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Abstract 

 

The water crisis in the southeast region of China in 2022, caused by one of the worst heatwaves on record, was characterized by severe 

shortages of water resources, leading to challenges for local communities, agriculture, and industry. To analyze changes in land use 

and land cover (LULC) in the Jialing River region, Chongqing, China, we compared Remote Sensing (RS) imagery classifications 

before and after the intense heat waves of 2022. We evaluated the performance of two machine learning algorithms, KDTree KNN and 

Random Forest (RF), in LULC classifications. The classifications were carried out based on the RS images from the OLI/Landsat 8 

system, NDWI index, and SRTM data. The model performances were similar, the classification accuracy showed that the RF algorithm 

was superior to KDTree KNN. The RF LULC classification and area calculation corroborate with the visual analysis, reaffirming the 

superiority of RF, which shows a decrease in water surface area, unlike DKTree KNN. 

 

 

 

 

1. Introduction 

In 2022, China experienced one of the worst heatwaves on 

record. Starting on June 13, 2022, the Beijing Climate Center 

classified it as one of the most severe crises ever faced, 

considering the intensity of the heat, the geographical scale 

affected, and the prolonged duration. The precipitation deficit 

exacerbated the situation, as the insufficient amount of rain was 

not enough to meet the water needs of parts of the region. The 

decrease in the water surface area and the volume of the main 

river was one of the primary visual problems encountered. 

 

It is widely recognized that data collection and imagery 

production through orbital sensors have become crucial for the 

identification and discrimination of objects on the Earth's surface. 

This is due to their unique characteristics, such as wide coverage 

area, short periods between revisits, and the free availability of 

some orbital system platforms. These factors allow a more 

comprehensive and detailed view of the Earth's surface, assisting 

in various applications, from environmental studies to decision-

making in areas such as defense, agriculture, and natural 

resources (Novo, 2010).  

 

Remote sensing is expected to play a role in monitoring 

environmental phenomena like heatwaves and water scarcity, 

leveraging its capabilities to provide invaluable insights for 

mitigating their impacts, monitoring, and enhancing resilience. 

Satellite imagery from remote sensing will be instrumental in 

analyzing changes in land use and land cover (Novo, 2010). This 

analysis will enable the quantification of these changes, essential 

for understanding environmental dynamics and facilitating 

informed decision-making toward resource management. 

 

The classification of these images is a viable option for spatial 

analysis. It can be performed by using classical techniques of 

Digital Images Processing or through machine learning, with 

more advanced techniques. Monard and Baranauskas (2003) 

Conceptualize Machine/Deep Learning as a system that acquires 

knowledge automatically, capable of making decisions based on 

the understanding acquired from successful solutions to past 

problems. It is known that classification algorithms can be 

divided into two main groups: supervised (i) and unsupervised 

(ii). In (i), training samples are provided, whose labels 

correspond to the class to which they belong (Monard and 

Baranauskas, 2003). This differs from algorithms (ii), which do 

not require pre-defined labels for the input set during the learning 

process. In this study, two supervised Machine Learning 

classifiers were compared to evaluate them and investigate the 

water crisis in the southeastern region of China. 

 

The land use and land cover (LULC) classification is a process 

of assigning land occupation classes to pixels and categorizing 

them, meaning grouping the pixels of the image into land 

occupation classes (Alshari; Gawali, 2021). Land use refers to the 

purpose that the land serves, while land cover refers to the surface 

cover of the land, whether vegetation, soil, water, or other 

elements (Rajendran et al., 2020). LULC assessment is necessary 

to sustain, monitor, and plan the utilization of natural resources 

(Nayak; Mandal, 2019 and Singh et al., 2020). The LULC 

classification has a direct impact on the atmosphere, soil erosion, 

and water, while indirectly being linked to global environmental 

issues. In recent decades, machine learning techniques have 

dominated conventional classification methods used for LULC 

classification in remote sensing (Saini; Rawat, 2023). 

