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Abstract 

Studies of water color are related to its optically active components, including suspended sediments. The correlation of this 

parameter with reflectance data is well documented in the literature, to understand its concentrations and transport in the water body. 

The spatio-temporal variations of water color in an estuary are affected by various physical and hydrological components, which 

makes it complex to understand. In this study, we sought to understand the spatio-temporal variation of water color, for sampling 

purposes, in an estuary on the Amazon coast. To achieve our objectives, we applied geostatistical and statistical tools to test the 

spatio-temporal variability of water color, based on multisensor reflectance data, Landsat-8/9 and Sentinel-2 in the red band. The 

spatial variation showed distances of more than 48 m ±4.26 at high tide and 44 m ±7.62 at low tide. For the temporal variation, we 

found that the monthly variations are significant according to seasonality and have the same variation at different stages of the tide. 

Therefore, the color of the water in the Tatuoca Island region shows geostatistically and statistically significant spatio-temporal 

variation. The distances and temporal frequency of sampling should be adjusted according to the tides and seasonality to ensure that 

data is sampled in accordance with the variations in the environment. 

1. Introduction

The optical properties of water are related to its composition, 

enabling research and monitoring of aquatic ecosystems. 

Remote sensing of water color is an area of study that makes it 

possible to extract information from aquatic environments with 

wide spatial and temporal coverage (Zhang et al., 2017). 

Research on water color is related to measurement and 

modeling studies of bio-optical properties (Guillaume et al., 

2023), atmospheric correction and data uncertainties (Zhang et 

al., 2022), remote sensing algorithms for chlorophyll-a and 

suspended sediments (Kupssinskü et al., 2020), chromophoric 

dissolved organic matter (CDOM) (Qiang et al., 2023), and 

water quality and water ecology (Pan et al., 2022). 

The majority of studies on water color have employed field 

collections to validate or calibrate the results. Studies on water 

color in the Amazon have utilized high- to medium-resolution 

sensors. Some studies have already indicated that high- to 

moderate-resolution satellite data could be an alternative to 

achieve more accurate results (Fassoni-Andrade and Paiva, 

2019). However, the effect of the lag between field and satellite 

overflights remains unclear. Most studies assume that field and 

orbital data were collected at the same time. Consequently, the 

impact of spatial and temporal discrepancies between collection 

and overflight remains under-researched (Gao et al., 2023). 

To understand water color, analyze optical agents and 

environmental variables, especially in estuaries, where 

complexities such as tides, waves, currents, river flows, 

sediment transport, erosion, accretion, wind, and climatic 

influences impact hydrodynamics (Azevedo et al., 2023). 

The article aims to analyze how sedimentation varies over space 

and time in water, to develop appropriate sampling methods for 

the local conditions. It suggests that changes in water color 

significantly affect where samples should be taken due to the 

area's complexity. This region is an estuarine zone affected by 

tides, containing high sediment levels and diverse landforms. 

Monitoring water color variations is crucial for calibrating and 

correlating reflectance with water composition. Thus, it's vital 

to align sampling points with spatial and temporal variations 

during water sampling. 

The study aimed to investigate how water color varies over 

space and time in an estuary on the Amazon coast, an area 

lacking observation stations in the hydrological observatory 

network. We employed geostatistical and statistical methods to 

understand this variation. Our goal was to establish the spatial 

and temporal boundaries for sampling sites, guiding the 

selection of collection stations aligned with these variations. 

This will enhance calibration and correlation with orbital data, 

considering seasonal and tidal influences in the Tatuoca Island 

region. 

This paper will examine the techniques employed to ascertain 

variations, utilizing geostatistical tools for spatial variation and 

statistical tools for temporal variation. It will present metrics 

and indicators derived from the respective techniques and 

demonstrate how they inform the determination of the variations 

under investigation. 
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2. Methods and Materials 

2.1 Area of study 

The study area is located in the estuary formed by the 

confluence of the Pará (Tocantins and 5% of the Amazon), 

Guamá and Acará rivers, downstream from the city of Belém, 

near the island of Tatuoca (Figure 1). This island is located 

between two important bays, Marajó and Santo Antônio, which 

in turn have different bottom morphologies that influence the 

region's currents. 

