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Abstract

Leaf detection through automated segmentation of 3D data is becoming a crucial technique in many applications of digital agriculture.
Some 3D segmentation techniques that can be mentioned are based on normal differences and median normalised vector growth.
However, applying these approaches to high canopy density data remains challenging. In this study, we propose a processing flow for
leaf detection in high canopy density LIDAR-RGB point clouds. First, a noise removal technique inspired by Moving Least Squares
(MLS) was applied to the LiDAR point cloud, and a RGB colour was assigned to each point by combining computer vision and
photogrammetric methods. Moreover, once the data were suitable for leaf detection, the branches were filtered using the Statistical
Outlier Removal (SOR) filter based on an analysis of the statistical behaviour of the neighbourhood. Afterwards, an unsupervised
DBSCAN (Density-Based Clustering Non-Parametric Algorithm) method was used to segment similar points. Finally, the points within
each cluster were identified as leaf or non-leaf using the RGB values implemented by our method; ground points were filtered out
using a maximum height threshold. As a result, the leaf, non-leaf, and ground point identifiers were correct in 98.9% of cases, with the
branch filtering technique SOR proving effectiveness in removing branches with low information loss and without additional complex
point densification steps in reconstruction. This SOR-based solution overcomes major challenges in semantic segmentation (leaves

and branches) in high-density data and potentially contributes to precision agriculture.

1. Introduction

Leaves compose the primary surface of vegetation and play a
vital role in photosynthesis and respiration, which are essential
for plant life. Quantification of leaves on trees is a common task
in plant phenotyping, particularly with the automatic
segmentation of branches and leaves in digital data. This
quantification is an essential prerequisite for extracting
phenotypic traits, such as height, density, biomass and
quantitative parameters regarding plant complexity (Li et al.,
2020). For example, the Leaf Area Index (LAI) serves as a key
parameter for estimating biomass. Leaf segmentation facilitates
LAl estimation based on leaf point distribution around the stem
or branches (Masuda, 2021). Moreover, it enables the modelling
of photosynthetic studies (Li et al., 2017) and the quantification
of plant architecture (Li et al., 2022). Previously, manual
measurement of phenotypic traits was a costly, error-prone
process, and environmentally damaging (Jin et al., 2018).
Nevertheless, identifying and separating tree elements allows for
studying leaf aspects and root morphology (Costa et al., 2019).

The advancement of image-based methods has significantly
boosted the extraction of high-throughput phenotypic traits.
However, reconstructing three-dimensional images does not
guarantee high accuracy and may lose crucial spatial and
volumetric information under field conditions. Terrestrial Laser
Scanners (TLS) have been used in precision agriculture, offering
fast, non-destructive, and accurate techniques for high-yield
crops (Jimenez-Berni et al., 2018). Combining images and TLS-
derived point clouds is advantageous in segmentation by
delivering high-quality spatial and spectral information through
data fusion. Dorj et al. (2017) developed a technique for citrus
fruit yield estimation based on colour features through data
segmentation. Point cloud segmentation technology is widely
employed for preprocessing 3D point cloud data of plants in
forestry and agriculture. This technique enables the grouping and

segmentation of individual elements or plant organs, facilitating
a more detailed analysis of plant structure (Hu et al., 2022).

Tree segmentation is a topic of relevance, explored both in forest
ecology and digital agriculture. In forest ecology, the importance
of distinguishing tree elements at different scales, such as trunk,
branches, and leaves, is highlighted. This approach commonly
employs point-to-point classification strategies in most wood-
leaf separation methods (Wan et al., 2021), due to scale variation.
In digital agriculture, recent studies have focused on medium and
small-sized trees, with a particular emphasis on distinguishing
stems and leaves. TLS technology has been used due to its ability
to separate diverse geometric features, such as leaves, branches,
trunks, and stems. Studies in forest ecology, such as mentioned
by Zhou et al. (2019), concluded that multiscale methods are
effective for this challenge.

