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Abstract 

 

Cities are becoming larger and it is estimated that by the year 2050, more than 6 billion people will be living in cities. As cities expand 

and grow, the quality of life and conditions will also transform. An integral part of environmental studies has been statistical analysis in 

modelling the spatial dynamics of land use changes. The research involved the use of satellite imagery to determine yearly averaged 

values of LST and NDVI from Landsat 8 OLI/TIR and monthly mean values of Nitrogen Dioxide (NO2) from Sentinel 5-Precursor 

(Sentinel-5P) across Nairobi City County. The datasets covered the period 2019, 2020, 2021, 2022 and 2023 and were analysed in 

Google Earth Engine. Results indicated that the yearly mean values in NO2 and LST in 2020 reduced by 2% and 12% respectively 

from 2019, while the mean NDVI value significantly increased by 28% in 2020 from 2019. NO2 has a negative correlation with LST in 

all years and a positive correlation with NDVI. Pearson correlation with population densities in constituencies in Nairobi in 2019 and 

2023 indicate a negative correlation with NDVI and a positive correlation with NO2 and LST. Constituencies that have higher 

population densities tend to have lower vegetation densities and higher NO2 concentrations and temperature. Vegetation therefore plays 

a crucial role in air quality and that climatic factors such as precipitation and temperature influence the concentration of pollutants. 

 

1. Introduction 

Air quality is considered one of the main environmental factors 

that directly impacts human health (Morozova et al. 2022). In 

2019 the World Health Organization (WHO) estimated that 89% 

of the 4.2 million premature deaths that occurred annually 

occurred in middle-to-low income countries.  These countries 

disproportionately experience the burden of air pollution with 

respiratory and cardiovascular diseases occurring due to 

exposure to fine particles (WHO 2022). Harmful effects of air 

pollution affect all age groups, with children, women and elderly 

being the most vulnerable (Hassaan et al. 2023). Air pollution 

also significantly causes damage to crops and buildings.  

 

The UN has estimated that the urban population will reach more 

than 6 billion people by the year 2050 (Marans 2012). Formation 

of urban heat island (UHI) can be linked to increased densities in 

population and built-up areas, reduced vegetation cover, 

increased trapping and absorption of incoming solar radiation in 

built-up areas (Lee et al. 2020). Urbanization contributes to 

changing climatic conditions  (Mwangi et al. 2020) and is one of 

the factors in the creation of UHI  (Matsaba et al. 2020). 

 

LST is an important phenomenon due to its relationship with 

different biophysical factor in the environment as it is affected by 

the amount of vegetation cover in an area, built-up materials. 

There have been positive links between LST and several 

pollutant gases in urban areas such as nitrogen dioxide (NO2), 

carbon monoxide (CO) and Ozone (O3) (Rahaman et al. 2023). 

Urban sprawl encourages the use of motorized modes of 

transport hence increases emissions. Nyaga (2014) determined a 

relationship between land surface temperature and air quality, 

with areas in fringes of Nairobi having lower correlations 

compared to areas within the CBD. Concentrations of particulate 

matter was lower in fringe areas than built-up areas. 

 

A major contributor to outdoor air pollution is the road 

transportation sector as it primarily relies on fossil fuel 

combustion thus making it the largest source of regional and 

urban air pollution (Wang et al. 2019; Li and Managi 2021). In 

2010, it accounted for 61% of the total nitrous oxide emissions, 

39% of fine particulate matter and 20% of carbon in Kenya 

(Mbandi et al. 2023).  

 

1.2 Sentinel -5 Precursor 

 

Sentinel-5 Precursor (Sentinel-5P), the first mission by 

Copernicus to monitor the atmosphere, was launched on 13th 

October 2017. To monitor aerosols and trace gases critical in 

determining air quality and climate, the satellite carries the 

Tropospheric Monitoring Instrument (TROPOMI) (ESA 2024), 

by measuring the magnitude of reflected sunlight by the 

atmosphere in the visible, near and mid-infra-red region 

(Rahaman et al. 2023). The satellite delivers high-resolution 

images of pollutants in the atmosphere such as ozone, nitrogen 

dioxide, carbon monoxide, formaldehyde, sulphur dioxide, 

methane and aerosols (eoPortal 2012; Hassaan et al. 2023).  

