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Abstract

This study addresses the challenge of estimating above-ground biomass (AGB) in the Amazon rainforest by developing a reference
geographical database, which provides the ground truth, and comparing the relative importance of using Synthetic Aperture Radar
(SAR) and optical remote sensing data to automatically infer AGB. In the experiments reported in this article, we assessed how those
two remote sensing data sources impact the accuracy of AGB estimates produced by regression models built with Random Forest (RF)
and Extreme Gradient Boosting (XGBoost). The research involved compiling a comprehensive database from many available forest
inventories, integrating parcel- and tree-level data to enable precise biomass estimation. The methodology included setting up a spatial
data analysis environment, standardizing data, and implementing an experimental protocol with feature selection and leave-one-out
cross-validation. The results demonstrate that both kinds of data, i.e., SAR and optical, and their combination can be used for estimating
AGB, providing valuable insights for forest management and climate change mitigation efforts. The reference database is available

upon request to the corresponding authors.
1. Introduction

Global warming has been a central issue in environmental
discussions for decades, drawing attention and action proposals
from environmental agencies and uniting nations worldwide
around a common goal. Importantly, these discussions extend
beyond governmental organizations to include academia, non-
governmental organizations, and the private sector, all working
towards the same objective.

The rise in global, regional, and local temperatures can be
attributed to several factors. Rapid urbanization worldwide,
reliance on non-renewable energy for transportation, unplanned
agricultural expansion, and deforestation are major contributors
to this trend.

The critical role of intact vegetation in mitigating the greenhouse
effect is widely recognized. The excessive release of carbon
dioxide can be significantly offset through carbon sequestration,
a natural process facilitated by oceans, soil, and forests.

Focusing on Brazil, the Amazon rainforest stands out for its vast
carbon sequestration potential. Spanning 6.7 million km2 across
several South American countries, including Bolivia, Peru,
Colombia, Venezuela, Guyana, Suriname, and French Guiana,
the portion within Brazil, known as the Brazilian Legal Amazon,
covers 5 million km2. The Amazon biome accounts for 49% of
Brazil's territory, covering 8,510,000 km2.

Forests are pivotal in carbon sequestration, storing approximately
80% of the terrestrial biomass (Gardon et al., 2020). Beyond their
role in carbon storage, forests' biomass is a critical indicator of
their health and an essential metric for quantifying their
ecosystem services (Herold et al., 2019; Reichstein and

Carvalhais, 2019). Accurate biomass estimation supports
environmental preservation and sustainable management,
indicating the nature and extent of environmental degradation
(Ghasemi et al., 2011; Saatchi et al., 2011).

Amidst escalating global warming, monitoring forest biomass
and carbon stocks has gained urgency, leading to initiatives like
REDD+ (Reducing Emissions from Deforestation and Forest
Degradation). Developed by the United Nations Framework
Convention on Climate Change (UNFCCC), REDD+ emphasizes
the economic value of carbon sequestration in forests,
necessitating reliable carbon stock estimates (Pati et al., 2022;
Pothong et al., 2022).

However, tropical forests pose significant challenges for
modeling their properties due to their complex dynamics,
resulting in considerable uncertainties in carbon stock estimates
(Mitchard et al., 2014, 2013; Sinha et al., 2015). Field
quantification of forest carbon typically involves collecting data
on tree diameter, height, and species in sample plots, using these
variables to estimate above-ground biomass (AGB) through
allometric equations (e.g., Chave et al., 2014). Despite its high
accuracy, such an in situ method is labor-intensive and less
feasible in vast or inaccessible areas.

Remote sensing offers a viable alternative for biomass
estimation, leveraging various sensors (optical, SAR, LiDAR) to
calibrate biomass models. Integrating field data with remote
sensing through statistical and machine learning models (e.g.,
linear regression, random forests, artificial neural networks) can
enhance AGB estimates, as demonstrated in Almeida et al.
(2019). Nonetheless, effectively combining different sensor data
and modeling algorithms remains a complex challenge.
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The present study aims to improve the estimation of above-
ground biomass (AGB) in the Amazon region. By assembling a
comprehensive reference geographical database and employing
remote sensing data from Synthetic Aperture Radar (SAR) and
optical sensors, we compare the efficacy of Random Forest (RF)
and Extreme Gradient Boosting (XGBoost) algorithms in
biomass estimation. The challenges of modeling in tropical
forests, such as the curse of dimensionality due to the large
number of available feature types and small number of target
samples (parcels) within the selected study area, are addressed,
highlighting the significance of accurate carbon stock estimates
for environmental preservation and sustainable management.