In precision agriculture, the differences in plant structures are
generally less evident, simplifying segmentation. Techniques
such as segmentation based on normal differences (Li et al.,
2017) or the application of the median normalised vector growth
method (Jin et al., 2018) have shown promising results. However,
these techniques can be further refined with machine learning
algorithms to segment stems and leaves in real field
environments, as proposed by Ao et al. (2022). Gomes and Zheng
(2020) investigated data augmentation techniques, such as the
use of Generative Adversarial Network, for leaf segmentation
and counting. Li et al. (2018) proposed an approach for
segmenting individual leaves using over-segmentation and
region growing in greenhouse ornamental plants. However,
applications in real field environments with high canopy density
data, especially in shrub-like trees, are still limited.

In summary, the following contributions are proposed:

» A strategy for leaf segmentation with less complex
methodologies.

« An approach for clustering leaves, non-leaf, and ground points.
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« A procedure for data labelling based on colour features
extracted from the coloured point cloud.

» Experiments and discussions on the potential of the proposed
methodologies to improve existing techniques.

2. Background
2.1 Terrestrial LIDAR data initial processing

2.1.1  Noise Filtering

Noise caused by different sources, such as airborne dust, insects,
and air humidity, is common during field surveys with TLS
instruments (Hu et al., 2022). There are also natural causes that
can distort object representation, such as wind on leaves and
incident sunlight. Another relevant error source is the instrument
settings, which can lead to the creation of outliers due to
increased resolution and quality, resulting in the accumulation of
measurements at the same point during acquisition, creating
multiple layers. The data quality can be improved by removing
noise and facilitating the following processing steps.

Statistical filters can be a good option for noise removal in point
clouds. The statistical technique called Moving Least Squares
(MLS) is mentioned as being capable of preserving the
characteristics of irregular data (Schall et al., 2005), such as
leaves and branches. Jenke et al. (2006) define MLS as a
smoothing process over a point cloud by locally fitting
polynomials to individual points while simultaneously
computing the normal for each smoothed point.

2.1.2  Assigning spectral values to points

Real scenes can be reconstructed in three dimensions with colour
and texture information by fusing Light Detection and Ranging
(LiDAR) data with spectral information acquired by an optical
camera (Seitz and Dyer, 1999). The generation of these coloured
point clouds requires the integration of RGB or multispectral
cameras to the TLS. Data fusion requires the determination of the
camera locations and orientation with respect to the LiDAR point
cloud reference system. Crombez et al. (2015) described the
projection of the data based on estimates of interior and exterior
camera orientations with respect to the point cloud. Although
TLS with narrow beam divergence can penetrate dense
vegetation, the resulting point cloud still suffer from occlusion.
The main data fusion challenges are occluded areas and double
mappings, which are resolved by generating a visibility map.

Some relevant techniques for the generation of visibility mapping
are Z-buffer (Catmull, 1974), Binary Space Partitioning (Fuchs
et al., 1980), Ray Casting (Appel 1968), Ray Tracing (Whitted,
1979) or Hidden Points Removal (HPR) (Katz et al., 2007).
Additionally, culling algorithms such as Backface Culling
(Blinn, 1993), Viewing Frustum Culling (Assarsson and Moller,
2000) or Occlusion Culling (Cohen-Or et al., 2003) can be used
to restrict the view to the camera coverage. Seitz and Dyer (1999)
studied the problem of point-cloud colouration and considered
introducing a visibility restriction by identifying voxels with the
same colour.

Currently, there exist machine learning methods capable of
colouring a three-dimensional cloud. Liu et al. (2022) proposed
the Point Cloud Colorization Network (PCCN) based on an
Adversarial Generative Network to map colour information to the
point cloud. Colouring a LiDAR point cloud provides a complete
3D description, generating a virtual representation of real objects
and elements in the environment for manipulation and analysis.

2.2 Branch filtering techniques

Difference of Normals (DoN) is a technique commonly used to
discriminate different surfaces like tables and walls. However,
researchers have recognised the potential of this technique to
filter stems (Li et al. 2017). The method treats each leaf as a set
of points lying on a plane, and the stem or branches as irregular
or non-flat surfaces. Thus, the set of neighbouring normals can
be used to distinguish them. Especially for trees with low canopy
density, the results are promising, but at the cost of reducing the
number of leaf points, as shown by Li et al. (2020). In this case,
additional complex point densification steps are still required to
reconstruct the leaves.

