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Abstract: 

Brazil, the world's largest coffee producer, faces challenges managing the coffee leaf miner (Leucoptera coffeella), a significant pest. 

This study suggests remote sensing for pest control decisions. Two experimental areas in the Cerrado region of Minas Gerais State 

were analyzed to spectrally characterize infested plants and estimate the number of mines per plant. Results show the ability to 

differentiate infested plants with greater reflectance variance in the near infrared at 850nm. The performances of the three machine 

learning algorithms were compared. Determining the number of mines in the group of most infested plants demonstrated slightly higher 

precision, achieving an RMSE of 22.69% using the Support Vector Machine algorithm. Conversely, the group of least-infested plants 

obtained the best result with the Random Forest algorithm, achieving an RMSE of 32.47%. These promising results indicated that 

CLM can be detected using aerial multispectral imaging data. 

1. Introduction

Brazil, the world's largest coffee producer, aims to reach 58 

million processed coffee bags in 2024, with the state of Minas 

Gerais contributing to over half of this total (CONAB, 2024). In 

Minas Gerais, the Cerrado Mineiro stands out as one of the 

largest producing regions, renowned for cultivating high-quality 

coffees. However, the abundance of coffee plantations, combined 

with the dry climate and high temperatures, creates ideal 

conditions for the proliferation of the main pest affecting the 

coffee plant's aerial part in the Cerrado Mineiro region: the 

Coffee Leaf Miner (CLM), Leucoptera coffeella (Lepidoptera: 

Lyonetiidae) (Souza et al. 1998; Dantas et al. 2020). 

The attack of the CLM has specific characteristics. The insect 

only causes damage in the larval stage when it feeds on the leaf 

mesophyll, a fundamental tissue between the two sides of the 

epidermis. This type of feeding causes the formation of mines on 

the leaves, which is the origin of its common name. The presence 

of mines results in necrosis of the corresponding palisade and 

lacunose tissues, reducing the leaf surface. Consequently, this 

can lead to defoliation, decreased photosynthetic rate, reduced 

plant productivity, and in more serious cases, plant death (Costa 

et al. 2012). 

According to Souza et al. (1998), during the dry period of the 

year, leaf fall begins from the top of the plants. Oviposition and 

feeding on leaf structures reduce the photosynthetic area (Liu et 

al. 2015) and auxin levels, increasing the synthesis of ethylene, 

the plant hormone responsible for leaf abscission (Arteca 1996; 

Souza et al. 1998), triggering chlorosis and leaf abscission from 

the top of the plants, as shown in Figure 1. 

Additionally, according to the latest climate risk indicators, the 

future of Coffea arabica L. plantations in Brazil will depend on 

the adoption of adaptive and effective measures (Dias et al. 

2024). This is essential as climate change will also lead to an 

increase in the number of CLM life cycles, making attacks more 

aggressive (Giraldo-Jaramillo et al. 2024). 

Figure 1. Attack of the coffee leaf miner on coffee leaves. In 

(A) the leaves are healthy, while in (B) the leaves are infested,

withered, and have chlorosis. 

The average number of CLM mines in the field is typically 

determined using a manual methodology. In this approach, a field 

operator manually counts the average number of mines found on 

the leaves of the third or fourth pair of plagiotropic branches (side 

branches that grow at an angle to the main stem of the plant) in 

the upper middle third of coffee plants (Zampiroli et al. 2017). 

However, this method requires specialized knowledge and is 

time-consuming, posing challenges for large-scale coffee-

producing areas. 
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As a sustainable and precise solution, remote sensing has been 

used to discriminate the most varied stresses in coffee trees. 

Martins et al. (2017), identified that the red, red edge and near-

infrared (NIR) spectral bands were crucial for the discrimination 

of plants infected by nematodes. The multispectral classification 

achieved an overall accuracy of 78% and a Kappa coefficient of 

0.71, highlighting the effectiveness of remote sensing in this 

context. 

