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Abstract: 

Brazil is the largest producer of oranges in the world and the automatic detection of fruits has been a challenging task in the context of 

remote sensing, due to variations in fruit appearance, changes in lighting and occlusions of foliage and neighboring fruits. In this sense, 

this paper focus on the detection of oranges in multispectral images, with different spectral bands and exposures, using a convolutional 

neural network (CNN) known as YOU ONLY LOOK ONCE (YOLO). The results indicate that, after 300 epochs, the model 

demonstrated an accuracy of 81.5% and an approximate recovery rate of 85%. Shutter speeds 1/640s and 1/250s are not suitable for 

detection due to low light and overexposure, respectively. Intermediate values may be more suitable for identifying a larger number of 

fruits. 

1. Introduction

Brazil is the largest orange producer in the world and the leading 

exporter of concentrated orange juice. Most of the orange 

orchards are located in the São Paulo State and southwest of 

Minas Gerais State. In the 2022/2023 harvest, almost 12.8 million 

tons were produced in this region (Fundecitrus, 2023). 

Automatic detection of fruits and vegetables in digital agriculture 

context is essential to estimate harvest and increasing 

productivity (Yamamoto et al., 2014; Bac et al., 2017). 

Automatic fruit detection in perennial crops such as apples and 

oranges is a challenging task because of variations in appearance 

due to illumination changes and occlusions from foliage and 

neighbouring fruits (Chen et al., 2017). 

Terrestrial images of the citrus tree are affected by illumination 

problems caused by the complex environment of the tree canopy 

structure. The tree branches cause shadows in the tree canopy 

resulting in many dark areas in the terrestrial images. Variations 

in exposure, either by changing the shutter speed or the aperture, 

can improve the dynamic range and the image quality, enabling 

to find of a suitable illuminance scenario that allows detection of 

as many oranges as possible.    

In this application field, object detection seeks to semantically 

locate and recognize objects in an image. Aiming at large datasets 

interpretation, convolutional neural networks (CNNs) emerged 

as attractive technology, which is notably known for their 

accuracy and speed (Vo, 2022). In order to address issues such as 

window overlap, the region proposal approach presents a 

promising solution by anticipating the potential location of the 

object (Zitnick, 2014). The success of AlexNet (Krizhevsky, 

2012) in image classification highlights the strong ability of 

CNNs in feature extraction. Currently, the fastest R-CNN method 

leads in object detection, but its speed does not meet real-time 

requirements. 

Among the most popular and well-known methods is YOU 

ONLY LOOK ONCE (YOLO) (Redmon, 2016). This approach 

adopts the concept of regression, where the input image is 

divided into multiple cells, and each cell predicts bounding boxes 

and class probabilities. YOLO transforms the detection challenge 

into a regression problem, resulting in extremely fast detection. 

This method can process an impressive 45 images per second. 

This work focuses on the detection of oranges in multispectral 

images, with different spectral bands and exposures.  

2. Material and methods

The data to develop this study was acquired in September of 2022 

in a citrus farm in the municipality of Matão, in the north of the 

São Paulo state. The farm produces citrus commercially and 

mostly sweet oranges. For the experiments, it was chosen an 

irrigated area with 5-years old orchards. The planted orange 

variety is Pera with rootstock Swingle. 

An Agrowing model ALPHA 7RXXX Sextuple multispectral 

digital camera was employed for data acquisition. The camera’s 

sensor frame is divided into six parts (Figure 1) to acquire the 

same scene in 14 bands through six camera heads (lenses) 

capable of detecting radiation at specific wavelengths, as shown 

in Figure 1. Agrowing's multi-lens have a single mount and use a 

single CMOS sensor and a mechanical shutter (Tommaselli et al., 

2020). 

Figure 1. the wavelengths of each band in Agrowing camera. 

For terrestrial acquisition, the multispectral camera was coupled 

to a tripod and positioned 1.70 m far from the citrus trees and at 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3-2024 
ISPRS TC III Mid-term Symposium “Beyond the canopy: technologies and applications of remote sensing”, 4–8 November 2024, Belém, Brazil

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-3-2024-303-2024 | © Author(s) 2024. CC BY 4.0 License.