Our contributions are twofold: first, we provide a structured
reference database for model training and evaluation, enhancing
data accessibility for biomass quantification in the Amazon.
Second, we conduct a comparative analysis of SAR and optical
remote sensing data to ascertain their relative importance and
combined efficacy in AGB estimation.

The subsequent sections of this paper are organized as follows:
"Materials and Methods" outlines the creation of the reference
database and the technological platforms utilized for spatial data
analysis and biomass calculation. "Results and Discussion™
presents the findings from our regression analysis, comparing the
performance of RF and XGBoost models across different remote
sensing data sets. Finally, the "Conclusion™ section summarizes
the study's implications for forest management and climate
change mitigation, proposing directions for future research to
further improve the accuracy and applicability of biomass
estimation models.

2. Materials and Methods

The first goal of this research is to assemble a reference database
for training and evaluating biomass estimation methods. This
database covers regions in the Amazon, including parts of the
Brazilian states of Amazonas, Para, Rondoénia, Acre, and Mato
Grosso (Figure 1).

In the pursuit of state-of-the-art practices not only in cartographic
representation but also in the preparation and use of spatial data
analysis environments under the premise of Geographic
Intelligence, the following technological platforms were
employed to prepare the reference geographical database:

e  ArcGIS Pro, a comprehensive Geographic Information
System (GIS) for input, storage, spatial data analysis,
and output, whether as cartographic products or any
other informational output.

e  ArcGIS Online WebGIS, for publishing, manipulating,
geodata visualization, and analyzing geographic data in
a cloud computing environment.

e The R programming language and the BIOMASS
library (Roéjou-Méchain et al., 2016), for conducting
the necessary calculations for above-ground biomass
estimation.

e The Python Programming language for geodata
extraction, standardization, and transformation.

The database used in this research was constructed from data
sourced from the study "Forest Inventory and Biophysical
Measurements, Brazilian Amazon, 2009-2018" (dos Santos et al.,
2022). From the forest inventories provided in the

aforementioned sources, approximately fifty by fifty meters
(2500 m2) parcels were selected, amounting to 19 inventories and
385 parcels.

Plot Locations (reference database)

Roraima

Manaus

Amazonas

Brazil

Rondénia Tocantins

Mato Grosso;

Figure 1. Extents of the forest inventories (reference database)

A comprehensive effort to standardize and correct errors in the
data from the selected inventories was undertaken, including

e Importing parcel polygons and tree points in shapefile
format into spatial databases (GDB and PostGIS);
such as

e Resolving geometric-topological issues,

negative areas;

e Standardizing numerical data to ensure compatibility
of data types and numerical magnitudes;

e Standardizing attributes
Geographic Database.

and modeling of the

The geographic database's objects were thus integrated and made
compatible (Figure 1) in a Geographic Coordinate System, with
WGS 84 as the Reference System.

To preserve cartographic integrity, especially for potential metric
calculations, spatial data were also organized in a plane
coordinate system (Universal Transverse Mercator), in five
groups by UTM Zone, with SIRGAS 2000 datum, as shown in
Table 1. This meticulous data preparation process ensures the
database's reliability for further analysis, facilitating accurate
biomass estimation and contributing to the integrity of
cartographic and metric calculations within the research.

The database objects represent trees (points) and parcels
(polygons). The trees occur within the parcels, and each
corresponding point has the attributes listed in Table 2. The
polygons associated with the parcels of the forest inventories
have the attributes listed in Table 3.

Once the Geographic Database was systematically organized,
standardized, and normalized, we could calculate the
aboveground biomass (AGB) utilizing the BIOMASS library. By
developing a straightforward R script, drawing on the approach
outlined by Réjou-Méchain et al. (2016), we could calculate the
AGB for each tree and extend these calculations to encompass
the entire parcels.
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Study Area Name UTM Zone
BON_AO01 2014, HUM_AO01_2014, 195
TAL A01 2014,
DUC_A01_2016, JAM_A02_2013, 205
JAM A03 2013
ANA_A01 2015 2018, FN_A01_2015,
FNA_A01_2013, FST_A01 2013,
SAN_A01_2014 2016, 215
SAN_AO01b_2016_2018, SAN_A02_2014,
TAP_A01_2015_2016_2018,
TAP_A03 2015 2018
CAU_A01_2014 2018, TAC_A01_2015, 22S
AND_A01_2013 2018, PAR_A01_2018 23S

Table 1. Study Areas and respective UTM Zones.