 

In Google Earth Engine (GEE), Sentinel-5P Offline catalog 

(OFFL) Nitrogen Dioxide is available at a spatial resolution of 

1113.2 meters (Google for Developers 2024a). Nitrogen Dioxide 

is one of the six widespread air pollutants whose limits in the 

outdoor air have been set through national air standards. The 

main contributors of NO2 in metropolitan areas come from 

domestic heating, electricity generation, traffic and ozone/ NOx 

equilibrium. Nitrogen dioxide (NO2) is an important pollutant 

studied in urban areas as it’s released into the lower atmosphere 

through processes such as combustion, burning of fossil fuels, 

while in the upper atmospheres it occurs through lightening 

(Rahaman et al. 2023). Satellite imagery has been extensively 

used to determine air quality over cities, and integrated with 

ground monitoring stations. Angom et al, (2019) compared 
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satellite measurements of NO2 from Aura satellite imagery with 

absorbing aerosol index (AAI) data from Tropospheric Emission 

Monitoring Internet Service.  

 

Therefore, data from Sentinel-5P provides information on 

atmospheric pollution and can be used to determine air quality 

and emission hotspots (Tonion and Pirotti 2022). This study 

seeks to determine the influence of changes in land surface 

temperature, vegetation health and population density on 

nitrogen dioxide (NO2) across the constituencies in Nairobi City. 

 

2. Methodology 

2.1 Study Area 

Nairobi is the capital of Kenya and the largest city in East and 

Central of Africa. It is centrally located geographically at 1°9’ S, 

1°28’ S and 36°4’ E, 37°10’ E, with an area of 684 Km2. 

Nairobi City County (NCC) has two rainy seasons with long 

rains from March-May (MAM), with its peak in April and the 

short rains from October-December (OND) with its peak in 

November. The lowest temperatures are normally recorded in 

June-August (JJA) while the highest temperatures are in 

December to March  (Ongoma et al. 2018).  

 

 
Figure 1 : Location Map of Nairobi City County 

2.2 Processing Landsat 8 OLI/TIR Satellite Imagery 

The Google Earth Engine (GEE) tool was used to process 

satellite imagery for the period 2019, 2020, 2021, 2022 and 

2023. USGS Landsat 8 OLI/TIRS Collection 2, Tier 1-Level 2, 

atmospheric surface reflectance datasets were imported into GEE 

and a scaling factor (USGS 2024;Google for Developers 2024; 

Ridho 2023) applied to all optical bands (equation 1) and 

thermal bands (equation 2) . 

 

      (1) 

 

Where: 

x optical band 

SBx scaled optical band 

SR_Bx  Surface reflected band    

 

   (2) 

Where: 

t thermal band 10 or 11 

TBt  scaled thermal band  

ST_Bt  surface reflectance thermal band  

 

A function was applied to mask clouds and cloud shadows in 

Landsat 8 Imagery by defining the cloud shadow and cloud 

bitmasks as Bits 3 and 5. Elimination of cloud and cloud 

shadows was done by creating a binary mask to identify clear 

conditions. 

 

2.3 Normalized Difference Vegetation Index 

Zha et al, (2003) developed normalized difference built-up index 

(NDBI) to analyse and identify built-up areas. As-syakur et al. 

(2012) compared five indices, NDBI, Urban Index (UI), EBBI, 

IBI and NDBaI in mapping built-up areas to map the distribution 

of vegetation and a variety of conditions over land surfaces 

normalized difference vegetation index (NDVI). Zhou et al., 

(2021) used NDVI to determine the correlation and spatial 

characteristic of air pollution across China during COVID-19 

lockdown. Therefore NDVI was used to map the healthy 

vegetation and also determine the role it plays in air quality 

(equation 3). 