An alternative is to explore statistical filtering methods to remove
branches on leaves by treating them as outliers. Statistical Outlier
Removal (SOR) filter, combined with a neighbourhood radius,
has been mentioned to be efficient for noise removal in LIDAR
point clouds. SOR assumes that the distance between a point and
its neighbours follows a normal distribution (Zhang, 1994). The
average distance is calculated considering the K nearest
neighbours (KNN) for each point in the dataset. This method was
previously applied for the removal of spines on Rosa roxburghii
(Xie et al., 2021), for the removal of outliers near trees (Li et al.,
2022), and for the removal of noise produced by rain and
snowfall (Huang et al., 2023). The technique has the potential to
remove clusters of points scattered between denser regions,
typical of trees with dense foliage and small branches.
Nevertheless, the filtering of leaves depends on the clustering of
the points that describe the leaves.

2.3 Leaf segmentation and identification

Clustering is widely used in statistical analysis for object
detection and segmentation, especially in machine learning,
being classified as an unsupervised learning technique (Ester et
al., 1996). DBSCAN (Density-Based Clustering Non-Parametric
Algorithm) uses a density-based clustering approach, in which
density in a given region is the attribute for the formation of
clusters (Khan et al., 2014).

Liu et al. (2020) investigated the possibility of using DBSCAN
combined with an R-CNN mask and achieved promising results
in indoor collections, especially for smaller plants. However, the
challenges increased significantly in outdoor environments with
dense foliage. Segmentation and identification of fruits using
spectral information from images were investigated by Dorj et al.
(2017). The methodology converts the RGB image to HSV (Hue,
Saturation and Value), thresholds it, and detects the orange
colour of the fruit. A few years later, the technique was explored
by Hu et al. (2022) to segment a LIDAR-RGB point cloud for the
estimation of Colza leaves.

3. Materials and methods
3.1 Materials

3.1.1  Terrestrial Laser Scanner and Optical Camera

The LiDAR point cloud was acquired with the FARO Focus
Premium TLS. Its main features are 360° x 300° FoV, with
0.3 mrad divergence, pulse duration of approximately 4 ns,
wavelength of 1553.5 nm, designed to scan objects ranging from
0.5 to 70 m with 1 mm accuracy and 19 arcsec angular accuracy
(vertical and horizontal). The FARO Focus also allows RGB
colouring with the attached camera. However, it is possible to
explore the use of colouring techniques for point clouds with
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other cameras, for instance, multispectral cameras. In this paper,
the fusion with images collected by an Agrowing (Agrowing
Development Team, 2020) multispectral camera is being
assessed.

A special mount with six lenses and spectral filters is adapted to
a Sony Alpha 7 IVR sensor, model ILCE-7RM4A, by Agrowing,
allowing the generation of fourteen image bands. The spectral
bands are captured simultaneously since each lens redirects the
light to a specific part of the sensor (Tommaselli et al., 2020). In
this paper, LIiDAR point clouds were coloured with spectral
values from bands 430nm (blue), 550nm (green), and 650nm
(red). Future studies will assess the potential for incorporating the
full set of fourteen spectral bands to the point cloud.

3.2 Methods

3.2.1 Field Data Acquisition

Field surveying and data acquisition involve: (1) the
determination of reference point positions, (2) camera setup, (3)
image acquisition in the planned exposure stations and (4) a
single LiDAR scan. In the experiment presented in this paper, a
single LiDAR scan was coloured with images acquired from
different stations.

Data were collected at the Federal University of Uberlandia
(UFU) coffee plantation, Monte Carmelo/MG campus. Some
targets were placed over the coffee tree and on the ground (step
1). The images were then acquired at different exposure stations,
varying height, planimetric base and convergence, with a suitable
shutter speed (steps 2 and 3). Finally, a single scan was
performed with the Faro TLS with 10,240 pt/360° (Step 4). With
the previously described configurations, 4,082,965 points were
collected. This point cloud was clipped to the area of interest with
the CloudCompare software (Figure 1).

@ (b)

Figure 1 — Clipped LiDAR point cloud (a) front and (b) side
views.