 
303



 

a height of 1.49 m (Figure 2). The trees are approximately 3.5 m 

height; thus, the camera was positioned aiming at capturing the 

middle range of the canopy. Also, different shutter speeds were 

used in the camera configuration. The main aim was to obtain the 

best illumination conditions to ensure reliable orange detection. 

All images were processed by the manufactory software AgBasic 

and no radiometric calibrations were applied. 

 

 
Figure 2. Distances used for image acquisition. 

 

After the image processing, the data for training were annotated 

through bounding boxes with only an identification class 

“Orange”. The tool used for the annotation process was provided 

by Roboflow.IA (https://universe.roboflow.com/). This tool was 

used in the 60 images, of which 70% were selected for training, 

20% for validation and 10% for testing. The model was prepared 

with Google Colab, which provides free high-performance 

GPUs, without any configuration. The YOLOv5 model was used 

for training the model for 300 epochs, spending 25 minutes and 

12 seconds. With this training step the weights of the neural 

network were trained, and after that, tested on new images. 

 

3. Results and discussion 

 

In machine learning and computer vision, metrics such as loss, 

play a crucial role in evaluating the performance of object 

detection algorithms. Both metrics were employed on the 

validation and training data, helping to quantify the quality of 

object detection in a model. 

Analysing the loss function graph helps identify how well the 

model is fitting the data and making predictions. As shown in 

Figure 3.a and Figure 3.b, there is a sharp decrease in the loss 

function, indicating that the model is quickly learning to identify 

objects. As epochs progress, the decrease in loss becomes more 

gradual, suggesting that the model is approaching an optimal 

state. 

 

During the analysis of the graph, unusual behavior can be 

observed, such as sudden spikes or oscillations. These 

fluctuations may indicate issues during training, such as 

excessively high learning rates or convergence problems. Other 

commonly used metrics in machine learning, such as recall, 

precision, and mAP at 0.5, were applied to this model. These 

metrics help measure the quality and effectiveness of object 

detection performed by a model. 

 
Figure 3. In this graph, the abscissa represents the epochs, and 

the ordinate represents the percentage ratio.The image presents 

four graphs, displaying performance statistics for the training 

and validation data. 

 

Through the analysis and interpretation of a precision versus 

epochs graph, important information about the performance of 

the orange detection model during training can be gathered. In 

Figure 4.a, the variation of precision over the number of trained 

epochs is presented. On the y-axis, represents the percentage, 

which provides a direct measure of the precision rate. The x-axis 

represents the epochs, indicating the progression of the model's 

training. After 300 epochs, the model achieved a precision of 

81.5%. The consistent growth and increasing trend in precision 

over epochs indicate that the model is progressively improving 

its performance, as shown in Figure 4.a. 

 

Analysing and interpreting a recall versus epochs graph can 

provide valuable insights into the performance of the orange 

detection model. In Figure 4.b, the y-axis represents the 

percentage, providing a direct measure of the recall rate. A higher 

percentage indicates a higher recall, meaning that the model is 

effectively detecting objects correctly in the images. The x-axis 

represents the epochs, indicating the progression of the model's 

training. Each epoch represents a complete cycle of presenting 

the training data to the model. As epochs progress, the model can 

learn and adjust its parameters to improve its detection ability. A 

learning trend can be observed in the model as the epochs 

progress, with the recall reaching around 85% after 300 epochs 

(Figure 4.B). 

 

After training, the mAP_0.5 is calculated to evaluate the YOLO 

model's ability to accurately detect oranges. The computation of 

the mean Average Precision (mAP) at the IoU threshold of 0.5 

provides a comprehensive assessment of the model's 

effectiveness by considering both precision and recall, measuring 

the overlap between the predicted bounding boxes by the model 

and the manually annotated bounding boxes. An IoU 

(Intersection over Union) threshold of 0.5 is used to determine if 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3-2024 
ISPRS TC III Mid-term Symposium “Beyond the canopy: technologies and applications of remote sensing”, 4–8 November 2024, Belém, Brazil

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-3-2024-303-2024 | © Author(s) 2024. CC BY 4.0 License.

 
304

https://universe.roboflow.com/


 

a detection is considered true or false. If the overlap between the 

predicted bounding box and the annotated bounding box is equal 

to or greater than 50%, the detection is considered correct. 

