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Abstract 

This study addresses the challenge of estimating above-ground biomass (AGB) in the Amazon rainforest by developing a reference 

geographical database, which provides the ground truth, and comparing the relative importance of using Synthetic Aperture Radar 

(SAR) and optical remote sensing data to automatically infer AGB. In the experiments reported in this article, we assessed how those 

two remote sensing data sources impact the accuracy of AGB estimates produced by regression models built with Random Forest (RF) 

and Extreme Gradient Boosting (XGBoost). The research involved compiling a comprehensive database from many available forest 

inventories, integrating parcel- and tree-level data to enable precise biomass estimation. The methodology included setting up a spatial 

data analysis environment, standardizing data, and implementing an experimental protocol with feature selection and leave-one-out 

cross-validation. The results demonstrate that both kinds of data, i.e., SAR and optical, and their combination can be used for estimating 

AGB, providing valuable insights for forest management and climate change mitigation efforts. The reference database is available 

upon request to the corresponding authors. 

1. Introduction

Global warming has been a central issue in environmental 

discussions for decades, drawing attention and action proposals 

from environmental agencies and uniting nations worldwide 

around a common goal. Importantly, these discussions extend 

beyond governmental organizations to include academia, non-

governmental organizations, and the private sector, all working 

towards the same objective. 

The rise in global, regional, and local temperatures can be 

attributed to several factors. Rapid urbanization worldwide, 

reliance on non-renewable energy for transportation, unplanned 

agricultural expansion, and deforestation are major contributors 

to this trend. 

The critical role of intact vegetation in mitigating the greenhouse 

effect is widely recognized. The excessive release of carbon 

dioxide can be significantly offset through carbon sequestration, 

a natural process facilitated by oceans, soil, and forests. 

Focusing on Brazil, the Amazon rainforest stands out for its vast 

carbon sequestration potential. Spanning 6.7 million km² across 

several South American countries, including Bolivia, Peru, 

Colombia, Venezuela, Guyana, Suriname, and French Guiana, 

the portion within Brazil, known as the Brazilian Legal Amazon, 

covers 5 million km². The Amazon biome accounts for 49% of 

Brazil's territory, covering 8,510,000 km². 

Forests are pivotal in carbon sequestration, storing approximately 

80% of the terrestrial biomass (Gardon et al., 2020). Beyond their 

role in carbon storage, forests' biomass is a critical indicator of 

their health and an essential metric for quantifying their 

ecosystem services  (Herold et al., 2019; Reichstein and 

Carvalhais, 2019). Accurate biomass estimation supports 

environmental preservation and sustainable management, 

indicating the nature and extent of environmental degradation 

(Ghasemi et al., 2011; Saatchi et al., 2011). 

Amidst escalating global warming, monitoring forest biomass 

and carbon stocks has gained urgency, leading to initiatives like 

REDD+ (Reducing Emissions from Deforestation and Forest 

Degradation). Developed by the United Nations Framework 

Convention on Climate Change (UNFCCC), REDD+ emphasizes 

the economic value of carbon sequestration in forests, 

necessitating reliable carbon stock estimates (Pati et al., 2022; 

Pothong et al., 2022). 

However, tropical forests pose significant challenges for 

modeling their properties due to their complex dynamics, 

resulting in considerable uncertainties in carbon stock estimates 

(Mitchard et al., 2014, 2013; Sinha et al., 2015). Field 

quantification of forest carbon typically involves collecting data 

on tree diameter, height, and species in sample plots, using these 

variables to estimate above-ground biomass (AGB) through 

allometric equations (e.g., Chave et al., 2014). Despite its high 

accuracy, such an in situ method is labor-intensive and less 

feasible in vast or inaccessible areas. 

Remote sensing offers a viable alternative for biomass 

estimation, leveraging various sensors (optical, SAR, LiDAR) to 

calibrate biomass models. Integrating field data with remote 

sensing through statistical and machine learning models (e.g., 

linear regression, random forests, artificial neural networks) can 

enhance AGB estimates, as demonstrated in Almeida et al. 