Fifty images were acquired to cover the entire field of view
corresponding to the scan of the LiDAR point cloud with the
optical images. The next step was the extraction the image bands
from each image using the AWBasic software and the processing
of the LiDAR data using the FARO Scene software.

3.22 MLS

In this study, the MLS method implemented in PCL (Point Cloud
Library) (Rusu and Cousins, 2011) was used for smoothing. The

experiments performed in this paper were performed with the
following settings for MLS algorithm: second-order polynomials

for smoothing, utilising a KD-Tree search for efficient searching,
and a surface smoothing radius of 1.8 mm.

3.2.3 Colourisation

Assigning spectral values to LiDAR cloud points, also known as
colourisation, depends on the previous orientation of the camera
images concerning the LIiDAR point cloud reference system.
Control points were identified, and their 3D coordinates were
manually measured in the LiDAR cloud with Cloud Compare
software. These points were then used for bundle adjustment
(BA) in the Agisoft Metashape software. The Exterior and
Interior orientation parameters (EOPs and IOPs) of the images
were simultaneously determined with bundle adjustment (BA).

After estimating the IOPs of the camera lenses and the EOPs of
each image, the point cloud is cropped using the VFC algorithm,
using the EOPs of each image band. Cropping the point cloud
will reduce the amount of data and the processing time of other
methods avoiding the difficulties of dealing with dense datasets.
Then, the points in the cloud that are occluded in the image are
determined. In this methodology, the HPR technique (Katz et al.,
2007) is applied to remove duplicate points and obtain leaves
without overlap, adopting an approach similar to the work of
Crombez et al. (2015).

Finally, the colourisation step assigns the spectral values to the
LiDAR cloud points. Firstly, the 3D coordinates of a point are
projected to the image using the collinearity equations. Then, the
photogrammetric coordinates (x, y) are transformed to image
coordinates (column, line) using inverse interior orientation;
finally, the Digital Number (DN) to be assigned to the 3D point
is interpolated from the neighbour’s pixels with bilinear
interpolation. This process is repeated for all image bands and all
3D points visible from the camera station.

324 SOR

The SOR algorithm, originally designed for outlier removal, was
used since the leaves have similar behaviour in terms of the
magnitude of the average distances and the small standard
deviations. LiDAR point cloud delineates leaves through
geometric and dense clustering patterns, while branches are
sampled with a lower point density. This makes it feasible to filter
out the branches in the point clouds since the branches are
considered outliers compared to the leaves’ behaviour. The filter
needs to specify the quantity of neighbouring points within the
clusters. The average distance between a point and its neighbours
and the standard deviation of these points are analysed to filter
out the outliers. To distinguish between branches and leaves in
the point cloud, points are filtered out if they do not meet the
specified criteria. Furthermore, an empirical study on the
behaviour of the data was conducted considering different
quantities of neighbouring points.

3.25 DBSCAN

DBSCAN is a non-supervised clustering method designed for
analysis and data mining. This algorithm prioritises the density
of points over other traditional methods, like k-means. One of the
key advantages of DBSCAN s that it does not require the
previous specification of the number of clusters, making it
particularly useful when the underlying data structure is
unknown. Instead, DBSCAN relies on two main parameters:
tolerance and minimum points, which are required to consider a
point as a central point. These parameters determined the
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neighbourhood size and the minimum density required for a point
to generate a new cluster (Khan et al., 2014).

DBSCAN operates by identifying central points that have a
minimum number of points within their neighbourhood,
determined by the tolerance value, and then expands the clusters
connected in their attainable neighbourhoods. Therefore, points
that are not a central point and do not belong to the
neighbourhood of any central point are considered noise (Deng,
2020).

The implementation of this algorithm utilised the Scikit-learn
library (Pedregosa et al., 2011). To use this method, firstly, the
parameters are defined, namely the values of tolerance and the
minimum number of points (Kramer, 2016). In this study,
tolerance was set to 5 mm and the minimum points to 50. Then,
the algorithm selects an arbitrary point in the dataset and verifies
whether it holds the minimum number of points within its
neighbourhood. If this condition is met, the point is classified as
a central point. This classification process is achieved using a
vectorisation approach exclusively for central points, enabling a
reduction in the loop overhead in Python runtime (Schubert et al.,
2017). This approach proves to be more efficient when utilising
the NumPy library (Jones et al., 2001).