 

This paper presents the results obtained from a comparison of two 

machine learning techniques, KDTree k-nearest neighbors 
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(KNN), and Random Forest, for the change detection 

classification map of the interest region. It compares the 

outcomes of applying machine learning algorithms for the LULC 

classification from multispectral images and SRTM data. The 

results from image classification are expected to help quantify the 

changes in LULC in the region affected by the heatwave. 

 

In this context, our goal was to assess the effectiveness of various 

machine learning algorithms in LULC classification, aimed at 

analyzing the alterations witnessed in the Jialing River region, 

Chongqing, China, stemming from the 2022 water crisis. 

 

2. Materials and methods 

The study area is located at the confluence of the Yangtze and 

Jialing rivers in southwest China. In mid-August 2022, China 

was experiencing one of the worst heatwaves ever recorded. 

According to the Beijing Climate Center monitoring, the 

phenomenon began on June 13 and is considered one of the most 

severe, considering the intensity of the heat, the geographical 

area affected, and the duration. Consequently, one of the hardest-

hit regions was Chongqing, in the southwest of the country. The 

city recorded temperatures of up to 45°C and experienced 11 days 

with temperatures exceeding 40°C. 

 

2.1 Definition of classes and interpretation key 

According to Florenzano (2002) and Novo (2010), the 

interpretation key has the main objective of characterizing the 

features of interest, to facilitate the identification of other similar 

features in the image. Based on this, interpretation elements are 

established, such as tonality, shape, and texture, among others. In 

Figure 1, we have the scene of interest captured from Google 

Earth software, which enabled the identification of the classes 

present in the scene. Figure 1 shows the different classes present 

in the scene of interest: Buildings, Vegetation, Water, 

Roads/Streets, and Bare Soil. 

 

 

Figure 1. Scene captured from Google Earth of the Study Area. 

 

2.2 Data 

The OLI/Landsat 8 images from August 6, 2020, were selected 

for the period before the water crisis, with path/row at 128/039, 

processing level L2. The period after the water crisis selected the 

day August 12, 2022, from the same region, at the same level. 

According to the classes defined in section 2.1, it is known that 

to discriminate them, bands from the visible spectrum (Costal 

Blue/Aerosol ”B1”,  Blue “B2”, Green “B3”, and  Red “B4”) are 

necessary, as shape, color, and texture information are contained 

in these bands. Additionally, it is important to note that bands 

from the infrared spectrum (Near Infrared “B5”, Short-wave 

infrared 1 “B6”, and Short-wave infrared 2 “B7”) effectively 

discriminate water from other targets. To assist in the 

discrimination of the water target, the Normalized Difference 

Water Index (NDWI), proposed by McFeeters (1996) (Equation 

1), was used. 

 

 
𝑁𝐷𝑊𝐼 =

𝜌𝐺𝑟𝑒𝑒𝑛 − 𝜌𝑁𝐼𝑅

𝜌𝐺𝑟𝑒𝑒𝑛 + 𝜌𝑁𝐼𝑅
 

 

       (1) 

Given that: 

𝜌𝐺𝑟𝑒𝑒𝑛 = Reflectance in the green spectrum; 

𝜌𝑁𝐼𝑅 = Reflectance in the Near Infrared spectrum. 

 

The use of this index is justified as it is intended for the analysis 

and assessment of water resources and flooded areas to highlight 

the delineation of water features. 

 

In addition to the data mentioned above, an SRTM (Shuttle Radar 

Topography Mission) digital elevation model with 30 m spatial 

resolution was also used, officially distributed for free by the 

United States Geological Survey (USGS) through the Earth 

Explorer portal. SRTM images are widely used in 

geomorphology, in which different textures represent varied 

relief domains, as well as in the information that can be extracted 

through computational processing. Thus, this type of image can 

be essential in discriminating spectrally similar objects but with 

different textures, such as water, which has a smooth texture, and 

vegetation, which has a rough texture. While it is true that altitude 

alone is less sensitive to texture variations compared to its 

derivatives (such as slope, aspect, and entropy), it still provides 

valuable information for specific applications, particularly in 

identifying water bodies. The continuous behavior of the altitude 

variable offers significant assistance in distinguishing water 

bodies from other land cover types. Therefore, the set of 

attributes to be used for the selected periods of 2020 and 2022 

was established. The scene of interest in the false-color 

composite (5R-4G-3B) can be seen in Figure 2. 

