
Leaf Identification in High-Density LiDAR-RGB Data  
 

Isabella Subtil Norberto¹, Clodoaldo Souza Faria Junior¹, Antonio Maria Garcia Tommaselli¹, Milton Hirokazu Shimabukuro¹, Rorai 

Pereira Martins-Neto², Nilton Nobuhiro Imai¹, Matheus Ferreira da Silva¹ 
 

¹Faculty of Science and Technology, São Paulo State University (UNESP) at Presidente Prudente, São Paulo 19060-900, Brazil – 

(isabella.subtil, clodoaldo.souza, a.tommaselli, milton.h.shimabukuro, nilton.imai, matheus-ferreira.silva)@unesp.br 

²Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague (CULS), Kamycka 129, 16500 Prague, Czech 

Republic – pereira_martins_neto@fld.czu.cz 

 

 

Keywords: terrestrial LiDAR data, colouring point cloud, leaf segmentation, spectral identification, precision agriculture. 

 

 

Abstract 

 

Leaf detection through automated segmentation of 3D data is becoming a crucial technique in many applications of digital agriculture. 

Some 3D segmentation techniques that can be mentioned are based on normal differences and median normalised vector growth. 

However, applying these approaches to high canopy density data remains challenging. In this study, we propose a processing flow for 

leaf detection in high canopy density LiDAR-RGB point clouds. First, a noise removal technique inspired by Moving Least Squares 

(MLS) was applied to the LiDAR point cloud, and a RGB colour was assigned to each point by combining computer vision and 

photogrammetric methods. Moreover, once the data were suitable for leaf detection, the branches were filtered using the Statistical 

Outlier Removal (SOR) filter based on an analysis of the statistical behaviour of the neighbourhood. Afterwards, an unsupervised 

DBSCAN (Density-Based Clustering Non-Parametric Algorithm) method was used to segment similar points. Finally, the points within 

each cluster were identified as leaf or non-leaf using the RGB values implemented by our method; ground points were filtered out 

using a maximum height threshold. As a result, the leaf, non-leaf, and ground point identifiers were correct in 98.9% of cases, with the 

branch filtering technique SOR proving effectiveness in removing branches with low information loss and without additional complex 

point densification steps in reconstruction. This SOR-based solution overcomes major challenges in semantic segmentation (leaves 

and branches) in high-density data and potentially contributes to precision agriculture. 

 

1. Introduction 

Leaves compose the primary surface of vegetation and play a 

vital role in photosynthesis and respiration, which are essential 

for plant life. Quantification of leaves on trees is a common task 

in plant phenotyping, particularly with the automatic 

segmentation of branches and leaves in digital data. This 

quantification is an essential prerequisite for extracting 

phenotypic traits, such as height, density, biomass and 

quantitative parameters regarding plant complexity (Li et al., 

2020). For example, the Leaf Area Index (LAI) serves as a key 

parameter for estimating biomass. Leaf segmentation facilitates 

LAI estimation based on leaf point distribution around the stem 

or branches (Masuda, 2021). Moreover, it enables the modelling 

of photosynthetic studies (Li et al., 2017) and the quantification 

of plant architecture (Li et al., 2022). Previously, manual 

measurement of phenotypic traits was a costly, error-prone 

process, and environmentally damaging (Jin et al., 2018). 

Nevertheless, identifying and separating tree elements allows for 

studying leaf aspects and root morphology (Costa et al., 2019). 

 

The advancement of image-based methods has significantly 

boosted the extraction of high-throughput phenotypic traits. 

However, reconstructing three-dimensional images does not 

guarantee high accuracy and may lose crucial spatial and 

volumetric information under field conditions. Terrestrial Laser 

Scanners (TLS) have been used in precision agriculture, offering 

fast, non-destructive, and accurate techniques for high-yield 

crops  (Jimenez-Berni et al., 2018). Combining images and TLS-

derived point clouds is advantageous in segmentation by 

delivering high-quality spatial and spectral information through 

data fusion. Dorj et al. (2017) developed a technique for citrus 

fruit yield estimation based on colour features through data 

segmentation. Point cloud segmentation technology is widely 

employed for preprocessing 3D point cloud data of plants in 

forestry and agriculture. This technique enables the grouping and 

segmentation of individual elements or plant organs, facilitating 

a more detailed analysis of plant structure (Hu et al., 2022). 