 

  (3) 

 

2.4 Land Surface Temperature Computation 

2.4.1 Vegetation portion: The vegetation portion was 

calculated as: 

                                 (4) 

Where: 

Vp Vegetation portion 

NDVI Normalized difference vegetation index 

NDVImin Minimum NDVI  

NDVImax Maximum NDVI  

 

Land surface emissivity (LSE) was computed as (Ermida et al. 

2020) (Equation 5): 

 

                             (5) 

 

2.4.2 Land Surface Temperature: The land surface 

emissivity and at-satellite brightness were used to calculate the 

land surface temperature in Celsius (Equation 6): 

 

                       (6) 

 

Where: 

LST Land surface temperature 

TSB At-satellite brightness temperature 

λ Wavelength of emitted radiance (λ = 11.5μm) 

ρ  

𝞼 Bolzmann’s constant (1.38 * 10-23 J K-1) 

h Planck’s constant (6.26 * 10-34 J s) 

c Velocity of light (2.998 * 10-8 m s-1) 

 

 

2.5 Processing Sentinel-5P Satellite Imagery  

Air quality data was processed from Sentinel-5P TROPOMI 

NRTI L3 NO2 (NO2_column_number_density in the unit of 

mol/m^2) dataset. Mean values for each month and year were 

processed and downloaded. Administrative boundaries over 

Nairobi were then used to extract data across the city to 

determine the spatio-temporal variation of NO2, LST and NDVI 
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across the city.  These datasets were then exported and analysed 

in ArcMap 10.8.2 and statistical analysis carried out in STATA. 

 

2.6 Precipitation Data 

Mean monthly precipitation data from 2019 to 2023 was freely 

downloaded from Africa Data Hub (2023) and it is from 

GloH2O and has been modelled at a global scale. 

https://www.africadatahub.org/data-resources/climate-

observer?city=nairobi  

 

3. Results 

3.1 Nitrogen Dioxide Concentrations 

Average monthly NO2 values (mol/m2) for each year from 2019 

to 2023 are shown in Figure 2. Restriction of movement into and 

out of the Nairobi Metropolitan area due to COVID-19 pandemic 

comenced on April 2020 with persons continuing with their 

activities within the specified jurisdictions (RoK 2020). These 

restrictions were partially lifted in June 2020, with curfew times 

still in place. Minimal movement and activities resulted in a 

mean reduction in NO2 and LST in 2020 (Table 1). The NO2 

values started increasing after April 2021, with a peak in 

November 2021.  

 

 
Figure 2: Mean monthly values of precipitation and NO2 from 

2019 to 2023 

Low concentrations in each year were recorded in the months of 

October (2019), February (2021 & 2022) and November (2022 

& 2023). Higher concentrations were recorded in the months of 

June (2019), September (2020), November (2021), October 

(2022) and June (2023). There was a decline in NO2 

concentrations from October 2019 to February 2020 which could 

be attributed to the short rains that started in early October 2019 

and lasted till January 2020. These rains, recorded as one of the 

wettest since 1985 in East Africa, were attributed to a strong 

positive Indian Ocean Dipole (IOD) occurrence in the Indian 

Ocean. In late October 2021 all COVID-19 restrictions were 

lifted which could indicate an increase in NO2 concentrations 

especially in November 2021. Other climatic factors such as 

wind patterns and temperature influence the concentration of 

pollutants. In 2022, in the months of October-December (OND), 

the distribution of rainfall recorded was poor in space and time 

throughout Kenya, with temperatures in this year reported to be 

higher than average (RoK 2022) and hence could have impacted 

NO2 values in October 2022. However, low concentration in 

2022 and 2023 were during the short rains while high values in 

June were in the dry period. 

Rahaman et al. (2023) determined that between 2019 and 2021, 

during COVID-19 lockdown, NO2 concentrations were higher 

during winter and lower in the summer period. Kalisa et al. 