For each central point identified, DBSCAN expanded the cluster
connected in its reachable neighbourhood. This step is repeated
until all reachable points have been included in the cluster.
Subsequently, non-central points are evaluated with respect to the
constructed clusters. If a non-central point is not close to any
neighbourhood, it is deemed as noise and removed. The outcome
of this process is a collection of clusters representing the densely
connected groups of points in the data space, without the
presence of noise points (Stewart and Al-Khassaweneh, 2022).
3.26 Leaf, non-leaf, and ground identification

Individual leaf identification implies automatic detection and
subsequent removal of leaves from plants. First, parameters are
empirically defined, including ranges of RGB values that define
the leaves’ colours, defined as [0, 10, 0] for minimum RGB (dark
green) and [0, 255, 0] for maximum RGB (light green). It also
sets a threshold of 80 for the blue component. Then, the cluster
is divided into groups, and the mode of the blue component is
calculated for each group. If a particular group exceeds the
predefined thresholds, filtering is applied to identify the non-leaf
objects.

Filtering is performed by calculating the Euclidean distance
between the colour of each point and the colour defined as the
green threshold for leaves. Points whose distance to the leaf
colour is less than a predefined radius (100) and are not white
[255, 255, 255] are considered leaves. If the points within the
radius of the Euclidean distance meet predefined blue, green, and
non-white thresholds, the cluster represents leaves; otherwise, it
is categorised as non-leaf. In the experiments performed in this
study, many of the non-leaf objects were the targets that were
used as Ground Control Points (GCPs).

The process is repeated for all clusters, resulting in a distinction
between leaves and non-leaves present in the LiDAR cloud.
However, the spectral values of the leaves may be similar to
ground values. In this case, the ground points must be removed
and identified based on another parameter, such as height (Z
component). Therefore, points in the LiDAR cloud that are
higher than the proposed threshold for ground points, should be
categorised as leaves.

The result of this process is the categorisation of points in the
LiDAR cloud into different classes such as leaves, non-leaves
and ground points. The cluster of these categories are organised
into separate folders to facilitate subsequent analysis and visual
interpretation of the data. This approach allows organised
information to be categorised based on colour.

4. Results and discussions
4.1 Spectral point cloud generation

4,11 Estimation of interior and exterior orientation
parameters

Table 1 shows the Interior Orientation Parameters (IOP)
estimated by self-calibration in Agisoft Metashape and exported
in Australis format. The interior and exterior parameters can be
considered similar for images of bands from the same lens. In this
paper, one of the six lenses with the 430 nm, 550 nm and 650 nm
bands combined in a single sensor lens was used. The 10Ps are
used to calculate the inverse interior orientation.

I0P Estimated values | Standard error

f (mm) 21.3437 0.0104

Xo (mm) 0.2381 0.0085

Yo (mm) 0.0402 0.0089
K1 (mm~2) 3.24836 e-04 1.65126e-05
K2 (mm™%) -5.19359¢e-06 8.67129¢-07
K3 (mm™°) 8.20846e-08 1.36101e-08
P1(mm™1) -1.09935e-04 3.35188e-06
P2 (mm™1) -1.36178e-06 3.24654e-06

Table 1 — Estimated interior orientation parameters.

The camera-to-object distance was approximately 1.80 m and the
calculated PSOSU (Pixel Size in Object Space Units) for the
images was 0.30 mm. The RMSE (Root Mean Square Error)
values resulting from the GCPs for the 50 triangulated images
correspond to nine times the value of the pixel size in terrain units
(Table 2).

It was difficult to obtain better results due to the lack of stable
objects in the scene. Nevertheless, the Exterior Orientation
Parameters (EOP) obtained from the local coordinates proved to
be consistent with the colouring process and with the LiDAR
point cloud.

RMSE
mm
X 1.59
Y 2.06
z 1.13
Total 2.84

Table 2 - RMSE of the discrepancies in the GCPs coordinates
after triangulation of the 550 nm band images.