Attribute Description/Unit
PlotID Parcel identification code
area Code name to the area
tree Tree identification code

common.name

Tree common name

scientific.name

Tree scientific name

family.name

Tree family name

Diameter at breast height (1.3
DBH meters above the ground), in
centimeters

Tree class: Liana, Palms, Trunked

type Palms, or Others
Dead Standing dead
Decomposition Class (from Keller
D.Class et al., 2004)
H Tree total height, in meters
WD Wood density, in g/cm?
date Date, in 1ISO 8601 format
UTM.easting Absussa of UTM Coordinate (x),
in meters

Ordinate of UTM Coordinate (y)

UTM.northing UTM, in meters

Table 2. Attributes associated with the points (trees)
of the reference database.

Attribute Description/Unit
PlotID Parcel identification code
area Name to the area (ref. Table 1)
Shape_Lenght Perimeter, in meters
Shape_Area Avrea, in square meters

Table 3. Attributes associated with the polygons (parcels)
of the reference database.

The allometric equation used to calculate the AGB per tree was
the same one proposed by Chave et al. (2014) and implemented
in the BIOMASS library, namely:

AGB_tree = 0.0673 x (WD x H x DBH?)097

Following the AGB calculation processes, the outputs were
seamlessly integrated into the geographic reference database,
introducing the attributes specified in Tables 4 and 5 and
enriching the database with detailed biomass information.

Attribute
AGB_tree

Description/Unit
AGB, in Mg

Table 4. Attribute appended to the reference database's points
(trees) objects after biomass calculation.

Attribute
AGB_ha

Description/Unit
AGB, in Mg ha'!

Table 5. Attribute appended to the reference database's
polygons (parcels) objects after biomass calculation.

2.1 Study Area

To investigate the relative importance of different types of
remote sensing data (i.e, SAR and optical) in biomass
estimation, we selected a particular area (and respective set of
parcels) within the reference database.

The particular study area is within the Adolpho Ducke Forest
Reserve, northeast of Manaus, managed by the National Institute
of Amazonian Research (INPA). This area covers 100 km? of
primary forest (Hopkins, 2005), and the selected study area
covers 21 km?, as illustrated in Figure 2 (orange box).

Study Area
DUC A01 2016 Inventory

[ DUC A01 (2016) Study Area
Samples (Trees)

Figure 2. Location of the selected Study Area

Hopkins (2005) identifies the main vegetation type in the study
area as terra firme forest, noting the absence of floodplain and
igapd forests attributed to the local rivers' lack of regular
flooding. The reserve's habitats are differentiated into plateau
forests, with nutrient-poor, clayey, and well-drained soil, where
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the canopy ranges from 30-40 meters, occasionally reaching 50-
60 meters through emergent trees.

Furthermore, Hopkins (2005) describes lowland forests as having
sandy, very moist soil and a canopy of 25-30 meters. Slope
forests on inclines feature sandy soil at lower elevations and
vegetation that serves as a transitional zone between plateau and
lowland forests. Campinarana forests on plains near creeks are
characterized by sandy soil and abundant leaf litter, with canopy
heights between 15-25 meters.

The respective forest inventory was carried out in August 2016,
and comprises a total of 17 parcels.

2.2 Remote Sensing Data

For the biomass estimation regression study, we employed
images from optical orbital sensors and synthetic aperture radar
(SAR) systems. The selected imagery included:

e A Sentinel-2 (optical) image from August 16, 2016,
processed to Level 1C. It was orthorectified and
adjusted for Top-of-Atmosphere reflectance, with its
bands resampled to achieve a 10-meter resolution per
pixel.

e A Sentinel-1 (SAR) image from September 25, 2016,
presented in Ground Range Detected (GRD) format,
with a 10-meter resolution per pixel, which underwent
calibration and orthorectification using the Sentinel-1
Toolbox.

e An Alos Palsar-2 ScanSAR image from August 29,
2016, calibrated and orthorectified using the ALOS
World 3D (AW3D30) Digital Surface Model to
achieve a 25-meter resolution per pixel.

In the experiments, we used all available Sentinel-2 bands except
bands 1, 9, and 10. For the Sentinel-1 (C-band) image, we used
both VVV and VH polarizations. For the Palsar-2 (L-band) image,
we used HH and HV polarizations.

2.3 Biomass estimation method

We employed two machine learning algorithms in the
experiments: Random Forest (RF) and Extreme Gradient
Boosting (XGBoost).