(2022) study of air pollution across East Africa determined high 

pollution periods in the months of February-March and June-

July, while low pollution periods between the period of April-

May and October- November. Oguge et al. (2024) analysis of 

PM2.5 in Nairobi using in-situ monitoring stations determined 

seasonal fluctuations in concentrations particularly in the wet 

seasons of April and were highest in the dry-cold periods of July 

and August. This may be due to weather conditions as this is 

during the rainy seasons.  

 

3.2 Correlation between NO2, LST and NDVI 

The lowest mean values in NO2 and LST are recorded in 2020 

which is a 2% and 12% reduction respectively from 2019. The 

mean NDVI value significantly increased by 28% in 2020 from 

2019 indicating the likely impact of restricted human movement 

on the health of vegetation. In 2023 the mean NO2 values 

increased by 7% while the mean temperature decreased by 6% 

from 2019 mean values. Rahaman et al. (2023) analysed the 

relationship between NO2, LST and vegetation indices from 

satellite imagery during winter and summer seasons. 

 

Year NO2  (mol/m2) LST (0C) NDVI 

2019 5.25E-05 38.31 0.40 

2020 5.11E-05 33.77 0.51 

2021 5.82E-05 35.48 0.43 

2022 6.36E-05 36.61 0.41 

2023 5.63E-05 35.93 0.43 

Table 1: Mean values across the years 

 

Angom et al, (2019) used Aura satellite imagery to determine 

changes in NO2 concentrations before and after the pandemic in 

Dar es Salaam, Nairobi and Kampala in East Africa. Results 

indicated a significant reduction in emissions by 6% in Kampala 

and 8.91% in Nairobi, while in Dar es Salaam there was an 

increase in emissions since lock-down was not enforced. 

Almagbile and Hazaymeh (2023) study of NO2 and CO using 

Sentinel-5P during the lockdown period in Amman city, Jordan 

indicated a reduction of these emissions and a reduction in LST, 

extracted from MODIS. 

 

Pearson correlation analysis between LST and NDVI (Table 2) 

indicates a strong negative linear correlation between the two 

variables across all years. This implies that as vegetation health 

and density decreases, the LST within the same area increases. 

Previous studies by  Odunuga et al., (2015); Zhao et al., (2018) 

and; Mwangi et al., (2018) showed a positive correlation with 

built-up areas due to the thermal capacity of impervious surfaces. 

 

Year 2019 2020 2021 2022 2023 

NDVI -0.70 -0.74 -0.73 -0.72 -0.67 

Table 2: Pearson correlation with LST 

 

Correlation analysis of NO2 and NDVI (Table 3) shows a 

positive correlation in all years except 2020 where there is a 

negative correlation. There is a negative correlation with LST in 

all years signifying that areas with lower surface temperatures 

tend to have higher concentrations of NO2. Pearson correlation 

results by Rahaman et al. (2023) between two cities Delhi and 

Dhakar determined a negative correlation between NO2 and 

vegetation indices, but demonstrated a positive correlation with 

LST. This implied that NO2 increased with reduced vegetation 
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density. The differences in observations between different cities 

and geographical areas indicates the intrinsic dynamic temporal 

behaviour between environmental factors.   

  

Year 2019 2020 2021 2022 2023 

LST (0C) -0.37 -0.01 -0.23 -0.31 -0.34 

NDVI 0.12 -0.07 0.06 0.11 0.15 

Table 3: Pearson correlation of NO2 (mol/m2) 

 

3.3 Spatio-Temporal Analysis in Constituencies 

The spatio-temporal distribution of LST and NO2 in 2019 and 

2023 was evaluated across the different administrative 

boundaries in Nairobi and their correlation with population 

densities. The population census done in 2019 determined that 

the total population of Nairobi was 4,337,080 (RoK 2019a). The 

analysis was done only between 2019 and 2023 to appreciate the 

impact of population growth on LST, NDVI and NO2 between 

the four year period.  

 

 
a. 

 
b. 

Figure 3: Population density in 2019 (a) and 2023 (b) 

Mathare constituency has the highest population density in 

Nairobi while Langata has the lowest population density (Figure 

3). Nairobi City County has at least fifteen (15) informal 

settlements with Kibera slum being the second largest in Africa. 