 

Tree segmentation is a topic of relevance, explored both in forest 

ecology and digital agriculture. In forest ecology, the importance 

of distinguishing tree elements at different scales, such as trunk, 

branches, and leaves, is highlighted. This approach commonly 

employs point-to-point classification strategies in most wood-

leaf separation methods (Wan et al., 2021), due to scale variation. 

In digital agriculture, recent studies have focused on medium and 

small-sized trees, with a particular emphasis on distinguishing 

stems and leaves. TLS technology has been used due to its ability 

to separate diverse geometric features, such as leaves, branches, 

trunks, and stems. Studies in forest ecology, such as mentioned 

by Zhou et al. (2019), concluded that multiscale methods are 

effective for this challenge.   

 

In precision agriculture, the differences in plant structures are 

generally less evident, simplifying segmentation. Techniques 

such as segmentation based on normal differences (Li et al., 

2017) or the application of the median normalised vector growth 

method (Jin et al., 2018) have shown promising results. However, 

these techniques can be further refined with machine learning 

algorithms to segment stems and leaves in real field 

environments, as proposed by Ao et al. (2022). Gomes and Zheng 

(2020) investigated data augmentation techniques, such as the 

use of Generative Adversarial Network, for leaf segmentation 

and counting. Li et al. (2018) proposed an approach for 

segmenting individual leaves using over-segmentation and 

region growing in greenhouse ornamental plants. However, 

applications in real field environments with high canopy density 

data, especially in shrub-like trees, are still limited. 

 

In summary, the following contributions are proposed: 

• A strategy for leaf segmentation with less complex 

methodologies. 

•  An approach for clustering leaves, non-leaf, and ground points. 
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• A procedure for data labelling based on colour features 

extracted from the coloured point cloud. 

• Experiments and discussions on the potential of the proposed 

methodologies to improve existing techniques. 

 

2. Background 

2.1 Terrestrial LIDAR data initial processing 

2.1.1 Noise Filtering 

 

Noise caused by different sources, such as airborne dust, insects, 

and air humidity, is common during field surveys with TLS 

instruments (Hu et al., 2022). There are also natural causes that 

can distort object representation, such as wind on leaves and 

incident sunlight. Another relevant error source is the instrument 

settings, which can lead to the creation of outliers due to 

increased resolution and quality, resulting in the accumulation of 

measurements at the same point during acquisition, creating 

multiple layers. The data quality can be improved by removing 

noise and facilitating the following processing steps.  

 

Statistical filters can be a good option for noise removal in point 

clouds. The statistical technique called Moving Least Squares 

(MLS) is mentioned as being capable of preserving the 

characteristics of irregular data (Schall et al., 2005), such as 

leaves and branches. Jenke et al. (2006) define MLS as a 

smoothing process over a point cloud by locally fitting 

polynomials to individual points while simultaneously 

computing the normal for each smoothed point.  

 

2.1.2 Assigning spectral values to points   

Real scenes can be reconstructed in three dimensions with colour 

and texture information by fusing Light Detection and Ranging 

(LiDAR) data with spectral information acquired by an optical 

camera (Seitz and Dyer, 1999). The generation of these coloured 

point clouds requires the integration of RGB or multispectral 

cameras to the TLS. Data fusion requires the determination of the 

camera locations and orientation with respect to the LiDAR point 

cloud reference system. Crombez et al. (2015) described the 

projection of the data based on estimates of interior and exterior 

camera orientations with respect to the point cloud. Although 

TLS with narrow beam divergence can penetrate dense 

vegetation, the resulting point cloud still suffer from occlusion. 