 

Figure 1. Location of the study area. a: Tatuoca region; b: 

Location in Belém; c: Location in Brazil; A.B.: Santo Antônio 

Bay; G.B.: Guajará Bay; C.I.: Cotijuba Island; J.I.: Jutuba 

Island; P.I.: Paquetá-Açu Island; T.I.: Tatuoca Island; A.R.: 

Acará River; G.R.: Guamá River; M.R.: Maguari River. 

 

In this region, there are two seasons, the rainy season 

(December to May) and the less rainy season (June to 

November). Despite being 50 km away from the coast, tides still 

impact the area. The tidal patterns observed in the estuary can 

be classified as meso- and macro-semidiurnal tides, with an 

average tidal range of 3.2 m. The average difference between 

high and low tides ranges from 0.5 m to 1.2 m, with a minimum 

low tide height of about 2 m (Preste et al., 2017). 

 

The island is about 5 ha in size and situated 10 km from Belém's 

mainland, positioned between a 15-metres-deep channel on the 

right side and shallow areas averaging 4 m in depth on the left. 

Located in the estuary mixing zone of the Pará River, it 

experiences intricate interactions between river flow and tides, 

shaping distinct environmental conditions crucial for sediment 

dynamics and biogeochemical processes. 

 

Tatuoca Island, managed by the Brazilian National Observatory, 

houses a permanent team for geomagnetic monitoring. Though 

closed to the public, it offers convenient access (30 minutes by 

boat), solar energy, internet access, and office. With these 

features, it is well-suited for inclusion in the hydrological 

observatory network, providing a station in an estuarine 

environment. 

 

2.2 Image acquisition 

For the spatial analysis, we used Sentinel-2 images, level 2A, 

available on the Google Earth Engine - GEE platform, in the 

collection (COPERNICUS/S2_SR_HARMONIZED), already 

corrected for the atmosphere. In the spatial analysis, the months 

of June, July, and August 2023 were studied due to the lower 

cloud cover. We selected high and low tide images under the 

same conditions, i.e. we considered the height and state of the 

tide (rising or falling) whenever possible. For the temporal 

analysis, we used collections of Landsat-8 and 9, level 2 and 

Sentinel-2, level 2A images available on the GEE platform in 

the collections (LANDSAT/LC08/C02/T1_L2, 

LANDSAT/LC09/ C02/T1_L2 and COPERNICUS/S2_SR_ 

HARMONIZED, COPERNICUS/S2_HARMONIZED), these 

with atmospheric correction, except for 

'COPERNICUS/S2_HARMONIZED'. The analyzed years were 

2014 to 2023. 

 

All sensors utilized the red band (636-673 nm) due to its 

sensitivity to inorganic components of water. The spatial 

resolutions differed, with Landsat images at 30 m and Sentinel 

images at 10 m. The platforms of these sensors passed over the 

region at similar times around ~10:30 (UTC -3). New images 

were captured every 15 days by Landsat-8 and 9 and every 5 

days by the Sentinel-2 constellation. 

 

Level 2A processing of Sentinel-2 images and Level 2 

processing of Landsat-8 and 9 images include geometric 

corrections to eliminate spatial distortions and radiometric 

corrections to standardize pixel intensities. This enhances data 

accuracy for diverse monitoring applications. Sentinel-2 Level 

1C images only feature geometric corrections, necessitating 

corrections using the Sen2Cor algorithm in the SNAP software 

(SNAP, Development Team, 2022). 

 

2.3 Environmental data acquisition 

We obtained precipitation data from the National 

Meteorological Institute of Brazil (INMET) for the period 2014 

to 2023 from the conventional station in Belém (82191), 

comprising daily and monthly total precipitation in mm. 

Additionally, we obtained 30 years of rainfall data from the 

same station to establish a historical average. Tidal data in 

meters were acquired from the Brazilian Navy at the Ilha do 

Mosqueiro station (10525) for the same period, extracted only 

on the dates corresponding to the satellite images used. Finally, 

discharge data in m³/s were acquired from the Brazilian 

National Water Agency (ANA) for Marabá-PA (29050000) on 

the Tocantins River and Óbidos-PA (17050001) on the Amazon 

River. 

 

2.4 Image processing and reflectance data acquisition 

For spatial analysis, we established a 250 m influence area 

around the monitoring points. Within these areas, each pixel of 

the images was converted into vector points. Processing was 

conducted in GEE, where we implemented masks to eliminate 

pixels containing clouds, shadows, and cirrus effects. 

Reflectance values in the red band were then extracted for each 

vector point. Temporal analysis was also performed in GEE. 