 

 

Figure 2. False Color (5R-4G-3B). a) in 2020; b) in 2022. 

 

In Figure 2, the scenes of interest can be visualized. As known, 

data from SRTM and the NDWI spectral index were used to 

discriminate the classes and perform the stacking. Figures 3 and 

4 show the input data set for the classifiers. All the bands have 
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been stacked (Coastal Blue, Blue, Green, Red, Near Infrared, 

Medium Infrared 1, Medium Infrared 2, NDWI, and SRTM 

image). In a), the False-color composite 5R-4G-3B, b) the True-

color composite 4R-3G-2B, c) the SRTM digital model, and d) 

the NDWI index. The a) and b) are just color compositions that 

represent the stacking of bands. 

 

 

Figure 3. Stacked data for 2020. a) False-color composite 5R-

4G-3B, b) True-color composite 4R-3G-2B, c) SRTM digital 

model, and d) NDWI index. 

 

 

Figure 4. Stacked data for 2022. a) False-color composite 5R-

4G-3B, b) True-color composite 4R-3G-2B, c) SRTM digital 

model, and d) NDWI index. 

 

It is worth noting that the stacked data for 2020 and 2022 includes 

the following bands: Coastal Blue, Blue, Green, Red, Near 

Infrared, Medium Infrared 1, Medium Infrared 2, NDWI, and 

SRTM image. As observed in Figure 3, a decrease in the river’s 

watercourse is visible. In Figures 3 and 4, item d, such change 

becomes more evident between the two periods. 

 

2.3 Machine Learning Algorithms  

2.3.1 Random Forest: The Random Forest algorithm, as 

described by Breiman (2001), is a classification method that 

utilizes multiple Decision Trees. Each tree is built from a random 

sample of the training data and a subset of attributes, and 

predictions are made by aggregating the results of all trees. This 

method is effective for handling large datasets and attributes, 

showing quick learning compared to other algorithms (Gao et al. 

2009). The algorithm consists of five main steps: 

 

1. Inputting training samples and labels, along with defining 

hyperparameters such as the number of trees (Ntree) and the 

number of attributes to evaluate (Mtry). 

 

2. Random selection of samples to ensure diversity in tree 

construction, with the number of attributes considered in each 

tree defined by the parameter Mtry. 

 

3. Selection of relevant variables based on the Gini Index or 

Entropy criteria, in which variables with the least variation or 

confusion are chosen for each node. 

 

4. Creation of a forest composed of the defined number of trees 

(Ntree), with 1/3 of samples reserved for validation (Out-Of-

Bag) and the remaining 2/3 used for training. 

 

5. Classification of pixels based on the majority class vote, 

adjusting tree parameters based on predefined results and 

generating accuracy parameters after training. 

 

2.3.2 KDtree KNN Classifier: The K-Nearest Neighbors 

Classifier (KNN) is a supervised learning algorithm that relies on 

the principle that similar points tend to belong to the same class. 

It utilizes the KDTree data structure to accelerate the search for 

nearest neighbors in large datasets. KDTree organizes points in a 

multidimensional space through a binary decision tree, with each 

node representing a split based on one dimension. The KNN 

Classifier with KDTree begins by selecting the number K of 

nearest neighbors for classification. Distances between the point 

of interest and all other points are calculated and stored in the 

KDTree. The K nearest points are identified through the KDTree 

search, and the most common class among them is assigned to 

the point of interest. KDTree enables faster neighbor search, 

enhancing KNN efficiency in large datasets. The algorithm's 

output is a class association, determined by the majority vote 

among the K nearest neighbors. Normalizing training data can 

improve accuracy, especially when features have different scales. 