The main data fusion challenges are occluded areas and double 

mappings, which are resolved by generating a visibility map. 

 

Some relevant techniques for the generation of visibility mapping 

are Z-buffer (Catmull, 1974), Binary Space Partitioning (Fuchs 

et al., 1980), Ray Casting (Appel 1968), Ray Tracing (Whitted, 

1979) or Hidden Points Removal (HPR) (Katz et al., 2007). 

Additionally, culling algorithms such as Backface Culling 

(Blinn, 1993), Viewing Frustum Culling (Assarsson and Moller, 

2000) or Occlusion Culling (Cohen-Or et al., 2003) can be used 

to restrict the view to the camera coverage. Seitz and Dyer (1999) 

studied the problem of point-cloud colouration and considered 

introducing a visibility restriction by identifying voxels with the 

same colour. 

 

Currently, there exist machine learning methods capable of 

colouring a three-dimensional cloud. Liu et al. (2022) proposed 

the Point Cloud Colorization Network (PCCN) based on an 

Adversarial Generative Network to map colour information to the 

point cloud. Colouring a LiDAR point cloud provides a complete 

3D description, generating a virtual representation of real objects 

and elements in the environment for manipulation and analysis. 

2.2 Branch filtering techniques 

Difference of Normals (DoN) is a technique commonly used to 

discriminate different surfaces like tables and walls. However, 

researchers have recognised the potential of this technique to 

filter stems (Li et al. 2017). The method treats each leaf as a set 

of points lying on a plane, and the stem or branches as irregular 

or non-flat surfaces. Thus, the set of neighbouring normals can 

be used to distinguish them. Especially for trees with low canopy 

density, the results are promising, but at the cost of reducing the 

number of leaf points, as shown by Li et al. (2020). In this case, 

additional complex point densification steps are still required to 

reconstruct the leaves. 

 

An alternative is to explore statistical filtering methods to remove 

branches on leaves by treating them as outliers. Statistical Outlier 

Removal (SOR) filter, combined with a neighbourhood radius, 

has been mentioned to be efficient for noise removal in LiDAR 

point clouds. SOR assumes that the distance between a point and 

its neighbours follows a normal distribution (Zhang, 1994). The 

average distance is calculated considering the K nearest 

neighbours (KNN) for each point in the dataset. This method was 

previously applied for the removal of spines on Rosa roxburghii 

(Xie et al., 2021), for the removal of outliers near trees (Li et al., 

2022), and for the removal of noise produced by rain and 

snowfall (Huang et al., 2023). The technique has the potential to 

remove clusters of points scattered between denser regions, 

typical of trees with dense foliage and small branches. 

Nevertheless, the filtering of leaves depends on the clustering of 

the points that describe the leaves. 

 

2.3 Leaf segmentation and identification 

Clustering is widely used in statistical analysis for object 

detection and segmentation, especially in machine learning, 

being classified as an unsupervised learning technique (Ester et 

al., 1996). DBSCAN (Density-Based Clustering Non-Parametric 

Algorithm) uses a density-based clustering approach, in which 

density in a given region is the attribute for the formation of 

clusters (Khan et al., 2014). 

 

Liu et al. (2020) investigated the possibility of using DBSCAN 

combined with an R-CNN mask and achieved promising results 

in indoor collections, especially for smaller plants. However, the 

challenges increased significantly in outdoor environments with 

dense foliage. Segmentation and identification of fruits using 

spectral information from images were investigated by Dorj et al. 

(2017). The methodology converts the RGB image to HSV (Hue, 

Saturation and Value), thresholds it, and detects the orange 

colour of the fruit. A few years later, the technique was explored 

by Hu et al. (2022) to segment a LiDAR-RGB point cloud for the 

estimation of Colza leaves. 