Images were corrected as needed to remove atmospheric 

interference, and masks were applied to eliminate pixels with 

clouds, shadows, and cirrus effects. Reflectance values in the 

red band were extracted for the four monitoring points. 

 

2.5 Geostatistics and statistics 

The analyses were conducted using reflectance values to 

eliminate possible atmospheric interference and to standardize 

the results to ensure consistency between different sensors and 

different dates. The process of standardizing image data in 

reflectance is intended to ensure consistency and comparability 

between different data sets in a multi-sensor, multi-data 

approach. To ensure the integrity and reliability of the results, 

we proceeded to remove outliers using the interquartile limits 
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method. The purpose of this step is to eliminate discrepant 

values that could bias the analysis and subsequent 

interpretations. The presence of outliers in data used in 

parametric analyses can have several undesirable effects, such 

as increasing meaningless variability. 

 

2.5.1  Geostatistics: Reflectance data spanning three months 

were obtained through image processing on the GEE platform. 

These data were subsequently imported into PASSaGE® 

(Rosenberg and Anderson, 2011) for geostatistical analysis, 

with analysis distances tailored to image resolution. 

 

Following preprocessing and initial definitions, spatial variance, 

normality, Moran's I coefficient, anisotropy determination, and 

stationarity were assessed before constructing the 

semivariogram. 

 

Spatial variance evaluates data variability across spatial 

locations, revealing heterogeneity patterns and spatial 

autocorrelation. Normality checks ensure the validity of 

parametric tests. Moran's I coefficient evaluates spatial 

autocorrelation, indicating correlations between neighboring 

locations. Anisotropy determination examines spatial 

correlation directionality. Stationarity tests consistency of 

statistical properties across spatial locations, ensuring analysis 

validity. These analyses are crucial for understanding spatial 

patterns and processes in the data. 

 

After identifying patterns, semivariograms were plotted using 

ArcGIS® software and cross-validated to analyze model errors. 

Validated semivariograms aid in identifying spatial variability, 

facilitating the determination of trends, patterns, or anomalies. 

 

2.5.2 Statistics: Reflectance data collected over a 10-year 

period from study points underwent image processing on the 

GEE platform and statistical analysis in r Studio. 

 

Following data preprocessing, one-way analysis of variance 

(ANOVA) and Tukey-Kramer post-processing were conducted 

to identify temporal variation and groupings. ANOVA assessed 

significant differences between data groups across different 

time periods, while the Tukey-Kramer test enabled multiple 

comparisons to identify statistically significant differences 

between these periods. These analyses provided insights into 

seasonal patterns and trends over time. 

 

Additionally, analyses of normality, ANOVA, and significance 

were performed, comparing reflectance data with monthly 

precipitation, flow and tide data. The analysis significance 

indices were plotted to identify trends, patterns, or anomalies 

across years and environmental variables such as seasonality 

and tide. 

 

3. Results 

3.1 Spatial analysis 

To assess the spatial variation of reflectance in the Tatuoca 

region, we applied geostatistics to the reflectance data from the 

satellite images, using the field collection points as a 

geographical reference. Our analysis revealed that the 

reflectance data exhibited spatial variations in different 

directions, ranges, and distances. These variations exhibited 

distinct responses to the tide, with high and low tides 

influencing the reflectance data in different ways. The spatial 

analysis was confined to an examination of the less rainy 

period. 

3.1.1 Autocorrelation: The spatial variation of directions, 

ranges, and distances was determined using geostatistics. 

Initially, the spatial dependence of the data was determined 

using Moran's I correlograms, which indicate whether nearby 

individuals correlate (Moran, 1950).  

 

The Moran's I coefficient values are significantly close to +1 at 

short distances at high tide. This indicates that the reflectance 

values exhibit the following Moran's correlation coefficients: at 

25 m, 0.75 ±0.14; at 50 m, 0.56 ±0.14. At low tide, the 

correlation coefficients were 0.55 ±0.20 at 25 m and 0.43 ±0.19 

at 50 m. Points 1 and 2 exhibited the highest correlation 

coefficients at both states of the tide. Points 3 and 4 exhibited 

the lowest correlation coefficients. This suggests that at short 

distances (>50 m), we can correlate the data and apply spatial 

variation models to assume distances of variation in water color. 