 

Previous studies in the Cerrado region of Minas Gerais have 

demonstrated the effectiveness of using remote sensing data and 

machine learning algorithms for various applications in coffee 

stresses. Using low-cost aerial images, Pereira et al. (2022) 

identified that the Random Forest (RF) and Support Vector 

Machine (SVM) algorithms demonstrated satisfactory accuracy, 

with a root mean square error (RMSE) of less than 26.5%, in 

estimating physical parameters of coffee trees, such as 

chlorophyll content and plant height. Also using low-cost aerial 

imagery, Orlando et al. (2023) estimated the Leaf Water Potential 

(LWP) of drip-irrigated coffee trees and obtained more accurate 

results using the Support Vector Machine algorithm (RMSE of 

0.188) and an RMSE% of 34.18 in rainy conditions. In drought 

conditions, the Random Tree algorithm obtained the best result 

with an RMSE of 0.052 and an RMSE% of 32. 

 

Vilela et al. (2023), selected the combination of the difference 

between two Sentinel-2 bands, "NIR-BLUE" and "NIR-RED", to 

assess CLM infestation levels. Their findings revealed that the 

RF algorithm outperformed the SVM algorithm in classifying the 

coffee leaf miner infestation. The RF algorithm achieved an 

overall accuracy and kappa index exceeding 0.89, whereas the 

SVM algorithm exhibited an overall accuracy of 81.8% and a 

kappa index of 0.61.  

 

Considering the importance of detecting and monitoring the key 

pest affecting the aerial part of Brazilian coffee trees, it is 

hypothesized that high spatial resolution aerial multispectral 

images have the capability to detect plants infested by CLM in 

the Cerrado Mineiro region. The objective is to assess the 

feasibility of using multispectral aerial images to detect CLM 

infestations in the Cerrado region of Minas Gerais, as well as to 

estimate the average number of mines per plant. 

 

2. Material and methods 

The research was conducted within an experimental site situated 

on the Monte Carmelo Campus of the Federal University of 

Uberlândia. The site consists of two plots (Figure 2), where rows 

spaced 3.5 meters apart, and plants spaced 0.6 meters apart. The 

experimental area comprised C. arabica, planted in 2016 in plot 

1 and 2015 in plot 2, with an average plant height recorded at 1.5 

and 2 meters, respectively. In the first experimental plot, the 

entire area is planted with the cultivar Topázio MG-1190, 

susceptible to infestation by CLM. The second area consists of 

several cultivars, but the evaluation focused solely on plants of 

the same cultivar, ensuring standardization. 

 

The location has an average annual precipitation of 1,444 mm 

and falls under the Aw climate classification (tropical climate 

with a dry winter), providing optimal conditions for the natural 

proliferation of the targeted pest. Both plots utilized a drip 

irrigation system, featuring emitters positioned at 0.6 meters 

apart and a flow rate of 1.6 L h-1. 

 

 
Figure 2. The study area location and the spatial distribution of 

the 93 plants evaluated. In the first plot (1), plants were 

evaluated across the entire area (53 plants), while in the second 

plot (2), only plants of the same cultivar (Topázio MG-1190) as 

those in plot 1 were evaluated (40 plants). 

 

2.1 Data Acquisition 

The assessment of damage caused by CLM occurred in July 

2022. The initial area encompasses around 200 coffee trees 

within a 650 m² space in Plot 1. In contrast, Plot 2 includes 

approximately 400 coffee trees within 1,300 m², featuring eight 

coffee cultivars arranged in a randomized block design (RBD). 

To maintain consistency with the cultivar assessed in the first 

plot, only the sections with the Topázio MG-1190 cultivar were 

chosen in the second plot. A total of fifty-three canopies were 

randomly examined in Plot 1, while Plot 2 had forty canopies 

analyzed, as illustrated in Figure 2. 

 

For each plant, eight leaves on the third or fourth pair of 

plagiotropic branches were randomly selected from the 

middle/upper third of the plant. Among these, four leaves were 

assessed on the north and four on the south sides. The recorded 

metric was the average number of mines per plant, as shown in 

Figure 3. The plants under examination were georeferenced using 

a GNSS receiver, employing the real-time kinematic (RTK) 

positioning method. 
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Figure 3. Assessment of the average number of mines per plant. 

(A) An example of a leaf with 4 mines and (B) a coffee plant. 