(2019). Nonetheless, effectively combining different sensor data 

and modeling algorithms remains a complex challenge. 
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The present study aims to improve the estimation of above-

ground biomass (AGB) in the Amazon region. By assembling a 

comprehensive reference geographical database and employing 

remote sensing data from Synthetic Aperture Radar (SAR) and 

optical sensors, we compare the efficacy of Random Forest (RF) 

and Extreme Gradient Boosting (XGBoost) algorithms in 

biomass estimation. The challenges of modeling in tropical 

forests, such as the curse of dimensionality due to the large 

number of available feature types and small number of target 

samples (parcels) within the selected study area, are addressed, 

highlighting the significance of accurate carbon stock estimates 

for environmental preservation and sustainable management. 

Our contributions are twofold: first, we provide a structured 

reference database for model training and evaluation, enhancing 

data accessibility for biomass quantification in the Amazon. 

Second, we conduct a comparative analysis of SAR and optical 

remote sensing data to ascertain their relative importance and 

combined efficacy in AGB estimation.  

The subsequent sections of this paper are organized as follows: 

"Materials and Methods" outlines the creation of the reference 

database and the technological platforms utilized for spatial data 

analysis and biomass calculation. "Results and Discussion" 

presents the findings from our regression analysis, comparing the 

performance of RF and XGBoost models across different remote 

sensing data sets. Finally, the "Conclusion" section summarizes 

the study's implications for forest management and climate 

change mitigation, proposing directions for future research to 

further improve the accuracy and applicability of biomass 

estimation models. 

2. Materials and Methods 

The first goal of this research is to assemble a reference database 

for training and evaluating biomass estimation methods. This 

database covers regions in the Amazon, including parts of the 

Brazilian states of Amazonas, Pará, Rondônia, Acre, and Mato 

Grosso (Figure 1). 

 

In the pursuit of state-of-the-art practices not only in cartographic 

representation but also in the preparation and use of spatial data 

analysis environments under the premise of Geographic 

Intelligence, the following technological platforms were 

employed to prepare the reference geographical database: 

 

● ArcGIS Pro, a comprehensive Geographic Information 

System (GIS) for input, storage, spatial data analysis, 

and output, whether as cartographic products or any 

other informational output. 

 

● ArcGIS Online WebGIS, for publishing, manipulating, 

geodata visualization, and analyzing geographic data in 

a cloud computing environment. 

 

● The R programming language and the BIOMASS 

library (Roéjou-Méchain et al., 2016), for conducting 

the necessary calculations for above-ground biomass 

estimation. 

 

● The Python Programming language for geodata 

extraction, standardization, and transformation. 

 

The database used in this research was constructed from data 

sourced from the study "Forest Inventory and Biophysical 

Measurements, Brazilian Amazon, 2009-2018" (dos Santos et al., 

2022). From the forest inventories provided in the 

aforementioned sources, approximately fifty by fifty meters 

(2500 m2) parcels were selected, amounting to 19 inventories and 

385 parcels. 

 

 

Figure 1. Extents of the forest inventories (reference database) 

 

A comprehensive effort to standardize and correct errors in the 

data from the selected inventories was undertaken, including 

 

● Importing parcel polygons and tree points in shapefile 

format into spatial databases (GDB and PostGIS); 

 

● Resolving geometric-topological issues, such as 

negative areas; 

 

● Standardizing numerical data to ensure compatibility 

of data types and numerical magnitudes; 

 

● Standardizing attributes and modeling of the 

Geographic Database. 

 

The geographic database's objects were thus integrated and made 

compatible (Figure 1) in a Geographic Coordinate System, with 

WGS 84 as the Reference System. 