It is therefore proposed that samples geographically closest to 

the field collection points exhibit greater similarity in 

reflectance values, while those geographically distant exhibits 

greater dissimilarity. Furthermore, it is postulated that the tide 

exerts a significant influence on the similarity coefficient. 

 

3.1.2 Anisotropy: Correlograms are omnidirectional but can 

exhibit variation in spatial autocorrelation across specific 

directions. Anisotropy was assessed using Simon's angular 

correlation method, analyzing the degree of anisotropy in two-

dimensional data. 

 

Figure 2 displays angular correlograms, with geographic north 

represented by the 90° angle. Circular shapes in angular 

correlograms indicate preferred correlation directions, reflecting 

temporal variations such as tide and month. It is important to 

note that the tides in this region exhibit semi-diurnal cycles with 

a period of approximately six hours per cycle. 

 

Figure 2. Angular correlograms 

 

The elliptical shapes signify anisotropy, where spatial 

autocorrelation varies across directions, implying geometric 

anisotropy with fluctuating correlation ranges but consistent 

patterns formed by tidal currents during high tide. 

 

Observations during high tide predominantly showed a SW-NE 

trend, except for point 2 in June, displaying both SW-NE and 

NW-SE trends. Conversely, during low tide, point 1 

consistently displayed a NW-SE direction across all months, 

while other points lacked clear directional preferences, 

reflecting the complex interplay of seasonal and localized 

factors in estuarine dynamics. 
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Point 3 consistently exhibited low correlation intensity across 

all months and tidal states, indicating heterogeneous sediment 

distribution. Local sediment sources may dominate at short 

distances, while a mixture of sediments from varied origins at 

greater distances results in weaker correlation due to differing 

optical properties. 

 

3.1.3 Semivariance: A Based on the findings of spatial 

autocorrelation and the ideal distance and preferred direction, 

we defined benchmarks to test the variance of the reflectance 

data. For this test, we employed semivariograms, the principal 

form of spatial analysis utilized in geostatistics. The distances of 

the Moran's I correlogram and the angles of directions of the 

angular correlogram were utilized in the semivariogram model 

(Figure 3). 

 

Figure 3. Anisotropic semivariograms 

 

Semivariograms illustrated varying distances (m) and 

semivariance (γ) between points and tidal states, with angular 

correlograms depicting directions. Semivariance range and 

maximum distance with the least spatial variance were 

represented, quantifying data variability concerning distance 

(lag) with a low nugget effect, suggesting adequate model use 

(Simon, 1997). 

 

Different patterns emerged during high and low tides, with high 

tide showing more consistent semivariance values among 

points, indicating homogeneous spatial sediment distribution 

(3.59-6 ±1.41-6 at high tide, 3.45-6 ±2.24-6 at low tide). Point 1 

consistently exhibited the highest semivariance values in 

monthly comparisons. However, at low tide, variability 

increased over time while maintaining similar semivariance. 

 

The distance between points varied between high and low tides 

(median distances: 48 m ±4.26 at high tide, 44 m ±7.62 at low 

tide), with Point 1 consistently showing high distance values at 

both. Generally, distances were more consistent at low tide, 

suggesting a more homogeneous spatial distribution, while high 

tide exhibited a more heterogeneous distribution. Nonetheless, 

the slight difference between distributions can be attributed to 

the nugget effect, indicating that observed values are modeled 

estimates. 

 

3.2 Temporal analyses 

Statistical analysis of reflectance data in the Tatuoca region, 

using spatial analysis points as reference, revealed temporal 

patterns throughout the year. Reflectance peaks were noted in 

central zones of seasonal periods, with decreases in transition 

zones. Environmental forcings like tides and seasonality were 

assessed using variables including rainfall, tide level, and 

categorical distinctions between rainy and less rainy seasons, 

and high and low tides based on regional averages. This 

analysis covers all seasonal periods, but there is a greater 

amount of data from the less rainy period. 

 

Median reflectance during the rainy season (0.0730 ±17.72-³) 

was lower than in the less rainy season (0.0885 ±23.12-³), 

despite fewer cloud-free images during the rainy period. 

However, reflectance values during the less rainy period didn't 

significantly surpass those in the rainy period, with similar peak 

levels observed in both. 

 

Reflectance behavior varied with tidal conditions. In the rainy 

season, high tide showed peaks in January (0.0955 ±8.77-³) and 

March (0.0960 ±17.25-³), decreasing in May (0.0580 ±17.55-³). 