 

On the same date, as the other assessments, an aerial survey was 

conducted by affixing an AgroWing multispectral camera 

(Figure 4A) to an unmanned aerial vehicle (UAV) (Figure 4B). 

The camera is equipped with 14 spectral bands, responsive to 

radiation within wavelengths centered at 405, 430, 450, 490, 525, 

550, 560, 570, 630, 650, 685, 710, 735, and 850 nm. The flight 

was executed at 1 p.m. at an altitude of 60 meters, ensuring a 

Ground Sampling Distance (GSD) of 1 cm. 

 

 
Figure 4. Aerial multispectral data collection. In (A) the 

AgroWing camera with six optical lens heads, in (B) the 

unmanned aerial vehicle, and in (C) the targets fixed in the field 

to carry out the empirical line calibration. 

 

For the radiometric calibration of the images, the spectral 

signatures of three non-reflective targets (Figure 4C) were 

measured on the day of the aerial survey, using a portable 

FieldSpec® spectroradiometer manufactured by Analytical 

Spectral Devices (ASD). The instrument operates within a 

spectral range of 325-1075 nm and boasts a spectral resolution of 

0.016μm. A 10° field of view (FOV) was achieved by 

incorporating a specific filter. Furthermore, the distance from the 

spectrum to the target was maintained at approximately 11.4 cm, 

resulting in an instantaneous field of view (IFOV) of 1 cm. For 

each radiance measurement, an average of ten repetitions of the 

target radiance reading and the radiance of a reference 

Lambertian surface (Spectralon plate) (Jackson et al. 1992) were 

simultaneously measured under identical lighting and 

observation conditions. 

 

2.2 Aerial image processing 

The raw images underwent alignment and band co-registration 

using the AgroWing Basic software, adhering to the 

recommended processing flow by the manufacturer. 

Subsequently, the 14 bands were stacked to generate a spectral 

cube. The resultant images were exported in tiff format and the 

orthomosaic was generated and georeferenced using Agisoft 

Metashape software. 

 

For the radiometric calibration of the orthomosaic, the empirical 

line method was used. For this, a linear regression was generated 

for each band, relating the digital number of the pixel to the 

reflectance of the targets used (Porto et al. 2023). The empirical 

values of gain and offset were calculated in the ENVI software. 

Then, the Hemispherical Conical Reflectance Factor (HCRF) of 

the targets, as defined by Equation 1, was computed. This 

calculation involved taking the ratio of the average radiant flux 

reflected by the target to that of an ideal diffusing surface, 

represented by a Spectralon plate, under identical geometric and 

lighting conditions.  

 

 𝐻𝐶𝑅𝐹 = ( 
Average of target radiance

Average of corrected plate radiance  
) * k 

 
(1) 

 

Acknowledging that this plate utilized in the field may deviate 

from the ideal conditions of a laboratory diffusing surface, a 

calibration factor (𝑘) was determined by referencing it to a 

meticulously conditioned plate available in the laboratory. This 

calibration factor accounts for any discrepancies introduced by 

the field conditions, thus ensuring the accuracy of the HCRF 

calculations in the specific context of the study. 

 

For each plant evaluated in the field, the spectral averages of the 

reflectance values of the top of the plants, obtained in the images, 

were extracted and tabulated. Thus, the ideal range to 

discriminate CLM in plants was identified through an analysis 

that focused on determining the spectral region that presents the 

greatest variance in spectral signatures between the reflectances 

extracted from the images. This spectral characterization was 

also done individually between the plots due to their varying 

infestation conditions. 

 

2.3 Estimation of the number of CLM mines per coffee plant 

To assess the feasibility of estimating the number of mines per 

plant, regression models were developed for both plots. Based on 

the main algorithms used to estimate stresses in coffee trees from 

remote sensing data, three regression algorithms available in the 

WEKA 3.9.4 software (Waikato Environment for Knowledge 

Analysis) were trained: Multilayer Perceptron (MLP), Support 

Vector Machine (SVM), and Random Forest (RF). It was 

standardized to use fixed and pre-established hyperparameters 

provided by the software for each of the algorithms. Due to the 

different agronomic conditions of the Plots, each Plot was 

evaluated individually, with 80% of the samples used for training 

and 20% for testing. This approach ensured that the models were 

tailored to the specific characteristics of each plot, thereby 

enhancing the accuracy of the evaluations. 