Weighting neighbor contributions based on distance is also 

common, with closer neighbors having more influence. KNN is 

sensitive to the local data structure, emphasizing the importance 

of training data representation. KNN algorithm's sensitivity to 

local data structure arises from the distance metric used to 

identify the nearest neighbors. This dependency on local 

distances makes the algorithm highly responsive to how data 

points are arranged in the feature space, influencing its 

performance based on the local patterns present in the training 

data. For this algorithm, a division of 2/3 of the samples for 

training (training test split) and 1/3 for validation was utilized 

(test size). 

 

2.3.3 Homogenization of classes: The Random Forest and 

KDtree KNN classifiers are pixel-based classification 

algorithms, which generally exhibit noises, including isolated 

pixels, misclassified pixels, or inconsistently classified pixels. 

The application of the Crivo function (filtering, based on the 

removal of small isolated areas within a neighboring area, using 

the convolution of a 3x3 window, where neighbors are analyzed 

to the central pixel, and the most frequent value is assigned to the 

central pixel, allowing for the homogenization of the thematic 

map), allow the correction of errors that were encountered. This 

function is implemented as a plugin in QGIS software. 

 

2.3.4 Acquisition of Training and Validation Samples: To 

collect training samples for machine learning algorithms in 

remote sensing, one must define and characterize the information 

classes (land cover types) using interpretation keys.  
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These keys help identify features of interest in images based on 

elements such as color, shape, texture, and structure. 

Additionally, associations through deduction, induction, and 

analogy are used to relate the properties of objects to their 

surroundings. Interpretation keys are constructed to organize 

information and aid in the visual interpretation of images, 

leveraging tools like Google Earth Pro and updated satellite 

imagery to identify and characterize features accurately, thereby 

facilitating the acquisition of training data for classification. 

 

The samples were acquired in shapefile format in QGIS software. 

The polygons (Region of Interest - ROI) were selected according 

to the stacked bands. Two sets of samples were selected, one for 

the period in 2020 and one in 2022. Approximately 300 samples 

were acquired, with approximately 50 for each class. Given that 

urban areas present a wide diversity of characteristics and 

variability in the class, it is important to collect a significant 

amount of samples for training purposes to ensure that the entire 

class variety is adequately represented.  

 

For the Random Forest algorithm, the hyperparameter values 

used for model validation involved splitting the dataset into two 

parts: 1/3 of the dataset, consisting of 100 samples, was reserved 

for validation (Ntree parameter), while the remaining 2/3, 

comprising 200 samples, were used for model training (Mtry 

parameter). For the KDTree KNN algorithm, the same approach 

was used, with a split of 200 samples for training and 100 for 

testing. Below is an example of the samples taken to train and 

validate the algorithm. 

 

In Figures 5 and 6, the features of interest collected as training 

and validation samples were identified and highlighted, aiming 

to capture the full variability of the classes and represent them 

when the rest is classified. The training and validation samples in 

shapefile format were exported for opening in the Snap software, 

where supervised classifications were performed. 

 

 

Figure 5. Example of samples collected for training and 

validation for each class in 2020. 

 

 

Figure 6. Example of samples collected for training and 

validation for each class in 2022. 

2.3.5 Model performance and Classification Accuracy: For 

the two algorithms used in this paper, the comparative metric 

used was the Root Mean Square Error (RMSE), which is already 

implemented in the Snap software. It is calculated from the 

square root of the average of the squared difference (error) 

between the classification result and the ground truth, ranging 

from zero to infinity, and the closer to 0, the better the dataset for 

the model in question. For both algorithms, a total of 100 samples 

were utilized, as previously mentioned, for model validation. 

 

For classification accuracy, the sample size was calculated using 

Equation 2, proposed by Fitzpatrick-Lins (1981), which is based 

on binomial statistics, allowing a number of samples to depend 

on a specified level of significance. 

 

 

𝑛0 =
(𝑍𝛼

2
)²𝑝(1 − 𝑝)

𝑑²
 

       (2) 

where 𝑛0  is the initial sample size, 𝑍𝛼

2
  is the confidence level 

(normal distribution), p is the minimum desired accuracy level 

for the cartographic product (binomial distribution), and d is the 

maximum allowable error. For this work, a confidence level of 

95% was defined (𝑍𝛼

2
= 1,96),   accuracy level of 0.15, and a 

maximum error of 0.05, resulting in 196 sample elements.  