Conversely, during the less rainy season, peaks occurred in 

October (0.1120 ±22.07-³) and November (0.1055 ±26.33-³), 

decreasing in June (0.0585 ±9.42-³). At low tide, peaks were 

observed in February (0.1075 ± 9.58-³) and October (0.0975 ± 

23.19-³) during the rainy and less rainy seasons respectively, 

with decreases in May and June. 

 

Data analysis revealed that high tide exhibited higher peak 

values and lower base values than low tide in both seasonal 

periods, while low tide exhibited lower peak values and higher 

base values than high tide. These observations underscore the 

significant influence of seasonal cycles on water reflectance. 

 

3.2.1 The reflectance behavior related to environmental 

variables: Reflectance levels follow a cyclical pattern 

throughout the year, peaking during seasonal periods and tidal 

intervals, with lower levels in the first semester and higher 

levels in the second. 

 

Correlation between downstream river flow levels and 

reflectance is evident, supported by data from ANA stations. 

For example, peak flows at Marabá station on the Tocantins 

River reached 31,000 m³/s, while at Óbidos station on the 

Amazon River, peak flows were 273,000 m³/s (ANA, 2022). 

Reflectance shows a stronger correlation with low tide data, 

indicating greater fluvial influence. 

 

Seasonal changes affect sediment transport, impacting 

reflectance levels year-round. Precipitation locally shows no 

direct correlation with reflectance but indirectly affects flow and 

reflectance through downstream river basin precipitation. 

 

Figure 4. Median reflectance per month at different tides 

 

Figure 4 displays median graphs illustrating reflectance levels 

during high and low tides, revealing fluctuations attributed to 

seasonal and flow changes. Reflectance medians at high tide 
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(0.0845 ±22.60-³) and low tide (0.0830 ±22.22-³) exhibit 

significant variation throughout the year due to seasonal 

changes, river flows, and tide level fluctuations. Peaks in May 

and October, along with minimum values in May and June, are 

evident across both tidal states. The tides undergo a change 

approximately every six hours, exhibiting distinct states that can 

contribute to the observed variation in reflectance. This 

phenomenon can be employed to inform broader interpretations. 

 

In response to observed reflectance variations, we conducted an 

analysis of variance (ANOVA) to assess variability across the 

12 months of the year, with results detailed in Table 1. 

 

Point Sum Sq Mean Sq F value Pr(>F) 

P1 0.05074 0.004612 18.93 <2-16 * 

P2 0.04938 0.004489 18.32 <2-16 * 

P3 0.05100 0.004636 20.09 <2-16 * 

P4 0.04970 0.004518 19.27 <2-16 * 

Table 1. ANOVA summary. 

 

The statistical analysis, including Sum Sq, Mean Sq, F value, 

and Pr(>F) with "*" indicating high significance (p < 0.001), 

revealed significant differences between months, indicating 

substantial temporal variability influenced by tides and 

seasonality. 

 

Upon identifying these disparities, a Tukey-Kramer test was 

applied to group statistically similar months. Across all 

ANOVAs, the "month" factor significantly impacted point 

values (p < 0.05), signifying significant monthly differences. 

Months were grouped into six categories (a-f), he Tukey-

Kramer test grouped months as follows: Group a: Feb, Mar, 

Sep, Oct, Nov, and Dec; Group b: Jan, Feb, Mar, Aug, Sep, 

Nov, and Dec; Group c: Jan, Feb, Mar, Apr, Aug, Sep, and Dec; 

Group d: Jan, Apr, Jul, and Aug; Group e: Apr, May, and Jul; 

Group f: May and Jul, each sharing similar reflectance 

characteristics determined by statistical analysis. 

 

For instance, January months consistently showed no statistical 

difference in reflectance across years, reinforcing the reliability 

of temporal variation analyses and interpretations. 

 

3.2.2 The behavior of reflectance over a period of ten 

years: The analysis of reflectance over the ten-year period 

shows fluctuations, with increases and decreases observed from 

year to year.  Notable inter-annual variations are evident, with 

some years showing more pronounced patterns of change 

compared to others. River flow and tides are clearly significant 

factors influencing reflectance, as depicted in Figure 5. 

 

Figure 5. Median reflectance per year. 

