERA-5 weather data

The ECMWF ERA-5-Land reanalysis dataset (CAMS, 2019)
was obtained from Google Earth Engine (GEE) (Gorelick et al.,
2017) from April to November. The variables acquired from
GEE are specified in Table 2 and the GEE operations used to
convert the hourly data to the daily data are also listed in the
table.

Daily variable name Hourly ERA variable name GEE Operation
Daily total solar radiation Surface solar radiation downwards Sum
Daily mean dewpoint temperature Dewpoint temperature at 2 m Mean
Daily maximum temperature Temperature at 2 m Max
Daily minimum temperature Temperature at 2 m Min
Daily total precipitation total precipitation Sum
Daily mean soil water Volumetric soil water layer 1 Mean

Table 2. Variables from ERA-5-Land reanalysis dataset used,
and the operations used to compute the daily variables.

2.6 Bio-physical parameters over USA

ARC was run for 2017 to 2020 over the S2 tiles covering the
USA Corn Belt to give estimates of the 15 model parameters as
input to the yield study. Samples were selected for each county
for the maize crop as indicated in the NASS CDL.

Examples of the retrieved parameters for 2020 are given in
Figure 5. Figure 5(c) shows the variations of the maximum
LAI over different counties that broadly correspond to the yield
maps shown in Figure 5 (a), with higher LAI values in the cent-
ral part of the Corn Belt and lower on the west and east sides.
However, in Figure 5 (a) we see a lower yield in the northern
part of the Corn Belt, even though the LAI is high there. This
suggests that other variables are at play here. The start of season
parameter shown in Figure 5(d) shows a strong correspondence
to the temperature variation over the area (Figure 5(d)).

2.7 County-level yield estimation

We first examine the influence of the various factors in the full
set (C,W) on yield. To provide points of comparison to the
modelling with D = m(C), the ARC parameter set alone, we
first explored mapping the crop yield as D = m(C,W). We ap-
plied two response functions to empirical modelling: (i) linear
Ordinary Least-Squares (OLS), applied to normalised values;
and (ii) the non-linear ensemble tree-based Extra Trees method
using the linear OLS and ExtraTreesRegressor methods inside
the scikit-learn (Varoquaux et al., 2015) Python package. A
stratified sampling scheme is used to split the training and valid-
ation sets between all counties, where county yields are equally
divided into 20 categories from low to high. Then 70% of the
samples are randomly drawn from each category for the train-
ing, and the remaining 30% used for validation. The input to the
regressors are variously C and/or W , depending on the experi-
ment. To examine the performance of the models over time, 6
counties with high yield variance over 4 years are set aside from
the sampling and not used in the calibration or main validation.

3. Results

3.1 Winter Wheat Archetype

The upper panel set of Figure 6 shows the archetypes of P for
Winter Wheat from the distributions in Figure 2. We examine
both mean and median but find them mostly close so we use the
latter as archetype. However, there is some departure in several
archetypes at the start of season, which may require further in-
vestigation. One feature of the Winter Wheat archetypes is that
Cab appears to decrease and then increase toward the end of
season, which is different from the maize archetypes developed
by Yin et al. (2024). Though present clearly also in Figure 2,
this is likely an artifact of the data processing with low LAI but
green material appearing in fields at the end of season. This
feature is not present in the maize archetype, we notice.

Figure 7 shows the same information as the scatterplots. The
regressions for LAI show high values of R (0.88 and 0.91 for
2022 and 2023, respectivley) with relatively small bias and
slopes of 1.1 and 1.2 respectively, and low values of standard
error (SE) 0.082 in both cases. These are similar to the findings
of Yin et al. (2024) when using the maize archetype with S2,
and in line with or better than other LAI validation results. Des-
pite this, we can see that the LAI in 2022 (the irrigated crop) is
consistently overestimated in the retrievals. The magnitude of
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Figure 6. Crop Archetypes developed here for Winter Wheat.

Figure 7. LAI (T) and Cab (B) validation, L: 2022 R: 2023

the retrieved patterns of LAI is overall close to the measured
data, for both irrigated and non-irrigated crops, though slightly
low in both cases. The pattern of Cab retrieved is slightly low,
with a slope of 0.66 and 0.55, respectively, in 2022 and 2023,
though the range of values of Cab is rather small in both cases.
SE is small in both cases, at 0.088 and 0.052 respectively.

3.2 USA Maize yield

3.2.1 Linear and non-linear yield model with (C,W):
The OLS result is shown in Figure 8 (top), giving an accuracy of
998 kg/ha in RMSE and R = 0.86. The OLS coefficients show
the significance of the phenology parameters (n0, n1), LAI,
and solar radiation for the yield prediction. The feature im-
portance and the validation of the ET model against the NASS
reported yield are shown in Figure 8. The non-linear regressor
provides slightly more accurate estimates of yield with a correl-
ation value of 0.91 and an RMSE value of 812 kg/ha. The most
influential parameters for the yield estimation are LAI, temper-
ature, and phenology parameters (n1, n0), which is interest-
ingly different from the OLS findings. However, both methods
have unsurprisingly highlighted the importance of maximum
LAI and phenology parameters.

3.2.2 Yield estimation with (C) or (W): By using weather
data (W) only, yield estimation gives R of 0.74 and a RMSE

Figure 8. Top: OLS, Bottom: ET, L: feature importance, R:
yield validation

Figure 9. Top: weather (W) only, Bottom: EO (C) only, with ET,
L: feature importance, R: yield validation

of 1323 kg/ha (Figure 9, top). This indicates that a coarse de-
scription of weather can explain around 54% of maize yield
variation over the Corn Belt. This is almost 30% reduction in
the explained variance of the yield compared to the EO plus the
weather prediction shown in Figure 8. The temperature is iden-
tified as having the highest feature importance, which agrees
with previous results in Section 2.7. Precipitation ranked 3rd in
the feature importance, probably because a large proportion of
maize planted within the Corn Belt are non-irrigated (Grassini
et al., 2009; Hunt et al., 2020).