Other informal settlements are spread across the city in Mathare, 

Kamukinji, Kibra, Embakasi, Langata and other constituencies. 

Mathare informal settlement is a group of 13 villages and is the 

second largest after Kibera in Kenya (UN-Habitat 2020). 

 

It was projected that by the year 2023, Nairobi’s population 

would reach 4,750,056 (RoK, 2019). This is approximately 

4.12% annual population increase from 2019. It is estimated that 

nearly 2 million people live in Nairobi’s slums, and this is 

approximately 1% of the city’s geographical area (Faye 2023). 

The effect of city size or population density on air quality is 

important to evaluate. Results of the correlation analysis between 

population densities and NO2, LST and NDVI in the years 2019 

and 2023 are in Table 4.  

 

Value NO2 LST NDVI 

2019 0.48 0.31 -0.58 

2023 0.31 0.34 -0.53 

Table 4: Pearson correlation with population density in Nairobi 

 

Table 4 indicates that population density relates positively with 

NO2 and LST in both 2019 and 2023. There is a negative 

correlation with NDVI which therefore implies that with 

increased population, vegetated areas are replaced by impervious 

surfaces, hence an increased built-up density. There was a 

reduced correlation in NO2 in 2023 compared to 2019 despite an 

increment in population and NO2 levels. Kaplan and Avdan 

(2020) integrated Sentinel-5P CO and NO2 datasets with digital 

elevation model (DEM), population statistics and vegetation data 

and determined a positive correlation with population densities 

and negative correlation with elevation of both pollutants. 

 

 
a. 

 
b. 

Figure 4: NO2 dispersal in 2019 (a) and 2023 (b) 
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Figure 4 indicates a concentration of NO2 in the central business 

district due to human activities and emissions from vehicles. 

Nairobi is ranked as one of the most congested cities in the world 

due to increased traffic snarl-ups leading to reduced commuting 

time (ITDP 2020).  It is critical to understand the spatiotemporal 

distribution of LST and NO2 across the constituencies as urban 

morphology and land cover plays a role in the dispersal of air 

pollutants and heat as taller buildings reduce wind speed.  
 

 
Figure 5: NO2 and LST values in 2019 

Mathare has the highest population density with a mean 

temperature of 410C and NO2 value of 6.00E-05 (Figure 5). 

Mean temperatures in 2019 of Westlands, Langata and Dagoretti 

constituencies, which have higher vegetation coverage, are 

between 340C and 350C. Kasarani and Embakasi located in the 

eastern parts of Nairobi have lower NO2 concentrations 

compared to other constituencies. The main land cover in these 

areas is grassland with NDVI values of 0.2-0.4, which would 

indicate the high LST values in both 2019 and 2023. Land tends 

to warm-up faster than built-up areas during the day and cool 

faster at night than concrete, emitting absorbed thermal heat at 

night in long wave radiation. These differences in land cover 

interactions with LST constitutes to the urban heat island effect.  

 

Nairobi’s central business district is located in Starehe 

constituency and it has the highest emissions in both 2019 and 

2023 at 6.10E-05 mol/m2 and 6.60E-05 mol/m2 respectively. 

LST in this area in 2019 and 2023 is 410C and 370C 

respectively. Kamukunji and Makadara constituency are 

comprised mainly of commercial and industrial activities have 

LST values of 400C, 420C respectively and NO2 values of 6.00E-

05 mol/m2 and 5.80E-05 mol/m2 respectively in 2019.  Kibra and 

Mathare constituencies which have the largest slums in Nairobi 

do not have corresponding high temperatures which may be due 

to material type of structures in the area in respect to absorbing 

incoming short-wave radiation. However, emissions in this area 

are both at 6.00E-05 mol/m2. 