 

3. Materials and methods 

3.1 Materials 

3.1.1 Terrestrial Laser Scanner and Optical Camera 

The LiDAR point cloud was acquired with the FARO Focus 

Premium TLS. Its main features are 360° x 300° FoV, with 

0.3 mrad divergence, pulse duration of approximately 4 ns, 

wavelength of 1553.5 nm, designed to scan objects ranging from 

0.5 to 70 m with 1 mm accuracy and 19 arcsec angular accuracy 

(vertical and horizontal). The FARO Focus also allows RGB 

colouring with the attached camera. However, it is possible to 

explore the use of colouring techniques for point clouds with 
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other cameras, for instance, multispectral cameras. In this paper, 

the fusion with images collected by an Agrowing (Agrowing 

Development Team, 2020) multispectral camera is being 

assessed. 

 

A special mount with six lenses and spectral filters is adapted to 

a Sony Alpha 7 IVR sensor, model ILCE-7RM4A, by Agrowing, 

allowing the generation of fourteen image bands. The spectral 

bands are captured simultaneously since each lens redirects the 

light to a specific part of the sensor (Tommaselli et al., 2020). In 

this paper, LiDAR point clouds were coloured with spectral 

values from bands 430nm (blue), 550nm (green), and 650nm 

(red). Future studies will assess the potential for incorporating the 

full set of fourteen spectral bands to the point cloud. 

 

3.2 Methods 

3.2.1 Field Data Acquisition 

Field surveying and data acquisition involve: (1) the 

determination of reference point positions, (2) camera setup, (3) 

image acquisition in the planned exposure stations and (4) a 

single LiDAR scan. In the experiment presented in this paper, a 

single LiDAR scan was coloured with images acquired from 

different stations. 

 

Data were collected at the Federal University of Uberlândia 

(UFU) coffee plantation, Monte Carmelo/MG campus. Some 

targets were placed over the coffee tree and on the ground (step 

1). The images were then acquired at different exposure stations, 

varying height, planimetric base and convergence, with a suitable 

shutter speed (steps 2 and 3). Finally, a single scan was 

performed with the Faro TLS with 10,240 pt/360° (Step 4). With 

the previously described configurations, 4,082,965 points were 

collected. This point cloud was clipped to the area of interest with 

the CloudCompare software (Figure 1). 

 

 
Figure 1 – Clipped LiDAR point cloud (a) front and (b) side 

views. 

 

Fifty images were acquired to cover the entire field of view 

corresponding to the scan of the LiDAR point cloud with the 

optical images. The next step was the extraction the image bands 

from each image using the AWBasic software and the processing 

of the LiDAR data using the FARO Scene software. 

 

3.2.2 MLS 

In this study, the MLS method implemented in PCL (Point Cloud 

Library) (Rusu and Cousins, 2011) was used for smoothing. The 

experiments performed in this paper were performed with the 

following settings for MLS algorithm: second-order polynomials 

for smoothing, utilising a KD-Tree search for efficient searching, 

and a surface smoothing radius of 1.8 mm. 

 

3.2.3 Colourisation 

Assigning spectral values to LiDAR cloud points, also known as 

colourisation, depends on the previous orientation of the camera 

images concerning the LiDAR point cloud reference system. 

Control points were identified, and their 3D coordinates were 

manually measured in the LiDAR cloud with Cloud Compare 

software. These points were then used for bundle adjustment 

(BA) in the Agisoft Metashape software. The Exterior and 

Interior orientation parameters (EOPs and IOPs) of the images 

were simultaneously determined with bundle adjustment (BA).  

 

After estimating the IOPs of the camera lenses and the EOPs of 

each image, the point cloud is cropped using the VFC algorithm, 

using the EOPs of each image band. Cropping the point cloud 

will reduce the amount of data and the processing time of other 

methods avoiding the difficulties of dealing with dense datasets. 

Then, the points in the cloud that are occluded in the image are 

determined. In this methodology, the HPR technique (Katz et al., 

2007) is applied to remove duplicate points and obtain leaves 

without overlap, adopting an approach similar to the work of 

Crombez et al. (2015). 