Random Forest (Breiman, 2001) constructs an ensemble of
decision trees through a process known as bootstrap aggregating
or bagging (Breiman, 1996). This method involves creating
multiple subsets of the original dataset through random sampling
with replacement, ensuring each subset is slightly different. For
each of these subsets, a decision tree is grown. At inference time,
Random Forest computes the outcome by averaging the
predictions made by all the individual trees.

XGBoost (Friedman, 2001) also builds an ensemble of decision
trees, sharing similarities with Random Forests in that it aims to
minimize a specific loss function during training. This loss
function accounts for the discrepancies between predicted and
actual outcomes and incorporates a regularization term to manage
the model's complexity, mitigating the risk of overfitting.
However, unlike Random Forests, which constructs its trees in
parallel, XGBoost builds its model sequentially. Each tree is
added to the ensemble to correct the residuals or errors left by the
previously trained trees. The gradient of the loss function guides
this correction. Furthermore, the training involves assigning

weights to each tree based on their contribution to reducing the
overall prediction error.

At inference, each new input data passes through the ensemble of
trees. To obtain the final prediction, XGBoost aggregates the
scores from all trees. The weights computed during the training
phase are considered in the aggregation step, with more accurate
trees having a greater influence on the final prediction.

Our choice of Random Forest and XGBoost was motivated by
their success in many studies on biomass estimation, e.g. (Li et
al., 2020; Torre-Tojal et al., 2022). We favored them over deep
learning approaches due to the limited availability of labeled
training data. The selected methods require fewer samples to
achieve high accuracy, avoiding the overfitting common in deep
learning models trained with scarce data.

Furthermore, such methods are more easily interpretable than
deep learning algorithms. This characteristic facilitates the
scientific and decision-making communities' validation and
adoption of solutions based on them.

2.4 Experimental Protocol

We extracted several features from the satellite imagery bands
(Sentinel-1, Sentinel-2, and Palsar-2) and the vegetation indices
EVI and NDVI derived from the Sentinel-2 bands. The total set
of features used in the experiments comprise the mean and
standard deviations computed for each Sentinel-2 band (except
bands 1, 9, and 10), for the EVI and NDVI indices, and for each
polarization of the Sentinel-1 and Palsar-2 image data, amounting
to 32 individual features, for each of the 17 parcels of the
DUC_AO01_2016 inventory. Our experimental protocol
implemented an exploratory feature selection process,
systematically investigating the predictive power of various
combinations of these features on the model's performance.

We adopted the leave-one-out (LOO) cross-validation technique
to evaluate the model and mitigate overfitting. In this validation
method, each instance in the dataset is sequentially used as a
single data point for the test set, while the remainder of the data
serves as the training set. This approach is particularly beneficial
in scenarios where the dataset size is limited, as it maximizes the
training data usage while ensuring a thorough assessment of the
model on every data point.

In tuning the XGBoost regressor, we adjusted several
hyperparameters to optimize performance. We set the number of
trees in the model (estimators) to 50, limited the depth of each
tree to 2 layers to prevent overly complex models, and specified
a learning rate of 0.1 to control how quickly the model adapts to
the problem. To introduce randomness and thus enhance the
model's generalization capability, we applied two types of
subsampling: a rate of 0.6 for selecting samples (subsample), and
a feature sampling rate (Feature Sampling Rate for Tree
Construction) of 0.7. We also employed regularization
techniques, setting alpha and lambda to 10. These regularization
parameters add penalties on the model's complexity, with alpha
for L1 regularization and lambda for L2 regularization, further
aiding in the prevention of overfitting by discouraging overly
complex models.

A similar procedure was conducted for Random Forest. The final
configuration consists of 50 trees, a minimum requirement of 2
samples for splitting, and at least six samples in each leaf. The
decision on which features to consider during splits is restricted
to the square root of the total features available. Additionally, the
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trees are capped at a maximum depth of 3 to prevent the model
from becoming excessively complex. The model employs
absolute error as its splitting criterion, aiming to minimize
prediction errors in absolute terms.

We used the Root Mean Squared Error (RMSE) metric to
evaluate the models’ accuracy. To address potential variability in
results due to stochastic processes inherent in algorithms like
XGBoost, we ran each experiment 20 times with 20 different
seeds. We reported the RMSE mean and standard deviation.