 

To preserve cartographic integrity, especially for potential metric 

calculations, spatial data were also organized in a plane 

coordinate system (Universal Transverse Mercator), in five 

groups by UTM Zone, with SIRGAS 2000 datum, as shown in 

Table 1. This meticulous data preparation process ensures the 

database's reliability for further analysis, facilitating accurate 

biomass estimation and contributing to the integrity of 

cartographic and metric calculations within the research. 

 

The database objects represent trees (points) and parcels 

(polygons). The trees occur within the parcels, and each 

corresponding point has the attributes listed in Table 2. The 

polygons associated with the parcels of the forest inventories 

have the attributes listed in Table 3. 

 

Once the Geographic Database was systematically organized, 

standardized, and normalized, we could calculate the 

aboveground biomass (AGB) utilizing the BIOMASS library. By 

developing a straightforward R script, drawing on the approach 

outlined by Réjou-Méchain et al. (2016), we could calculate the 

AGB for each tree and extend these calculations to encompass 

the entire parcels. 
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Study Area Name UTM Zone 

BON_A01_2014, HUM_A01_2014, 

TAL_A01_2014,  
19S 

DUC_A01_2016, JAM_A02_2013, 

JAM_A03_2013 
20S 

ANA_A01_2015_2018, FN_A01_2015, 

FNA_A01_2013, FST_A01_2013, 

SAN_A01_2014_2016, 

SAN_A01b_2016_2018, SAN_A02_2014, 

TAP_A01_2015_2016_2018, 

TAP_A03_2015_2018 

21S 

CAU_A01_2014_2018, TAC_A01_2015,  22S 

AND_A01_2013_2018, PAR_A01_2018 23S 

 

Table 1. Study Areas and respective UTM Zones. 

 

Attribute Description/Unit 

PlotID Parcel identification code 

area Code name to the area 

tree Tree identification code 

common.name Tree common name 

scientific.name Tree scientific name 

family.name Tree family name 

DBH 

Diameter at breast height (1.3 

meters above the ground), in 

centimeters 

type 
Tree class: Liana, Palms, Trunked 

Palms, or Others 

Dead Standing dead 

D.Class 
Decomposition Class (from Keller 

et al., 2004) 

H Tree total height, in meters 

WD Wood density, in g/cm3 

date Date, in ISO 8601 format 

UTM.easting 
Abscissa of UTM Coordinate (x), 

in meters 

UTM.northing 
Ordinate of UTM Coordinate (y) 

UTM, in meters 

 

Table 2. Attributes associated with the points (trees) 

of the reference database. 

 

Attribute Description/Unit 

PlotID Parcel identification code 

area Name to the area (ref. Table 1) 

Shape_Lenght Perimeter, in meters 

Shape_Area Area, in square meters 

 

Table 3. Attributes associated with the polygons (parcels) 

 of the reference database. 

 

The allometric equation used to calculate the AGB per tree was 

the same one proposed by Chave et al. (2014) and implemented 

in the BIOMASS library, namely: 

 

AGB_tree = 0.0673 × (WD × H × DBH2)0.976 

 

Following the AGB calculation processes, the outputs were 

seamlessly integrated into the geographic reference database, 

introducing the attributes specified in Tables 4 and 5 and 

enriching the database with detailed biomass information. 

 

 

Attribute Description/Unit 

             AGB_tree             AGB, in Mg 

 

Table 4. Attribute appended to the reference database's points 

(trees) objects after biomass calculation. 

 

Attribute Description/Unit 

                AGB_ha           AGB, in Mg ha-1 

 

Table 5. Attribute appended to the reference database's 

polygons (parcels) objects after biomass calculation. 

 

2.1 Study Area 

To investigate the relative importance of different types of 

remote sensing data (i.e., SAR and optical) in biomass 

estimation, we selected a particular area (and respective set of 

parcels) within the reference database. 