 

Between 2014 and 2023 (Figure 5), Point 1 exhibited the 

greatest increase (8.96%), while Point 3 exhibited the greatest 

decrease (2.35%). Across all metrics, point 4 exhibited the most 

intriguing recent trend, initiating a decline in 2019, resulting in 

a 5.68% decrease over a four-year period. Point 4 experienced a 

significant decline, falling from ~0.090 to ~0.080, during the 

most pronounced decline between 2019 and 2023. 

 

Additionally, the study observed occasional one-off events, 

such as years with recorded peaks or higher reflectance, 

alongside periods of more stable conditions. Despite inter-

annual fluctuations, there were stretches when reflectance 

showed relatively consistent behavior over several months. 

 

However, over the ten-year study period, reflectance exhibited 

significant variability. While some years experienced isolated 

increases in reflectance, no consistent long-term trend emerged. 

The presence of clouds, especially during the first half of the 

year, might have affected the accuracy of data collection. 

 

4. Discussion 

The study aimed to explore spatio-temporal water color 

variation in the Tatuoca Island region, considering seasonality 

and tide effects. Analysis unveiled distinct patterns, with 

varying sampling distances during different tide levels and 

consistent seasonal uniformity across study years. These 

findings offer valuable insights into local water color dynamics, 

informing sampling and monitoring strategies. 

 

Spatial analysis revealed differences in sampling distances, with 

median of 48 m ±4.26 at high tide and 44 m ±7.62 at low tide, 

reflecting tidal dynamics' influence on water color behavior. 

Similar spatial sampling distances of 31 m at high tide and 27 m 

at low tide were inferred. 

 

Temporal analysis showcased monthly variations in water color 

uniformity over a decade, indicating a consistent pattern across 

months. However, daily variation was not captured due to 

image temporal resolution (minimum of 5 days). Temporal 

sampling determination was inferred to be similar across 

months, given the low variation observed over the analyzed 

series. 

 

4.1 Spatial variation 

Tide emerged as the primary driver of spatial water color 

variation, supported by strong correlations and semivariance 

results at high tide compared to low tide. The region's consistent 

hydrodynamics, influenced by bottom morphology, river input, 

and tidal regime, contribute to observed spatial patterns. 

Previous studies by Silva et al. (2020) corroborate these 

findings, highlighting the role of tidal influence in altering water 

turbidity and sediment distribution. 

 

4.1.1 The alterations in river discharge: During the less 

rainy period, characterized by lower river discharge compared 

to the wettest period, estuary discharge was approximately 

13,000 m³/s, significantly lower than the wettest period's 

average of around 28,000 m³/s (Prestes et al., 2020).  

 

This reduction in river discharge notably impacts sediment 

transportation and dispersion within the Pará river estuary, 

allowing the salt wedge to penetrate deeper, altering water color 

depending on the tide phase. 
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The Pará River's water input shifts from sediment-rich rivers 

like the Amazon and Guamá to the Tocantins River, which has 

lower sediment content. Prestes et al. (2020) found that the 

Araguaia-Tocantins River basin contributes 52% of the 

discharge to the Pará River, with the Amazon basin contributing 

44%. Seasonal variations show the Tocantins River contributing 

more to the first half of the year, while the Amazon Basin 

contributes more in the second half. Despite reduced river 

discharge, sediment transportation remains substantial during 

low tide due to strong water discharge continuing to push 

seawater, resulting in increased turbidity and sediment 

dispersion on the surface (Gensac et al., 2016). 

 

4.1.2 Tidal dynamics and their impact on water color: 

During high tide, the Pará River estuary witnesses a substantial 

seawater influx annually, ranking fifth globally at 664 km³ 

(Prestes et al., 2020). Conversely, low tide sees significant river 

water and sediment flow seaward, altering estuarine volume, 

current direction (NE), and water color. River dominance during 

low tide slows currents, impacting sediment transport (Azevedo 

et al., 2023). 

 

These effects manifest in volume, current direction (southwest), 

and water color. Higher water volume alters currents, resulting 

in distinct color zones influenced by river currents and oceanic 

forces. Slower currents during low tide increase sediment 

settling but lead to more uniform water color due to fine 

sediment dispersion. 

 

In low-energy tidal current areas, less turbid zones are within 

channels, while turbid zones form due to underwater relief and 

tidal currents (Figure 6). Minimal mixing allows clear spatial 

distinctions (Azevedo et al., 2023). Turbid zones in shallow 

areas contrast with less turbid ones in deeper areas, influenced 

by weak currents and the region's geological composition 

(Corrêa, 2005). 