 

Finally, the colourisation step assigns the spectral values to the 

LiDAR cloud points. Firstly, the 3D coordinates of a point are 

projected to the image using the collinearity equations. Then, the 

photogrammetric coordinates (x, y) are transformed to image 

coordinates (column, line) using inverse interior orientation; 

finally, the Digital Number (DN) to be assigned to the 3D point 

is interpolated from the neighbour’s pixels with bilinear 

interpolation. This process is repeated for all image bands and all 

3D points visible from the camera station. 

 

3.2.4 SOR 

The SOR algorithm, originally designed for outlier removal, was 

used since the leaves have similar behaviour in terms of the 

magnitude of the average distances and the small standard 

deviations. LiDAR point cloud delineates leaves through 

geometric and dense clustering patterns, while branches are 

sampled with a lower point density. This makes it feasible to filter 

out the branches in the point clouds since the branches are 

considered outliers compared to the leaves’ behaviour. The filter 

needs to specify the quantity of neighbouring points within the 

clusters. The average distance between a point and its neighbours 

and the standard deviation of these points are analysed to filter 

out the outliers. To distinguish between branches and leaves in 

the point cloud, points are filtered out if they do not meet the 

specified criteria. Furthermore, an empirical study on the 

behaviour of the data was conducted considering different 

quantities of neighbouring points. 

 

3.2.5 DBSCAN 

DBSCAN is a non-supervised clustering method designed for 

analysis and data mining. This algorithm prioritises the density 

of points over other traditional methods, like k-means. One of the 

key advantages of DBSCAN is that it does not require the 

previous specification of the number of clusters, making it 

particularly useful when the underlying data structure is 

unknown. Instead, DBSCAN relies on two main parameters: 

tolerance and minimum points, which are required to consider a 

point as a central point. These parameters determined the 

(a) (b)
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neighbourhood size and the minimum density required for a point 

to generate a new cluster (Khan et al., 2014). 

 

DBSCAN operates by identifying central points that have a 

minimum number of points within their neighbourhood, 

determined by the tolerance value, and then expands the clusters 

connected in their attainable neighbourhoods. Therefore, points 

that are not a central point and do not belong to the 

neighbourhood of any central point are considered noise (Deng, 

2020). 

 

The implementation of this algorithm utilised the Scikit-learn 

library (Pedregosa et al., 2011). To use this method, firstly, the 

parameters are defined, namely the values of tolerance and the 

minimum number of points (Kramer, 2016). In this study, 

tolerance was set to 5 mm and the minimum points to 50. Then, 

the algorithm selects an arbitrary point in the dataset and verifies 

whether it holds the minimum number of points within its 

neighbourhood. If this condition is met, the point is classified as 

a central point. This classification process is achieved using a 

vectorisation approach exclusively for central points, enabling a 

reduction in the loop overhead in Python runtime (Schubert et al., 

2017). This approach proves to be more efficient when utilising 

the NumPy library (Jones et al., 2001). 

 

For each central point identified, DBSCAN expanded the cluster 

connected in its reachable neighbourhood. This step is repeated 

until all reachable points have been included in the cluster. 

Subsequently, non-central points are evaluated with respect to the 

constructed clusters. If a non-central point is not close to any 

neighbourhood, it is deemed as noise and removed. The outcome 

of this process is a collection of clusters representing the densely 

connected groups of points in the data space, without the 

presence of noise points (Stewart and Al-Khassaweneh, 2022). 

 

3.2.6 Leaf, non-leaf, and ground identification 

 

Individual leaf identification implies automatic detection and 

subsequent removal of leaves from plants. First, parameters are 

empirically defined, including ranges of RGB values that define 

the leaves’ colours, defined as [0, 10, 0] for minimum RGB (dark 

green) and [0, 255, 0] for maximum RGB (light green). It also 

sets a threshold of 80 for the blue component. Then, the cluster 

is divided into groups, and the mode of the blue component is 

calculated for each group. If a particular group exceeds the 

predefined thresholds, filtering is applied to identify the non-leaf 

objects. 