 

The particular study area is within the Adolpho Ducke Forest 

Reserve, northeast of Manaus, managed by the National Institute 

of Amazonian Research (INPA). This area covers 100 km² of 

primary forest (Hopkins, 2005), and the selected study area 

covers 21 km², as illustrated in Figure 2 (orange box). 

 

 

Figure 2. Location of the selected Study Area 

 

Hopkins (2005) identifies the main vegetation type in the study 

area as terra firme forest, noting the absence of floodplain and 

igapó forests attributed to the local rivers' lack of regular 

flooding. The reserve's habitats are differentiated into plateau 

forests, with nutrient-poor, clayey, and well-drained soil, where 
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the canopy ranges from 30-40 meters, occasionally reaching 50-

60 meters through emergent trees. 

Furthermore, Hopkins (2005) describes lowland forests as having 

sandy, very moist soil and a canopy of 25-30 meters. Slope 

forests on inclines feature sandy soil at lower elevations and 

vegetation that serves as a transitional zone between plateau and 

lowland forests. Campinarana forests on plains near creeks are 

characterized by sandy soil and abundant leaf litter, with canopy 

heights between 15-25 meters.  

 

The respective forest inventory was carried out in August 2016, 

and comprises a total of 17 parcels. 

 

2.2 Remote Sensing Data 

For the biomass estimation regression study, we employed 

images from optical orbital sensors and synthetic aperture radar 

(SAR) systems. The selected imagery included: 

 

● A Sentinel-2 (optical) image from August 16, 2016, 

processed to Level 1C. It was orthorectified and 

adjusted for Top-of-Atmosphere reflectance, with its 

bands resampled to achieve a 10-meter resolution per 

pixel. 

 

● A Sentinel-1 (SAR) image from September 25, 2016, 

presented in Ground Range Detected (GRD) format, 

with a 10-meter resolution per pixel, which underwent 

calibration and orthorectification using the Sentinel-1 

Toolbox. 

 

● An Alos Palsar-2 ScanSAR image from August 29, 

2016, calibrated and orthorectified using the ALOS 

World 3D (AW3D30) Digital Surface Model to 

achieve a 25-meter resolution per pixel. 

 

In the experiments, we used all available Sentinel-2 bands except 

bands 1, 9, and 10. For the Sentinel-1 (C-band) image, we used 

both VV and VH polarizations. For the Palsar-2 (L-band) image, 

we used HH and HV polarizations. 

 

2.3 Biomass estimation method 

We employed two machine learning algorithms in the 

experiments: Random Forest (RF) and Extreme Gradient 

Boosting (XGBoost). 

 

Random Forest (Breiman, 2001) constructs an ensemble of 

decision trees through a process known as bootstrap aggregating 

or bagging (Breiman, 1996). This method involves creating 

multiple subsets of the original dataset through random sampling 

with replacement, ensuring each subset is slightly different. For 

each of these subsets, a decision tree is grown. At inference time, 

Random Forest computes the outcome by averaging the 

predictions made by all the individual trees.  

 

XGBoost (Friedman, 2001) also builds an ensemble of decision 

trees, sharing similarities with Random Forests in that it aims to 

minimize a specific loss function during training. This loss 

function accounts for the discrepancies between predicted and 

actual outcomes and incorporates a regularization term to manage 

the model's complexity, mitigating the risk of overfitting. 

However, unlike Random Forests, which constructs its trees in 

parallel, XGBoost builds its model sequentially. Each tree is 

added to the ensemble to correct the residuals or errors left by the 

previously trained trees. The gradient of the loss function guides 

this correction. Furthermore, the training involves assigning 

weights to each tree based on their contribution to reducing the 

overall prediction error. 

At inference, each new input data passes through the ensemble of 

trees. To obtain the final prediction, XGBoost aggregates the 

scores from all trees. The weights computed during the training 

phase are considered in the aggregation step, with more accurate 

trees having a greater influence on the final prediction. 