Yield estimation with (C) only, the EO-derived variables, is
shown in Figure 9. It achieves similar level of accuracy as the
results by using the EO and weather combined, where the cor-
relation value is the same, but with slightly higher RMSE (871
kg/ha). The performance of the yield estimates over differ-
ent years is shown in Figure 10, where there is little difference
between those four years, indicating the model can provide con-
sistent yield estimation regardless of the observation year.

The trained linear OLS model and non-linear ET model per-
formance in yield estimation is shown for sample 6 counties in
Figure 11, top and bottom, respectively. The OLS yield estim-
ates for these 6 counties, treated independently of the training
samples, show good agreement with the reported yield values
(see Figure 11 for details). Compared to the linear OLS model,
the trained ET model shows an improved statistic with a higher
R value of 0.95 and smaller RMSE value of 946 kg/ha. How-
ever, there is a larger bias in the yield estimation from the ET
model with a slope of 0.78 and an intercept of 2524 compared
to 0.83 and 1522 from the OLS model estimation. The trained
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Figure 10. Maize yield estimations by only using EO derived
variables with Extra Trees method compared to NASS reported

yield for different years.

ET model can also capture the yield variation well over those
four years for those six counties.

4. Discussion

4.1 Winter Wheat Archetype testing

In this study, we develop a new ARC model specifically for
Winter Wheat and test this using Planet data against ground
observations over irrigated and rain-fed conditions. The ARC
model deals well with average conditions, and if we filter an-
omalous samples from episodic events such as very low canopy
and/or soil moisture, it is able to describe the overall conditions
and trajectories reasonably well in terms of magnitude, but with
some inconsistencies in the details at particular points in the
season. We have not examined the value of using the Winter
Wheat ARC model over using a generic (maize) model as in
the previous study, but that would be an interesting adjunct. The
poorer performance of model fitting in the early part of the sea-
son may be due to assumptions about horizontal homogeneity
in the RTM not being valid for a row crop at that time and de-
serves further investigation. It may be ameliorated by looking
closer at both mean and median archetypes. It is also possible
that the apparent ‘over-smoothing’ here arises from treatment of
the ensemble, given that the ‘shape’ of the measured LAI tra-
jectory seems closer to the raw LAI archetype ‘shape’ in Fig-
ure 6. That said, the magnitude of the parameters examined
seems well-captured, which is important for the yield monitor-
ing.

The need to filter anomalous samples from areas that suffer
episodic impacts is an important learning experience for fu-
ture development of ARC, and we believe that such filtering
should generally be considered to deal with such as this. The
very appearance of such data that do not conform to the aver-
age conditions of ARC is also interesting and may suggest that
they contain additional information content beyond the ARC
parameters. Such anomalies may be hard to pick up if we use
less dense time series than the Planet data examined here, and

Figure 11. Linear OLS (top) and nonlinear ET (bottom) yield
estimation for six counties over Corn Belt from 2017 to 2020

with only the EO information. The standard deviation of yields
over four years time is also shown for all the counties over the

Corn Belt.

a combination of S2 and Planet observations would be worth
exploring.

4.1.1 Yield estimation with (C) or (W): The experiments
here mimic other studies that show that non-linear empirical
models outperform linear models, though the gain is generally
only slight. We are able to form models using canopy and en-
vironmental data that act similarly to those from other studies,
with temperature, then precipitation, and radiation the order-
ing of environmental factors and maximum LAI and phenolo-
gical parameters mostly showing as the most informative EO
data. The influence of further parameters in P seems to be of
second-order importance, although their inclusion is shown to
add information and help refine the models.

The similar performance of (W)-only compared to (P,W)
models indicates that most of the information from the weather
variables is already incorporated within the EO signals, i.e. the
meteorological inputs (W) had impacted (C) and contains little
additional information for yield estimation (but note that the
meteorological variables used in the modelling are temporal ag-
gregates over the entire growing season). This agrees broadly
with the finding of Waldner et al. (2019) who found that the
temporally resolved LAI profile has already reflected the major-
ity of the influence of weather on crop yield. LAI magnitude
and phenology parameters (n0, n1,m0,m1) can alone explain
more than 60% of the yield variation. It is interesting to no-
tice that the canopy structure parameter ALA is more important
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for yield estimation than the leaf colour parameters Cab, while
the leaf colour during the senescence period Cbrown shows a
greater influence on yield estimation.

5. Conclusions

In this study, we have used the ARC model to examine the
role a ‘full’ set of crop biophysical parameters in predicting
crop yield. We find it straightforward to develop new bespoke
ARC models for crops such as Winter Wheat, but the resulting
model is quite similar in most ways to a previously generated
maize model. We find we can drive the process with more lim-
ited information content Planet observations, will have import-
ant ramifications for mapping data from smaller fields and in
cloudy areas, because of the higher spatial resolution and tem-
poral sampling available. We find that the parameters currently
most widely-used (explicitly or implicitly), LAI and pheno-
logy are confirmed as the first-order EO parameters. However,
second-order parameters such as ALA can also add informa-
tion. Leaf colour parameters tend to have only low amounts
of information with respect to yield. A useful EO-only maize
yield estimation model has been calibrated using the ARC para-
meters only and is seen to operate well over multiple years in
the US corn belt.

.
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