 

Figure 6. Turbidity zones according to the tide. A: High tide, 

Sentinel-2 (04/Jul/2023); B: Low tide, Sentinel-2 (09/Jul/2023); 

T.I.: Tatuoca island. Linear false-color slicing of the red band.  

 

Distinct turbid and less turbid color zones create sharp 

transitions, influenced by current patterns, impacting reflectance 

due to varying suspended sediment levels (Zhan et al., 2019). 

 

Even during low tide, turbid zones persist, predominantly 

distributed across the region. Varied topographies and current 

velocities contribute to sediment dispersion, with higher relief 

areas promoting sediment deposition and increased turbidity. 

Tatuoca Island's damming effect enhances sediment 

accumulation, resulting in uniform water color and widespread 

sediment dispersion (Cruz, 2005). Elevated suspended 

sediments significantly alter reflectance levels within these 

zones (Toniolo et al., 2018). 

 

4.1.3 Implications of tides on special variation metrics: 

Spatial analysis highlighted tidal configurations influencing 

spatial dependence and water color variability across 

monitoring areas.  

 

High tide exhibited less spatial dependence and greater 

variability at shorter distances, while low tide showed increased 

spatial dependence and reduced variability (Amaral et al., 

2013). Significant differences in collected data were observed 

during high tide, with spatial dependence over longer distances 

and lower variability, while low tide showed smaller 

differences, attributed to color homogeneity from hydrodynamic 

interactions (Farzaneh et al., 2022). 

 

Tidal currents significantly influenced sedimentary phenomena, 

impacting spatial variability metrics and generating distinct 

results. Seasonality testing is crucial for understanding changes 

in water color geometric features, potentially affecting 

correlations and spatial dependence. Distinct color zones 

formed due to ocean water entry and current redirection by 

Tatuoca Island, influenced by its presence altering current 

direction and sediment distribution (Toniolo et al., 2018). 

 

Different water colors stemmed from tidal current velocities 

influenced by bottom geomorphology, particularly channels and 

their geometries, which unevenly distributed transported or 

suspended sediments (Azevedo et al., 2023). Average current 

speeds supported the formation of distinct turbidity zones due to 

ocean water influx. 

 

4.2 Temporal variation 

4.2.1 Seasonal effects on reflectance: Seasonality emerges 

as the primary driver of temporal reflectance variation, 

evidenced by spectral responses aligning with seasonal cycles. 

Variance tests confirm distinct monthly reflectance groupings, 

reflecting seasonal patterns. Reflectance variation is influenced 

by seasonality, impacting water characteristics and estuarine 

dynamics (Gensac et al., 2016). 

 

Tidal and seasonal cycles jointly influence reflectance. High 

tide during the rainy season decreases reflectance due to 

increased water influx and sediment dilution (Zhan et al., 2019). 

Conversely, high tide in the less rainy period elevates 

reflectance due to higher sediment concentration. Reflectance 

peaks during the less rainy period due to reduced water volume 

(Gensac et al., 2016). 

 

Unexplained variations, possibly linked to climatic events like 

2021's low median reflectance, underscore the impact of 

changing seasonal cycles (Morera et al., 2017). Heavy rainfall, 

especially in the first half of the year, leads to increased cloud 

cover, potentially biasing analyses due to smaller rainy season 

datasets (Fu et al., 2022). 

 

While cloud incidence correlates with regional rainfall, it 

indirectly impacts reflectance by altering river flow and water 

color over time. Significant changes in water properties, driven 

by factors like freshwater discharge and stratification, shape 

seasonal sediment dynamics (Zhan et al., 2019). 

 

A comprehensive understanding of sediment transport dynamics 

necessitates sediment modeling across the seasonal cycle, 
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emphasizing the need to differentiate between seasonal periods 

for precise statistical outcomes. 

 

4.2.2 Implications of sediments on reflectance: Seasonal 

changes profoundly impact river volume and flow, altering 

water color due to shifts in rainfall and subsequent runoff. 

Variations in water color reflect changes in sediment 

concentration, affecting reflectance through light scattering. 

 

Fluctuations in water volume contribute to reflectance changes, 

influenced by tides affecting sediment transport. Reflectance 

oscillations correlate with sediment concentration fluctuations 

on lunar and seasonal scales, with increased suspended 

sediment enhancing reflectance. Reflectance exhibits daily and 

quarterly variations due to the tidal cycle and seasonality 

(Gardner et al., 2021). 