4.1.2 Colourisation

The I0OPs and EOPs estimated with bundle adjustment were used
with the collinearity equations to compute the DN to be assigned
to each 3D point, as presented in section 3.2.3. This procedure is
repeated for all points visible from each image band. A point
cloud of 1,502,161 points was obtained after noise filtering
(Figure 2).

The presence of ground points, spheres, and labels is clearly
noticeable. Ground points are removed later (Section 4.4), and
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ground information is reduced due to the MLS noise removal
process.

Figure 2 — LIDAR-RGB point cloud, coloured with 430, 550
and 650 nm image bands.

4.2 Removing branches

TLS data was acquired in a single scan from a single station, and,
as a consequence, leaf clusters at the trees” boundaries can store
fewer points. In addition, wind can change the position of the
leaves during image collection, affecting the filtering step. Thus,
determining the appropriate neighbourhood parameter value is
important to minimise the effects of outliers on the result
(Figure 3).

Figure 3 - Original LIiDAR-RGB point cloud (a) and with SOR
to separate leaves by varying the radius of the neighbourhood:
(b) 10, (c) 50, (d) 100, (e) 150, (f) 200, (g) 250, and (h) 300
points.

All points represented as branches are effectively filtered out by
the influence radius of 50 (Figure 3.c). However, outliers near the
branches could not be removed using the proposed noise removal
technique (Section 3.2.2). As a solution, larger radius values
(initially up to 300 points) were applied to filter out adjacent
noise. This resulted in an undesired removal of some points from
the leaf cluster located at the edges. A radius of 250 points was
found to be the most suitable for this dataset, removing branches
and residual noise without dramatically affecting leaves’ edges.

Leaves near the trees’ boundaries are most affected by SOR point
filtering. A complete reconstruction of the leaves would require
additional scans from different viewpoints, at the cost of
performing accurate registration among all scans.

4.3 Leaf clusters

Leaf, non-leaf, and ground points were satisfactorily detected by
DBSCAN. To visualise each cluster created by the algorithm, the
bounding boxes in the CloudCompare software can be used.
Figure 4 shows the results of two situations that occurred during
the clustering process when the leaves were very close to each
other.

Separation into clusters was satisfactory in the first case (Figure
4.3). In the second case (Figure 4.b), however, the clustering is
not satisfactory since the selected parameters did not segment all
leaves separately. The non-leaf and ground points should be
filtered to keep only the leaves, either individually or with more
than one per cluster.

@ (b)
Figure 4 - Examples of clustering for closely spaced leaves for
(a) single leaves and (b) three leaves in a single cluster.

4.4 Clusters after filtering non-leaf objects and ground
clusters

It was hypothesised that leaves’ colours would vary in green and
blue values. Thus, these two components split leaves from non-
leaves. Those clusters that are not within the proposed thresholds
are considered as non-leaves, as depicted in Figure 5.

4‘?;;’- - o
(b) (©) (d)

@
Figure 5 - Example of identified non-leaves, as (a,d) targets and
(b,c) spheres.

Based on the detected clusters, the filtering processes were used
to label the clusters as leaves, non-leaves, or ground. Identifying
non-leaves using the spectral information only in the full point
cloud would be less reliable. This happens because increasing the
value of the Euclidean distance delineates well the non-leaves
points farther from the cloud, but non-leaves near the leaves are
not identified. After segmenting the point cloud, some non-leaves
were removed using spectral information (Figure 6).

Figure 6 - (a) Non-leaves and leaf clusters and (b) points in
black were filtered.
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Labelling leaves is more efficient and less computationally
expensive when performing the operation directly on the cluster.
Some leaf points are still filtered but to a lesser degree. After
filtering the non-leaves, the ground clusters were still counted
along with the other leaf clusters since some ground points and
leaves had similar colours. In this case, a threshold for points’
heights was defined empirically. Leaf clusters are shown in
Figure 7, and metrics are discussed in 4.5.