 

Filtering is performed by calculating the Euclidean distance 

between the colour of each point and the colour defined as the 

green threshold for leaves. Points whose distance to the leaf 

colour is less than a predefined radius (100) and are not white 

[255, 255, 255] are considered leaves. If the points within the 

radius of the Euclidean distance meet predefined blue, green, and 

non-white thresholds, the cluster represents leaves; otherwise, it 

is categorised as non-leaf. In the experiments performed in this 

study, many of the non-leaf objects were the targets that were 

used as Ground Control Points (GCPs).  

 

The process is repeated for all clusters, resulting in a distinction 

between leaves and non-leaves present in the LiDAR cloud. 

However, the spectral values of the leaves may be similar to 

ground values. In this case, the ground points must be removed 

and identified based on another parameter, such as height (Z 

component). Therefore, points in the LiDAR cloud that are 

higher than the proposed threshold for ground points, should be 

categorised as leaves. 

The result of this process is the categorisation of points in the 

LiDAR cloud into different classes such as leaves, non-leaves 

and ground points. The cluster of these categories are organised 

into separate folders to facilitate subsequent analysis and visual 

interpretation of the data. This approach allows organised 

information to be categorised based on colour. 

 

4. Results and discussions 

4.1 Spectral point cloud generation 

4.1.1 Estimation of interior and exterior orientation 

parameters 

Table 1 shows the Interior Orientation Parameters (IOP) 

estimated by self-calibration in Agisoft Metashape and exported 

in Australis format. The interior and exterior parameters can be 

considered similar for images of bands from the same lens. In this 

paper, one of the six lenses with the 430 nm, 550 nm and 650 nm 

bands combined in a single sensor lens was used. The IOPs are 

used to calculate the inverse interior orientation. 

 

IOP Estimated values Standard error  

f (mm) 21.3437 0.0104 

x0 (mm) 0.2381 0.0085 

y0 (mm) 0.0402 0.0089 

K1 (mm−2) 3.24836 e-04 1.65126e-05 

K2 (mm−4) -5.19359e-06 8.67129e-07 

K3 (mm−6) 8.20846e-08 1.36101e-08 

P1 (mm−1) -1.09935e-04 3.35188e-06 

P2 (mm−1) -1.36178e-06 3.24654e-06 

Table 1 – Estimated interior orientation parameters. 

 

The camera-to-object distance was approximately 1.80 m and the 

calculated PSOSU (Pixel Size in Object Space Units) for the 

images was 0.30 mm. The RMSE (Root Mean Square Error) 

values resulting from the GCPs for the 50 triangulated images 

correspond to nine times the value of the pixel size in terrain units 

(Table 2).  

 

It was difficult to obtain better results due to the lack of stable 

objects in the scene. Nevertheless, the Exterior Orientation 

Parameters (EOP) obtained from the local coordinates proved to 

be consistent with the colouring process and with the LiDAR 

point cloud. 

 

RMSE 

 mm 

X 1.59 

Y 2.06 

Z 1.13 

Total 2.84 

Table 2 - RMSE of the discrepancies in the GCPs coordinates 

after triangulation of the 550 nm band images. 

 

4.1.2 Colourisation 

The IOPs and EOPs estimated with bundle adjustment were used 

with the collinearity equations to compute the DN to be assigned 

to each 3D point, as presented in section 3.2.3. This procedure is 

repeated for all points visible from each image band. A point 

cloud of 1,502,161 points was obtained after noise filtering 

(Figure 2). 

 

The presence of ground points, spheres, and labels is clearly 

noticeable. Ground points are removed later (Section 4.4), and 
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ground information is reduced due to the MLS noise removal 

process. 

 
Figure 2 – LiDAR-RGB point cloud, coloured with 430, 550 

and 650 nm image bands. 

 

 

4.2 Removing branches 

TLS data was acquired in a single scan from a single station, and, 

as a consequence, leaf clusters at the trees’ boundaries can store 

fewer points. In addition, wind can change the position of the 

leaves during image collection, affecting the filtering step. Thus, 

determining the appropriate neighbourhood parameter value is 

important to minimise the effects of outliers on the result 

(Figure 3). 