 

Our choice of Random Forest and XGBoost was motivated by 

their success in many studies on biomass estimation, e.g. (Li et 

al., 2020; Torre-Tojal et al., 2022). We favored them over deep 

learning approaches due to the limited availability of labeled 

training data. The selected methods require fewer samples to 

achieve high accuracy, avoiding the overfitting common in deep 

learning models trained with scarce data. 

 

Furthermore, such methods are more easily interpretable than 

deep learning algorithms. This characteristic facilitates the 

scientific and decision-making communities' validation and 

adoption of solutions based on them. 

 

2.4 Experimental Protocol 

We extracted several features from the satellite imagery bands 

(Sentinel-1, Sentinel-2, and Palsar-2) and the vegetation indices 

EVI and NDVI derived from the Sentinel-2 bands. The total set 

of features used in the experiments comprise the mean and 

standard deviations computed for each Sentinel-2 band (except 

bands 1, 9, and 10), for the EVI and NDVI indices, and for each 

polarization of the Sentinel-1 and Palsar-2 image data, amounting 

to 32 individual features, for each of the 17 parcels of the 

DUC_A01_2016 inventory. Our experimental protocol 

implemented an exploratory feature selection process, 

systematically investigating the predictive power of various 

combinations of these features on the model's performance. 

We adopted the leave-one-out (LOO) cross-validation technique 

to evaluate the model and mitigate overfitting. In this validation 

method, each instance in the dataset is sequentially used as a 

single data point for the test set, while the remainder of the data 

serves as the training set. This approach is particularly beneficial 

in scenarios where the dataset size is limited, as it maximizes the 

training data usage while ensuring a thorough assessment of the 

model on every data point. 

In tuning the XGBoost regressor, we adjusted several 

hyperparameters to optimize performance. We set the number of 

trees in the model (estimators) to 50, limited the depth of each 

tree to 2 layers to prevent overly complex models, and specified 

a learning rate of 0.1 to control how quickly the model adapts to 

the problem. To introduce randomness and thus enhance the 

model's generalization capability, we applied two types of 

subsampling: a rate of 0.6 for selecting samples (subsample), and 

a feature sampling rate (Feature Sampling Rate for Tree 

Construction) of 0.7. We also employed regularization 

techniques, setting alpha and lambda to 10. These regularization 

parameters add penalties on the model's complexity, with alpha 

for L1 regularization and lambda for L2 regularization, further 

aiding in the prevention of overfitting by discouraging overly 

complex models. 

A similar procedure was conducted for Random Forest. The final 

configuration consists of 50 trees, a minimum requirement of 2 

samples for splitting, and at least six samples in each leaf. The 

decision on which features to consider during splits is restricted 

to the square root of the total features available. Additionally, the 
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trees are capped at a maximum depth of 3 to prevent the model 

from becoming excessively complex. The model employs 

absolute error as its splitting criterion, aiming to minimize 

prediction errors in absolute terms. 

We used the Root Mean Squared Error (RMSE) metric to 

evaluate the models’ accuracy. To address potential variability in 

results due to stochastic processes inherent in algorithms like 

XGBoost, we ran each experiment 20 times with 20 different 

seeds. We reported the RMSE mean and standard deviation.  

3. Results and Discussion 

3.1 Reference Database 

With the results obtained from data processing with the 

BIOMASS package and integrated into the database (utilizing 

Python and ArcGIS Pro), a geovisualization web application was 

created in ArcGIS Online, the so-called dashboard, as shown in 

Figure 3. This dashboard allows the user to browse the obtained 

data, select topics of interest, and have an interactive view, 

including filters by scale and attributes. This dataviz is possible 

because the geographical database has been modeled and 

normalized using tools such as Model Builder (ArcGIS Pro) and 

the support of Extract, transform, load (ETL) processes with 

Python codes. 

Figure 3 shows an example of the study area (DUC_A01_2016), 

containing 17 parcels and an average AGB of 281.5 Mg ha-1 from 

1,169 inventoried trees, with an average AGB per tree of 0.9 Mg. 