3. Results and Discussion
3.1 Reference Database

With the results obtained from data processing with the
BIOMASS package and integrated into the database (utilizing
Python and ArcGIS Pro), a geovisualization web application was
created in ArcGIS Online, the so-called dashboard, as shown in
Figure 3. This dashboard allows the user to browse the obtained
data, select topics of interest, and have an interactive view,
including filters by scale and attributes. This dataviz is possible
because the geographical database has been modeled and
normalized using tools such as Model Builder (ArcGIS Pro) and
the support of Extract, transform, load (ETL) processes with
Python codes.

Figure 3 shows an example of the study area (DUC_A01_2016),
containing 17 parcels and an average AGB of 281.5 Mg ha™ from
1,169 inventoried trees, with an average AGB per tree of 0.9 Mg.
In the same view, the graphs with the tree's diameter DBH and
WD average wood density, respectively, can be read and
interpreted.

1.169 0,9

avg. AGB

=
°
a

AGB trees
a]c = o ul

15
g10
§5
E ) w— v—

17 29

Figure 3. Exploratory Panel (geodataviz Dashboard).

In addition to the species name, the dashboard allows the analysis
of the same parameters (parcel number, AGB, DBH, and WD) in
individual trees, as shown in Figure 4.

< >

urucurana

@ zoom «+ Move
AGB (Above Ground 0,11
Biomass/tree

common.name urucurana

scientific.name Sloanea guianensis

Figure 4. Querying a specific sample (tree) attributes from
Table 2.

3.2 AGB Regression Analysis

Figures 5 and 6 show the distribution of RMSE values obtained
from the prediction of the XGBoost and RF regression models,
respectively, each configured with a different combination of
features. In the figures, 'S1' denotes features from Sentinel-1, 'S2'
represents features from Sentinel-2, 'P2' corresponds to
PALSAR-2 features, and 'EVI' and 'NDVI' are vegetation indices
derived from Sentinel-2 data.

By inspecting the figures, one can observe that the errors in the
AGB are, on average, in the range of 54 to 58 Mg/ha RMSE,
which is compatible with the state-of-the-art. In (Arévalo et al.,
2023), which used Landsat data and XGBoost for estimating
biomass in the Amazon, the error ranged from 64 to 92 Mg/ha
RMSE.

Comparison of RMSE Values Across Different Feature Sets
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Figure 5. Boxplot of RMSE Values Across Different Feature
Set Combinations for the XGBoost model.

Comparison of RMSE Values Across Different Feature Sets
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Figure 6. Boxplot of RMSE Values Across Different Feature
Set Combinations for the RF model.

It is also clear that the results with the XGBoost regression
models were superior to those obtained with RF in most cases
(i.e., considering the different input feature sets).

Considering the XGBoost results, the best feature sets are not
identifiable, considering the overlapping ranges of the different
boxplots. Interestingly, however, the three best results are
associated with features coming either from the SAR data
(PALSAR-2 and the combination of PALSAR-2 and Sentinel-1
bands) or the optical data (Sentinel-2 bands). Considering both
regression methods, the features from the SAR sensors alone or
combined provided better regression models.

Interestingly, considering the sole use of Sentinel-2 features, the
XGBoost model was the second best, while the RF counterpart
was the worst. This indicates that the first method can better
handle more features when creating regression models.
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Focusing again on the XGBoost results, combining all available
features (i.e., PALSAR-2, Sentinel-1, Sentinel-2, and the
vegetation indices) delivered relatively poorer results. This may
indicate that, after a certain amount, adding more features makes
the respective regression models more complex (introducing the
commonly known curse of dimensionality problem). If that is the
case, including more training samples, i.e., data from different
sites in the reference database, would be beneficial for generating
better regression models.

4. Conclusion

This research investigates the estimation of above-ground
biomass (AGB) in the Amazon rainforest, focusing on the
enhanced accuracy achieved by combining Synthetic Aperture
Radar (SAR) and optical remote sensing data. Creating a
reference database and evaluating Random Forest (RF) and
Extreme Gradient Boosting (XGBoost) algorithms for biomass
estimation are central to this study.

The findings confirmed that integrating SAR and optical data
may improve the accuracy of AGB estimation by exploiting the
complementarity of information contained in each source to
capture the complex dynamics of tropical forest ecosystems.

In future works, we are committed to expanding our reference
database with additional data from diverse geographical regions
and temporal spans. We also intend to explore advanced feature
selection techniques and dimensionality reduction methods to
manage model complexity and improve interpretability.

We also aim to integrate spaceborne LiDAR data with SAR and
optical data. Additionally, we will investigate the regression
models' sensitivity to variations in the volume of training samples
by analyzing different subsets of data extracted from the
reference database. This will help us understand the impact of
training data volume on model performance.
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