 

Understanding temporal variation is complex due to variations 

in water hue and opacity, influenced by sediment load and tidal 

dynamics. The lunar cycle significantly impacts sediment 

concentration, leading to varying reflectance alterations. Tidal 

dynamics strongly influence sediment concentration, affecting 

transport and dispersion (Carneiro et al., 2020). 

 

Testing the response at all tide stages in different seasonal 

periods is proposed to understand variations in sediment 

concentration and their implications for reflectance. 

 

4.2.3 Implications of climatic phenomena over the decade 

on reflectance: Reflectance exhibited annual and seasonal 

variability over the analyzed decade, with overall stability. 

Minor inter-annual fluctuations were potentially influenced by 

temperature variations linked to El Niño and La Niña 

phenomena in the Pacific Ocean (Morera et al., 2017), 

impacting global atmospheric circulation, moisture transport, 

and precipitation patterns. 

 

ENSO phenomena influence the relative frequency of 

precipitation, affecting annual reflectance fluctuations. 

Increased precipitation rates can elevate river water discharge, 

enhancing sediment transport capacity (Morera et al., 2017), 

consequently impacting reflectance values (Toniolo et al., 

2018). Long-term water monitoring should account for such 

climatic phenomena. 

 

Understanding climatic influences on water color, including 

flow, volume, and temperature patterns, is crucial for 

interpreting reflectance variations, particularly sediment 

discharge patterns.  

 

4.2.4 Statistical implications for temporal metrics: 

ANOVA tests revealed statistically significant differences 

between months, indicating distinct reflectance distribution 

across the year. Tukey-Kramer test further confirmed these 

results, revealing three distinct groups: rainy, less rainy, and 

transitional periods, supporting interpretations of seasonal 

reflectance variation. 

 

However, ANOVA equality and order restrictions may 

introduce heterogeneity in data distribution over time (Fu et al., 

2022). It's advisable to employ more robust methods to identify 

influences of tidal and sediment transport on clusters. Regarding 

sampling implications, ANOVA results suggest consistency in 

water color behavior within the same month across the analyzed 

series. Cloud cover during the rainy season posed challenges in 

trend identification, complicating analysis and reflectance level 

determination (Fu et al., 2022). Daily variation trends couldn't 

be established due to image time scale limitations.  

 

Suggesting a multisensor approach with daily temporal 

resolution. To address data heterogeneity and temporal 

variability, robust statistical methods like time series analysis or 

mixed models are recommended. Furthermore, the utilization of 

multiple bands, such as the BLUE, GREEN and NIR bands, has 

been demonstrated to be an effective approach for sediment 

analysis. The exclusive utilization of the red band constrains the 

scope of the analysis to the establishment of concentrations and 

the provision of more precise variation inputs. Nevertheless, an 

understanding of light variation is essential for more specific 

applications, such as the estimation of sediment concentration. 

 

5. Conclusion 

This study demonstrates that water color in the Tatuoca Island 

region exhibits significant spatial and temporal variation. It is 

therefore recommended that the distance and frequency of 

sampling be adjusted according to tides and seasonality to 

ensure that data is collected with the effects of variation on it. 

 

The analysis of the spatial autocorrelation of water color in the 

Tatuoca Island region reveals the influence of tides, underwater 

relief and hydrodynamics. The implications for data collection 

are significant and must be considered to guarantee the quality 

and representativeness of the results. 

 

The analysis of the temporal variation of water color in the 

Tatuoca Island region reveals the influence of seasonality, 

global climatic phenomena, and cloud cover. The implications 

for data collection and long-term monitoring of water color are 

significant and should be considered to ensure the quality and 

representativeness of the results. 

 

Finally, it is recommended that robust statistical tools be 

employed that consider the heterogeneity of the data to better 

understand the seasonal influence on reflectance. Furthermore, 

the use of atmospheric corrections is advised for the purpose of 

studying aquatic optics. The present study analyzed a single 

spectral band (RED), which may have introduced a bias in the 

findings regarding spatio-temporal variation. It is recommended 

that other bands, particularly those in the GREEN, BLUE and 

NIR ranges, be considered for incorporation into sediment 

estimation concentration models. Finally, data on a smaller 

spatio-temporal scale is required to delimit these variations on a 

shorter scale, which was not possible with the orbital data 

available. 
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