 

Additionally, Fitzpatrick-Lins (1981) emphasizes that the choice 

of samples should not be biased. Therefore, the ACATAMA 

plugin implemented in the QGIS software ensures that the 

samples are non-aligned stratified, combining a random scheme 

(with low trends) with priority for greater geographical coverage 

(systematic and stratified). This sample design is the most 

suitable for estimating classification accuracy. 

 

The confusion matrix can be defined as a square matrix, where 

the columns represent the ground truth and the rows indicate the 

generated classification, serving as an important tool for 

representing the accuracy of each category. When a pixel is 

correctly classified, 1 is added to a particular position on the main 

diagonal of the matrix; otherwise, 1 is added to the position 

defined by the classified category (row) x ground truth (column) 

(Congalton, 1991). We observe the confusion matrix in Table 1. 

 

 
 j (columns) Ground truth 

I j Total 𝑋𝑖+ 

 

i (rows) 

classificaton 

i 𝑋𝑖𝑖  𝑋𝑖𝑗 𝑋𝑖+ 

J 𝑋𝑗𝑖  𝑋𝑗𝑗 𝑋𝑗+ 

Total 𝑋+𝑖 𝑋+ 𝑖 𝑋+ 𝑗          X 

 

Table 1. Confusion Matrix. 

Where: 

i and j are classes; 

𝑋𝑖𝑖 is the number of rows and columns in the matrix; 

𝑋𝑗𝑗   is the number of rows and columns in the matrix; 

𝑋𝑖+ e 𝑋+ 𝑖  are the marginal totals of row i and column i; 

𝑋𝑗+ e  𝑋+ 𝑗  are the marginal totals of row j and column j; 

X is the total number of observations. 

 

From the confusion matrix, the User Accuracy (UA), Producer 

Accuracy (PA), Overall Accuracy (OA), and the Kappa 

Coefficient (K) can be calculated (Equations 3, 4, 5, and 6, 

respectively). The first one refers to the estimates of the fractions 

of mapped pixels for each class. The second one refers to the 
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sample fractions of pixels of each class correctly assigned to their 

classes by the classifier. The third one is the ratio of the number 

of points classified correctly to the total number of sample points 

used. Finally, the fourth one is the measurement of concordance, 

i.e., the measure of the difference between the actual agreement 

of the classification, represented by the values on the diagonal of 

the confusion matrix, and the chance agreement, which is given 

by the product of the marginal values of the rows and columns. 

Below are the equations described. 

 

 

 𝑈𝐴𝑖 =
𝑥𝑖𝑖

𝑥+ 𝑖
 (3) 

 𝑃𝐴𝑖 =
𝑥𝑖𝑖

𝑥𝑖+ 
 (4) 

 
𝑂𝐴 = ∑

𝑥𝑖𝑖

X

𝑘

𝑖=1

 
(5) 

 
𝐾 =

𝑥 ∗ ∑ 𝑋𝑖𝑖
𝑘
𝑖=1 − 𝑥 ∗ ∑ (𝑥𝑖+ ∗ 𝑥+𝑖)𝑘

𝑖=1

𝑥2 −  (𝑥𝑖+ ∗ 𝑥+𝑖)
 

(6) 

   

2.3.6 Methodological Flowchart: Based on the items defined 

and highlighted in the previous sections, Figure 7 presents the 

general workflow of this work. It began with the download of 

images from the Earth Explorer website for the two selected 

periods. Level L2 images were chosen, and the NDWI index was 

generated, along with the download of the SRTM digital model. 

The best attributes for representing the classes present in the 

scene of interest were selected, considering the best attributes for 

representation and discrimination of the classes of interest. 