 

To validate the quality and ascertain the optimal prediction 

model, the Root Mean Square Error (RMSE) evaluation metric 
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was employed. The selection criterion for the best estimation 

model involved identifying the architecture that demonstrated the 

lowest RMSE and RMSE% (Equations 2 and 3, respectively) 

values.  

 

 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑥𝑖 − 𝑥𝑚

𝑛
𝑖=1 )2

𝑛
 

(2) 

 

𝑅𝑀𝑆𝐸 % = √
∑ (𝑥𝑖 − 𝑥𝑚

𝑛
𝑖=1 )2

𝑛
𝑋 (

100𝑋𝑛

∑ 𝑥𝑚
𝑛
𝑖=1

) 

 

 

(3) 

where,  𝑥𝑖 represents the estimated number of mines. 

  𝑥𝑚 represents the measured number of mines. 

  𝑛 the number of samples. 

 

3. Results and discussion 

3.1 Determination of plot infestations 

Regarding the infestation levels, it is important to acknowledge 

that different areas exhibit varying conditions of CLM 

infestation.  In the first plot, there is an initial trend towards a 

normal distribution, however, as values increase, a decline in data 

frequency is noted, along with a greater dispersion towards the 

upper extremes of the range. The wide range of data amplitudes 

also indicates significant variability within the sample, which has 

an average of approximately 20 mines per plant, ranging from a 

minimum of 4 and maximum of 40. The rightward tilt of the 

histogram (Figure 5) suggests a non-symmetrical distribution, 

with a higher concentration of lower values and a prolonged tail 

towards higher values. 

 

 
Figure 5. Distribution of the average number of mines per plant 

evaluated in the two plots. The bars in pink represent Plot 1, 

while the bars in light blue represent Plot 2. The dark color in 

the center shows the overlay of the histograms from both plots. 

 

In Plot 2, a perfectly normal distribution was observed, indicating 

symmetry around the mean. The data range is relatively narrow 

compared to Plot 1, with values ranging from 2 to 21, and the 

average of the data is approximately 10. This concentration of 

values around the mean suggests a significant clustering of data 

points around this central value. 

 

Furthermore, as depicted in Figure 5, the second plot exhibits a 

smaller range of number of mines per plant compared to Plot 1, 

indicating that infestations are more advanced in the first plot. 

Notably, all coffee trees on both plots were infested. 

Additionally, in both plots, the absence of outliers and the 

tendency towards a normal distribution curve highlights the 

consistency of the data collected. 

 

3.2 Characterization of spectral signatures 

Figure 6 illustrates the spectral signatures of all coffee trees in 

the first plot. Notably, the variability in spectral signatures begins 

in the 685 nm region of the spectrum. Therefore, the red edge and 

near-infrared are the regions of interest to explore the variability 

of the canopy of the most infested plot. 

 

 
Figure 6.  Spectral curves of the 53 plants evaluated in Plot 1. 

 

In Figure 7 we can observe the spectra of all coffee trees in the 

least infested area (Plot 2). Once again, the variability in spectral 

signatures begins in the 685 nm region; however in this case there 

is a greater intensity of reflectance in these spectral bands. 

Furthermore, in this region, there is a greater variation in the 

spectral signatures of the plants in Plot 2 than in Plot 1. 

 

 
Figure 7. Spectral curves of the 40 plants evaluated in Plot 2. 

 

When analyzing the Plots in the bands of greatest variance (bands 

centered at wavelengths 710 nm, 735 nm and 850 nm), some 

differences arise when altering the quantity of heavily or lightly 

infested plants factored into the average calculation. In Plot 1 

(Figure 8), the effect of the CLM infestations is more evident 

when calculating the spectral average of a few plants, since they 

were more infested in the extreme groups. That is, there is greater 

interference from heavily infested plants. This leaf wilting effect 

is also observed in the progressive drying of magnolias, where 

there is an increase in reflectance throughout the infrared region 

as the moisture content decreases (Jensen 2009). As more plants 

in the sample group are averaged, there are also more vigorous 

plants in the sample group, resulting in the spectral signature of 

the less-infested plant group having greater reflectance.  
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As more observations are included at the extremes, the behavior 

tends to converge towards the average. However, in the third 

condition, this trend is reversed as the impact of plants with 

numerous mines becomes more subdued, causing their values to 

cluster around the mean. 