In the same view, the graphs with the tree's diameter DBH and 

WD average wood density, respectively, can be read and 

interpreted. 

 
Figure 3. Exploratory Panel (geodataviz Dashboard). 

 

In addition to the species name, the dashboard allows the analysis 

of the same parameters (parcel number, AGB, DBH, and WD) in 

individual trees, as shown in Figure 4. 

 

 
 

Figure 4. Querying a specific sample (tree) attributes from 

Table 2. 

 

 

 

 

3.2 AGB Regression Analysis 

 

Figures 5 and 6 show the distribution of RMSE values obtained 

from the prediction of the XGBoost and RF regression models, 

respectively, each configured with a different combination of 

features. In the figures, 'S1' denotes features from Sentinel-1, 'S2' 

represents features from Sentinel-2, 'P2' corresponds to 

PALSAR-2 features, and 'EVI' and 'NDVI' are vegetation indices 

derived from Sentinel-2 data. 

 

By inspecting the figures, one can observe that the errors in the 

AGB are, on average, in the range of 54 to 58 Mg/ha RMSE, 

which is compatible with the state-of-the-art. In (Arévalo et al., 

2023), which used Landsat data and XGBoost for estimating 

biomass in the Amazon, the error ranged from 64 to 92 Mg/ha 

RMSE. 

 
Figure 5. Boxplot of RMSE Values Across Different Feature 

Set Combinations for the XGBoost model.  

 

 

 
Figure 6. Boxplot of RMSE Values Across Different Feature 

Set Combinations for the RF model.  

 

It is also clear that the results with the XGBoost regression 

models were superior to those obtained with RF in most cases 

(i.e., considering the different input feature sets). 

 

Considering the XGBoost results, the best feature sets are not 

identifiable, considering the overlapping ranges of the different 

boxplots. Interestingly, however, the three best results are 

associated with features coming either from the SAR data 

(PALSAR-2 and the combination of PALSAR-2 and Sentinel-1 

bands) or the optical data (Sentinel-2 bands). Considering both 

regression methods, the features from the SAR sensors alone or 

combined provided better regression models.  

 

Interestingly, considering the sole use of Sentinel-2 features, the 

XGBoost model was the second best, while the RF counterpart 

was the worst. This indicates that the first method can better 

handle more features when creating regression models. 
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Focusing again on the XGBoost results, combining all available 

features (i.e., PALSAR-2, Sentinel-1, Sentinel-2, and the 

vegetation indices) delivered relatively poorer results. This may 

indicate that, after a certain amount, adding more features makes 

the respective regression models more complex (introducing the 

commonly known curse of dimensionality problem). If that is the 

case, including more training samples, i.e., data from different 

sites in the reference database, would be beneficial for generating 

better regression models. 

 

4. Conclusion 

 

This research investigates the estimation of above-ground 

biomass (AGB) in the Amazon rainforest, focusing on the 

enhanced accuracy achieved by combining Synthetic Aperture 

Radar (SAR) and optical remote sensing data. Creating a 

reference database and evaluating Random Forest (RF) and 

Extreme Gradient Boosting (XGBoost) algorithms for biomass 

estimation are central to this study.  

 

The findings confirmed that integrating SAR and optical data 

may improve the accuracy of AGB estimation by exploiting the 

complementarity of information contained in each source to 

capture the complex dynamics of tropical forest ecosystems. 

In future works, we are committed to expanding our reference 

database with additional data from diverse geographical regions 

and temporal spans. We also intend to explore advanced feature 

selection techniques and dimensionality reduction methods to 

manage model complexity and improve interpretability.  

We also aim to integrate spaceborne LiDAR data with SAR and 

optical data. Additionally, we will investigate the regression 

models' sensitivity to variations in the volume of training samples 

by analyzing different subsets of data extracted from the 

reference database. This will help us understand the impact of 

training data volume on model performance. 
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