 

 
Figure 3 - Original LiDAR-RGB point cloud (a) and with SOR 

to separate leaves by varying the radius of the neighbourhood: 

(b) 10, (c) 50, (d) 100, (e) 150, (f) 200, (g) 250, and (h) 300 

points. 

 

All points represented as branches are effectively filtered out by 

the influence radius of 50 (Figure 3.c). However, outliers near the 

branches could not be removed using the proposed noise removal 

technique (Section 3.2.2). As a solution, larger radius values 

(initially up to 300 points) were applied to filter out adjacent 

noise. This resulted in an undesired removal of some points from 

the leaf cluster located at the edges. A radius of 250 points was 

found to be the most suitable for this dataset, removing branches 

and residual noise without dramatically affecting leaves’ edges. 

 

Leaves near the trees’ boundaries are most affected by SOR point 

filtering. A complete reconstruction of the leaves would require 

additional scans from different viewpoints, at the cost of 

performing accurate registration among all scans. 

 

4.3 Leaf clusters 

Leaf, non-leaf, and ground points were satisfactorily detected by 

DBSCAN. To visualise each cluster created by the algorithm, the 

bounding boxes in the CloudCompare software can be used. 

Figure 4 shows the results of two situations that occurred during 

the clustering process when the leaves were very close to each 

other. 

 

Separation into clusters was satisfactory in the first case (Figure 

4.a). In the second case (Figure 4.b), however, the clustering is 

not satisfactory since the selected parameters did not segment all 

leaves separately. The non-leaf and ground points should be 

filtered to keep only the leaves, either individually or with more 

than one per cluster. 

 

 
Figure 4 - Examples of clustering for closely spaced leaves for 

(a) single leaves and (b) three leaves in a single cluster. 

 

4.4 Clusters after filtering non-leaf objects and ground 

clusters 

It was hypothesised that leaves’ colours would vary in green and 

blue values. Thus, these two components split leaves from non-

leaves. Those clusters that are not within the proposed thresholds 

are considered as non-leaves, as depicted in Figure 5. 

 

 

 
Figure 5 - Example of identified non-leaves, as (a,d) targets and 

(b,c) spheres. 

 

Based on the detected clusters, the filtering processes were used 

to label the clusters as leaves, non-leaves, or ground. Identifying 

non-leaves using the spectral information only in the full point 

cloud would be less reliable. This happens because increasing the 

value of the Euclidean distance delineates well the non-leaves 

points farther from the cloud, but non-leaves near the leaves are 

not identified. After segmenting the point cloud, some non-leaves 

were removed using spectral information (Figure 6). 

 

 
Figure 6 - (a) Non-leaves and leaf clusters and (b) points in 

black were filtered. 

(a)                           (b)                            (c)                           (d)

(e)                            (f)                          (g)                             (h)

(a)                  (b)

(a)                   (b) (c) (d)

(a)                   (b)
(a)                   (b)
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Labelling leaves is more efficient and less computationally 

expensive when performing the operation directly on the cluster. 

Some leaf points are still filtered but to a lesser degree. After 

filtering the non-leaves, the ground clusters were still counted 

along with the other leaf clusters since some ground points and 

leaves had similar colours. In this case, a threshold for points’ 

heights was defined empirically. Leaf clusters are shown in 

Figure 7, and metrics are discussed in 4.5. 

 

 
Figure 7 - Clusters labelled as leaves only. 

 

4.5 Discussions 

The plot presented in Figure 8 shows the total number of points 

after the filtering with the SOR technique against the 

neighbourhood points used for this filtering. It was observed that 

a large radius of influence from the neighbourhood is 

unnecessary to remove the cluster of branch-like points, as 

discussed in Section 4.2 but some neighbourhood noise still 

exists. Increasing the size of the neighbourhood will result in a 

stronger filtering of the subsequent points, which will primarily 

affect the leaves at the edges of the point cloud, as previously 

mentioned. 