Stacking was performed for each period. Then, the interpretation 

key was generated to assist in the process of collecting training 

samples. These samples were input into the classifier along with 

the stacked bands, resulting in thematic maps that underwent 

accuracy analysis and change analysis considering the two 

periods. The RMSE values obtained from the classification of the 

two algorithms were compared, and a confusion matrix was 

generated to evaluate the accuracy of the thematic map. After the 

thematic maps were created for both periods, the areas were 

calculated in square kilometers using the QGIS software. 

Subsequently, the areas were subtracted, comparing the two 

periods in each classifier. These additional steps provided a more 

detailed analysis of the changes over time and contributed to a 

comprehensive understanding of the results obtained.  Figure 7 

provides a summarized overview of the general methodology 

presented so far. 

 

Figure 7. Flowchart 

3. Results and discussions 

3.1 Land use and Land Cover Classification 

The results of the LULC classification by the Random Forest and 

KDtree KNN algorithms can be seen in Figures 8, 9, 10, and 11. 

All of them have the homogenization function applied, as 

mentioned in section 2.3.3. 

 

 

Figure 8. Thematic map of land use and land cover, using 

Random Forest in the year 2020. 

 

 

Figure 9. Thematic map of land use and land cover, using 

Random Forest in the year 2022. 

 

 

Figure 10. Thematic map of land use and land cover, using 

KDtree KNN Classifier in the year 2020. 

 

 

Figure 11. Thematic map of land use and land cover, using 

KDtree KNN Classifier in the year 2022. 
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Visually analyzing the data, it is evident that there is significant 

confusion among the road class and other classes, both in 2020 

and 2022. This confusion results in irregular and inconsistent 

representations of roads/streets, depicted as black areas, which 

contradicts the regular nature of the road/streets class. 

Furthermore, the Building class exhibits random sizes and 

discontinuities, while the Vegetation and Bare Soil classes cover 

a large portion of the image. The class with the clearest visual 

definition is Water, which is accurately delineated in both 

periods, showing some discontinuities caused by drought when 

compared between the time frames. 

 

3.2 Model Performance and Classification Accuracy 

Table 2 shows the root mean square error values for each 

classifier in their respective periods. It can be observed that the 

training samples for the year 2020 provided the best model 

definition compared to the samples from 2022, which yielded 

higher values for both classifiers. Additionally, the algorithm 

determines the relevance of the attributes in distinguishing the 

classes. For the Random Forest algorithm, the NDWI and SRTM 

features were the most important, whereas the Coastal Blue band 

was evaluated as the least important. On the other hand, in the 

KDtree KNN algorithm, the Near Infrared and SRTM features 

were classified as the most significant, while the Coastal Blue 

band also was considered the least influential in the process. 

 

Algorithm RMSE 2020 RMSE 2022 

Random Forest 0,311 0,455 

KDtree KNN 0,385 0,546 

Table 2. Models performance. 

 

The estimation of accuracy for the generated products was 

calculated to highlight which classifier yielded better results 

regarding classification. Initially, a total of 196 samples were 

defined, as shown in section 2.3.5. Thus, it was possible to 

generate the confusion matrix for classification. In Tables 3 and 

4, the confusion matrix for the random forest algorithm in 2020 

and 2022, respectively, is presented. In Tables 5 and 6, the 

confusion matrix for the KDTree KNN algorithm in 2020 and 

2022, respectively, is provided. 

 

 

Table 3. Confusion Matrix for the Random Forest classifier in 

the year 2020. 

 

 

Table 4. Confusion Matrix for the Random Forest classifier in 

the year 2022. 

 

Table 5. Confusion Matrix for the KDtree KNN classifier in the 

year 2020. 

 

Table 6. Confusion Matrix for the KDtree KNN classifier in the 

year 2022. 

 

In Table 3, a kappa index of 0.71 and an OA value of 0.77 were 

observed. It was noted that vegetation had the highest number of 

confusions, with approximately 69.1% correct predictions (PA), 

with only 47 pixels classified correctly out of the total 68 for this 

class. Confusion occurred with the exposed soil and road classes 

(9 pixels each), and 2 pixels for buildings and 1 for water bodies. 