 

 
Figure 8. Average spectral responses of the plants in Plot 1 in 

the 710, 735, and 850 nm bands, changing the number of 

heavily or lightly infested plants included in the average 

calculation. 

 

A similar analysis can be carried out for Plot 2 (Figure 9). When 

there are fewer plants in the sample group, the less-infested plants 

exhibit higher reflectance in the near-infrared region, consistent 

with the expected spectral behaviour when comparing healthy 

and stressed coffee leaves (Martins et al. 2017). As it is a less 

infested area and with a normal distribution of the number of 

mines (Figure 5), as more plants are incorporated into the sample 

group, there is a tendency for spectral signatures to show an 

average behaviour. 

 

 

 
Figure 9. Average spectral responses of the plants in Plot 2 in 

the 710, 735, and 850 nm bands, changing the number of 

heavily or lightly infested plants included in the average 

calculation. 

 

3.3 Models for estimating the number of mines per plant 

Table 1 illustrates the RMSE and RMSE% obtained for the 

models utilized in estimating the number of mines across both 

plots. Plot 1, the most heavily infested, exhibits plants with high 

numbers of mines. In this context, employing the most significant 

bands (ranging between 650 and 850 nm) results in an error rate 

of 22.69%, marginally lower than when utilizing all bands, which 

yields an error rate of 25.94%. 

 

Features Algorithm 

Plot 1 Plot 2 

RMSE 
RMSE

% 
RMSE 

RMSE

% 

All 

bands 

MLP 7.51 28.07 8.09 76.14 

SVM 6.94 25.94 4.09 38.49 

RF 6.84 25.57 3.45 32.47 

Bands 

650 to 

850nm 

MLP 6.42 24.00 4.47 42.07 

SVM 6.07 22.69 3.56 33.50 

RF 7.10 26.54 3.59 33.78 

Table 1. RMSE and RMSE% results for each algorithm for Plot 

1 (most infested) and Plot 2 (least infested). MLP: multilayer 

perceptron; SVM: Support Vector Machine; RF: Random 

Forest. 
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In Plot 2, the models exhibit fewer errors in absolute numbers, as 

evidenced by smaller mean squared errors, when compared to 

Plot 1. However, the mean squared error percentage of the second 

plot, being less infested, makes it more difficult to characterize 

the extremes. 

 

Random Forest was the only algorithm that showed an increase 

in RMSE with the selection of the most important bands as 

features. This algorithm, although robust, may be less effective 

with highly correlated data, as evidenced by the increase in 

RMSE when using the most relevant bands.  

 

Despite the promising results of the other algorithms, the 

Multilayer Perceptron algorithm may have been sensitive to the 

hyperparameters that were pre-fixed and therefore may suffer 

from overfitting, especially with smaller data sets. 

 

4. Conclusion  

The spectral region starting at 650 nm, extending towards the 

near infrared, has been demonstrated to be ideal for 

discriminating CLM infestations in plants through the analysis of 

aerial multispectral images. This capability can be crucial to 

discriminate the levels of infestations.  

 

The comparison of algorithm performance revealed that the SVM 

algorithm achieved slightly higher accuracy in determining the 

number of mines in the most infested plant group. Conversely, 

the Random Forest algorithm demonstrated superior 

performance for the group of less-infested plants. The coffee 

production areas, even if under the same cultivar, exhibit 

differences in canopy structures due to age disparities and 

variations in the average number of mines. This discrepancy 

significantly impacts the spectral response of the canopies, 

potentially increasing errors in estimating the average number of 

mines, particularly with a single aerial survey. 

 

In this context, CLM can be detected using aerial multispectral 

image data. However, for more accurate detection of infestations, 

continuous monitoring of areas is recommended. This allows for 

the evaluation of spectral differences in canopy structures over 

time as the infestation progresses.  
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