 

 
Figure 6: NO2 and LST values in 2023 

Figure 6 indicates a similar trend in distribution of NO2 and LST 

concentrations in 2019. Areas that are densely populated 

especially due to commercial and industrial activities had 

corresponding high LST and NO2 values. Kasarani and 

Embakasi have lower NO2 values in both 2019 and 2023 with 

corresponding high temperatures. Oyugi (2021) analysis of air 

quality distribution in Nairobi determined that there was a 

decreased concentration of gases away from the Central Business 

District (CBD), industrial and satellite commercial areas in the 

city. Hassaan et al. (2023) determined that the distribution 

pattern of CO concentrations dependent on the distance from the 

main source of emission.  

 

 
a. 

 
b. 

Figure 7: NDVI and NO2 values in 2019 (a) and 2023 (b) 

As indicated in Table 4 the negative correlation between 

population densities and NDVI is seen per constituency in Figure 

7 where areas with higher NO2 concentrations have lower NDVI 

values. Populated areas such as Kamukunji, Starehe, Mathare, 

Makadara and Embakasi have higher built-up densities therefore 

lower NDVI values. Constituencies with high NDVI values are 

Westlands, Langata and Dagoretti due to Nairobi Arboretum, 

Ngong, Karura, Ololua forests and are located on the north and 

western parts of Nairobi. The seasonal variation of NDVI with 

NO2 within each year was not studied but the spatial variation of 

values across Nairobi indicates that vegetation plays a crucial 

role in air quality. In Delhi, Rani and Kumar (2023) observed 

higher pollution values when NDVI and Enhanced Vegetation 

Index (EVI) values were low in summer due to changes in 

vegetation health while lower values of gaseous pollutants were 

observed in areas with dense vegetation. Dai et al. (2023) study 

of effects of different plant communities along urban streets 

determined that plant structure, both height and canopy plays a 

crucial role in the amount of NO2 concentration. Results 

indicated that green spaces along the road effectively reduced the 

amount of NO2 concentration. Further canopy structure and 

density is a crucial factor as it can lead to an increase in NO2 
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concentrations if there is no air flow. This research therefore 

elucidates that the spatio-temporal variations in NO2 

concentrations are influenced by human activities, climatic 

changes and environmental conditions such as vegetation 

densities.   

 

4. Conclusion and Outlook 

The paper investigated the spatio-temporal variations of 

population densities, LST and NDVI and how they influence 

NO2 across the city. Study shows that urban morphological 

variations across the city have had an influence in the interaction 

between LST, NO2 and NDVI. The study gives insights on the 

spatial distribution of built-up and vegetation densities and how 

this may influence the distribution of populations in a city. This 

can be seen by the number of people living in slums in urban 

areas, where social amenities may not be available. The 

population distribution densities indicate the impact it has on 

vegetation since densely populated areas have a higher 

percentage of impervious surfaces than greenery. Increased urban 

developments in form of impervious surfaces such as roads, 

buildings lead to heat retention during the day, and interaction 

with different pollutants results to development of major health 

issues and consequences of acid rain on building façades. The 

expansion of roads within Nairobi Metropolitan has brought 

about urban sprawl, leading to increased vehicular movement and 

consequently increased vehicular emissions. Urban morphology 

also plays a key role in the dispersal of air pollutants as tall 

buildings causes attenuation of wind leading to higher LST and 

concentration of air pollutants especially along alleys. Vegetation 

play as vital role in mitigating against high temperatures through 

shading and evapotranspiration and also reducing air pollution 

by absorbing harmful gases, thus preserving clean air. Studies on 

European tree species indicated that they were responsible for a 

reduction of NO2 concentrations in the atmosphere (Rahaman et 

al. 2023). Areas that are densely populated in the central parts of 

the city would be suitable sites for urban re-greening strategies 

and engagement with the community by raising awareness on 

various mitigation measures. Through this study, one can 

determine the quality of life of the population by evaluating 

environmental factors and determining areas of potential health 

risks due to prolonged exposure to urban heat and pollutants. It 

would therefore enable the city and national governments to 

develop strategies and implement policies that would ensure the 

sustainable growth of cities, thus making them safe and livable.  
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