Figure 7 - Clusters labelled as leaves only.
4.5 Discussions

The plot presented in Figure 8 shows the total number of points
after the filtering with the SOR technique against the
neighbourhood points used for this filtering. It was observed that
a large radius of influence from the neighbourhood is
unnecessary to remove the cluster of branch-like points, as
discussed in Section 4.2 but some neighbourhood noise still
exists. Increasing the size of the neighbourhood will result in a
stronger filtering of the subsequent points, which will primarily
affect the leaves at the edges of the point cloud, as previously
mentioned.

—— Filtered data  +++++ex Log. ( Filtered data)
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Figure 8 - Number of points after filtering for each
neighbourhood value.

The best fit to the data presented in Fig. 8 is a logarithmic model
with a high R? value. Changing the parameter (number of
neighbours) has a significant initial effect on the filtering. As the
filtering progresses, with a higher number of neighbours, changes
become less noticeable. This attenuation is due to the increase in
the density of the points in the clusters as the neighbourhood
value increases, and noise near the branches still exists despite
the preprocessing noise filtering. The stabilisation of the filtering
process suggests the elimination of outliers only, thereby

eliminating the need for point densification in the final result. In
contrast to methods such as DoN, Li et al. (2020) observed a
significant reduction in the number of leaf points. When we
applied DoN to this dataset, the reduction was significant enough
to potentially affect leaf characterisation.

A total of 1,226 clusters containing leaves, non-leaves, and
ground points were then generated by the DBSCAN technique.
The points from the point cloud labelled as non-leaves were
initially used in the colourisation process. However, to achieve
only the leaves in the final result, these objects needed to be
subsequently removed in the process. Identification errors (Table
3) resulted from the filtering techniques used to label the scene
and were observed through visual inspection.

Identification Correct Incorrect | Total
Leaves 1,109 (99.2%) | 9 (0.8%) 1,118
Non-leaves 7 (100%) 0 (0%) 7
Ground 97 (96"%) 4 (4%) 101
Total 1,213 (98.9%) | 13 (1.1%) | 1,226

Table 3 - Correct and incorrect identification for clusters.

In some cases, leaves were labelled as non-leaves mainly when
they were wrongly segmented with other non-leaves objects. In
some cases, the error was caused by leaf's specular reflection
producing high blue values, exceeding the proposed threshold.
Although ground clusters included points close to the leaves, the
height (Z) threshold was maintained. The technique gave a
satisfactory result of 98.9% accuracy in identifying and labelling
the segmented objects.

5. Conclusions

In this study, we developed a method for leaf detection in high-
density terrestrial LiDAR data. The process entails branch
filtering, segmentation, and leaf identification. Initially, we
employed a noise removal technique inspired by MLS and
assigned RGB colours to the points. Subsequently, branch
filtering was performed using the SOR filter, and similar points
were segmented using the DBSCAN method. Finally, leaf
identification was conducted based on RGB values, and ground
points were filtered based on maximum height.

Implementing the SOR method for branch and leaf separation has
proven effective in filtering out points defined as branches in
high-density LIiDAR-RGB. This technique reduces the need for
additional leaf densification procedures since only the smallest
clusters of points, such as branches, noise, and partially scanned
leaves in the collection, are affected.

Although the existing clustering technique shows positive results
in the context of point clouds with low canopy density and
indoors (Liu et al., 2020), the detection of individual leaves with
the supervised DBSCAN method proved to be efficient for
semantic segmentation in trees with a high canopy density.
However, its performance was less optimal compared to trees
with low canopy density. Separating the leaves individually will
assist in the labelling stage, avoiding incorrectly labelling as a
single non-leaf when the cluster contains both leaves and non-
leaves objects. In the existing literature, it is noted that these
methods have not been explored in the context of trees with high
leaf density. Typically, individual leaf separation is addressed in
trees with low leaf density, thus remaining a challenge to be
overcome in precision agriculture.
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For future work, it is suggested refining the DBSCAN
parameters. In this regard, it is recommended to implement other
instance segmentation (individual leaf) methods. This includes
considering additional descriptive leaf characteristics, such as
normal or curvature, beyond Euclidean distance. The detection of
individual leaves enables applications for calculating the
maximum length of the leaf, width, inclination, and number of
leaves. Furthermore, it is recommended to extend the
colourisation process to other bands of the multispectral camera
to extract additional radiometric attributes.
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