 

For Table 4, a kappa index value of 0.72 and an OA of 0.78 were 

obtained. It was also observed that the Bare Soil had only 71.4% 

correct predictions, followed by vegetation with 74.6%, and the 

buildings class with approximately 76.9%. 

 

In Table 5, a kappa index value of 0.55 and an OA of 0.64 were 

obtained. This classifier, when applied with the sieve, resulted in 

many confusions compared to others, with almost all classes 

except water obtaining prediction values below 63.8%. This is 

attributed to the fact that KDtree KNN and the sieve function 

both work with neighbors, leading to erroneous classification of 

objects of interest when applying a homogenization function, as 

the algorithm already implicitly applies homogenization. 

 

Similarly, in Table 6, a kappa index of 0.61 and an OA of 0.69 

were obtained. Comparing the two algorithms, it is evident that 

Random Forest presented better metrics in both periods 

compared to the KDtree KNN algorithm. Thus, Random Forest 

more accurately represents the features of interest for the given 

area. 

 

3.3 Change detection  

In Table 7, the areas in km² of changes between the periods of 

2020 and 2022 are presented. The areas were calculated using the 

QGIS software. 
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Table 7. Area in km² for the studied period, considering both 

machine learning algorithms. 

 

It is notable that through visual analysis alone, it is possible to 

observe a decrease in water volume as the severity of the water 

crisis unfolds, as confirmed by the Random Forest algorithm, 

illustrated with the upward-pointing red arrow in the 

"Difference" column. Conversely, the KDtree KNN algorithm 

yielded values indicating an increase in water area across during 

the period, which contradicts the reality of the water crisis 

experienced in the region. Similar to the accuracy metrics of the 

classification pointing to the Random Forest classifier as superior 

for this problem, the calculation of the area reaffirms this result, 

as it is evident that the water volume has decreased. 

 

Remote sensing and Land Use and Land Cover (LULC) 

classification are effective tools for monitoring the impacts of 

drought. The study demonstrates that the Random Forest 

algorithm outperforms the KDtree KNN in terms of accuracy and 

consistency, particularly in detecting changes in water volume, a 

crucial indicator of drought. Visual analysis and accuracy 

metrics, such as the Kappa Index and Overall Accuracy, confirm 

the superior performance of the Random Forest algorithm in 

identifying land cover changes. The significance of features like 

NDWI and SRTM for enhancing classification accuracy is also 

noted. This study emphasizes the importance of employing 

advanced remote sensing techniques and robust algorithms for 

environmental monitoring and managing the impacts of climate 

change. 

 

4. Conclusion 

LULC mapping was achieved successfully through Radom 

Forest algorithm. Visual analysis alone indicated that the 

Random Forest algorithm yielded superior results. This was 

further confirmed by the Kappa Index and OA metrics obtained 

from the confusion matrix, as well as by comparing each class 

classified to the ground truth. However, the KNN algorithm did 

not perform as well as expected and did not achieve success in 

accurately representing the intended outcomes. 

 

This aspect was further verified by calculating the area of each 

class and comparing them between epochs. The Random Forest 

algorithm proved to be more accurate in detecting changes in the 

area of interest from one epoch to another. 

 

The KDtree KNN algorithm classifies using information from 

neighbors, which may lead to excessive generalization when 

subjected to the thematic homogenization function (Crivo), 

resulting in incorrect and inconsistent associations between 

classes. In contrast, Random Forest exhibits superior 

performance as it does not rely on neighborhood information, 

thus avoiding such issues. 

 

Regarding the model accuracy, it can be affirmed that the 

samples collected in 2020 were the most effective in 

distinguishing between classes, as evidenced by their lower 

RMSE values compared to those from 2022. 

 

The situation regarding the Jialing River is alarming, as 

demonstrated by the reduction in water volume observed through 

visual analysis and quantified by the difference in river area 

depicted in Table 7, utilizing the Random Forest algorithm. The 

diminishing river area serves as a poignant reminder of the 

environmental challenges facing the region, underscoring the 

imperative need to safeguard water resources and address the 

impacts of climate change. 
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