 

 
Figure 8 - Number of points after filtering for each 

neighbourhood value. 

 

The best fit to the data presented in Fig. 8 is a logarithmic model 

with a high R² value. Changing the parameter (number of 

neighbours) has a significant initial effect on the filtering. As the 

filtering progresses, with a higher number of neighbours, changes 

become less noticeable. This attenuation is due to the increase in 

the density of the points in the clusters as the neighbourhood 

value increases, and noise near the branches still exists despite 

the preprocessing noise filtering. The stabilisation of the filtering 

process suggests the elimination of outliers only, thereby 

eliminating the need for point densification in the final result. In 

contrast to methods such as DoN, Li et al. (2020) observed a 

significant reduction in the number of leaf points. When we 

applied DoN to this dataset, the reduction was significant enough 

to potentially affect leaf characterisation. 

 

A total of 1,226 clusters containing leaves, non-leaves, and 

ground points were then generated by the DBSCAN technique. 

The points from the point cloud labelled as non-leaves were 

initially used in the colourisation process. However, to achieve 

only the leaves in the final result, these objects needed to be 

subsequently removed in the process. Identification errors (Table 

3) resulted from the filtering techniques used to label the scene 

and were observed through visual inspection. 

 

Identification Correct Incorrect Total 

Leaves 1,109 (99.2%) 9 (0.8%) 1,118 

Non-leaves 7 (100%) 0 (0%) 7 

Ground 97 (96¨%) 4 (4%) 101 

Total 1,213 (98.9%) 13 (1.1%) 1,226 
 

Table 3 - Correct and incorrect identification for clusters. 

 

In some cases, leaves were labelled as non-leaves mainly when 

they were wrongly segmented with other non-leaves objects. In 

some cases, the error was caused by leaf's specular reflection 

producing high blue values, exceeding the proposed threshold. 

Although ground clusters included points close to the leaves, the 

height (Z) threshold was maintained. The technique gave a 

satisfactory result of 98.9% accuracy in identifying and labelling 

the segmented objects. 

 

5. Conclusions 

In this study, we developed a method for leaf detection in high-

density terrestrial LiDAR data. The process entails branch 

filtering, segmentation, and leaf identification. Initially, we 

employed a noise removal technique inspired by MLS and 

assigned RGB colours to the points. Subsequently, branch 

filtering was performed using the SOR filter, and similar points 

were segmented using the DBSCAN method. Finally, leaf 

identification was conducted based on RGB values, and ground 

points were filtered based on maximum height. 

 

Implementing the SOR method for branch and leaf separation has 

proven effective in filtering out points defined as branches in 

high-density LiDAR-RGB. This technique reduces the need for 

additional leaf densification procedures since only the smallest 

clusters of points, such as branches, noise, and partially scanned 

leaves in the collection, are affected. 

 

Although the existing clustering technique shows positive results 

in the context of point clouds with low canopy density and 

indoors (Liu et al., 2020), the detection of individual leaves with 

the supervised DBSCAN method proved to be efficient for 

semantic segmentation in trees with a high canopy density. 

However, its performance was less optimal compared to trees 

with low canopy density. Separating the leaves individually will 

assist in the labelling stage, avoiding incorrectly labelling as a 

single non-leaf when the cluster contains both leaves and non-

leaves objects. In the existing literature, it is noted that these 

methods have not been explored in the context of trees with high 

leaf density. Typically, individual leaf separation is addressed in 

trees with low leaf density, thus remaining a challenge to be 

overcome in precision agriculture. 
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For future work, it is suggested refining the DBSCAN 

parameters. In this regard, it is recommended to implement other 

instance segmentation (individual leaf) methods. This includes 

considering additional descriptive leaf characteristics, such as 

normal or curvature, beyond Euclidean distance. The detection of 

individual leaves enables applications for calculating the 

maximum length of the leaf, width, inclination, and number of 

leaves. Furthermore, it is recommended to extend the 

colourisation process to other bands of the multispectral camera 

to extract additional radiometric attributes. 
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