The significant mAP_0.5 score achieved by the YOLO model 

trained for orange recognition, as depicted in Figure 4.C, 

substantiates its proficiency in making precise predictions. With 

a mAP_0.5 value of 91.6%, this model proves to be reliable in 

detecting oranges and holds promising prospects for practical 

implementations, including fruit classification tasks. It is worth 

noting, though, that the YOLO model's performance can 

fluctuate based on factors such as the dataset's size, quality, and 

diversity. 

 

 
Figure 4. In this graph, the abscissa represents the epochs, and 

the ordinate represents the percentage ratio. 

 

Other works have shown similar results regarding fruit detection 

using CNNs. An example is the work developed by Williams et 

al (2019), which presented a robot for collecting kiwis using 

multiple robotic arms. 

 

In the study conducted by Yu et al., (2019). Convolutional Neural 

Networks (CNNs) were employed with the implementation of 

Mask R-CNN to enhance computer vision performance in 

strawberry harvesting robotics. The results obtained for fruit 

detection in more than 100 test images were notable, with an 

average detection precision rate of 95.78% and an equally 

remarkable recall rate of 95.41% (Yu, 2019). 

 

To fulfil the scarcity of research on computer vision for date palm 

detection in orchard environments, Altheri et al. (2019) presented 

an innovative computer vision framework for robots involved in 

harvesting. The proposed approach involved the implementation 

of three classification models capable of real-time identification 

of different date characteristics, such as maturity, type, and 

determining the optimal harvest time. This methodology brought 

significant advancements in date detection, opening new 

possibilities for automation and optimization of the process 

(Altheri, 2019), achieving an impressive accuracy rate of 

99.01%. 

 

To individually identify fruits and obtain a pixel mask for each 

fruit in an image, Ganesh et al. (2019) developed a deep neural 

network approach named Deep Orange, based on a segmentation 

framework implemented with Mask R-CNN using ResNet-101. 

The initial results revealed that incorporating HSV data led to a 

significant improvement in precision, increasing from 0.8 to 

0.9753. 

 

Another widely used metric for performance evaluation is the F1-

score, commonly employed in classification models, including 

convolutional neural networks. It considers both precision (the 

model's ability to correctly classify positive samples) and recall 

(the model's ability to identify all positive samples) to provide a 

unified performance measure. 

 

Evaluating the ability to detect and classify objects in images is 

essential when training convolutional neural networks, with the 

F1-score being a crucial metric in this context. Achieving a high 

F1-score is crucial to ensure accurate and reliable object 

detection. After evaluating the model on the test images, an 

average precision of 81.5% and an average F1-score of 0.81 can 

be obtained, as shown in Figure 5. 

 

 
Figure 5. Graph showing the relationship between confidence 

and F1-Score. 

 

Finally, the confusion matrix is widely used to assess the 

performance of a model and evaluate the performance of the 

convolutional neural network. However, in certain scenarios, it is 

possible that no values are identified as true negatives in the 

confusion matrix. This occurs when a model fails to correctly 

classify any examples as negative, resulting in the absence of 

values in the true negative cell. This situation can arise when 

there is an imbalance in the data, where the negative class is rare 

or underrepresented in the test set, as depicted in Figure 6. 
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Figure 6. Confusion matrix for orange detection results. 

 

With the model trained, a new test set was chosen, containing 5 

images, each of them acquired with shutter speeds of 1/640 s, 

1/500 s, 1/400 s, 1/320s, 1/250 s, in the 710 nm band. The results 

are presented from the lowest to the highest illumination 

conditions, with a confidence interval of 80% (Figure 7 to 11). 

 

 
 

Figure 7. Image from the 710nm band, captured with a shutter 

speed of 1/640s. 

 

 

 
 

Figure 8. Image from the 710nm band, captured with a shutter 

speed of 1/500s. 

 

 
 

Figure 9. Image from the 710nm band, captured with a shutter 

speed of 1/400s. 
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Figure 10. Image from the 710nm band, captured with a shutter 

speed of 1/320s. 

 

 
 

Figure 11. Image from the 710nm band, captured with a shutter 

speed of 1/250s. 

 

The variations in the object's illumination affected the neural 

network identification results. The images acquired with a shutter 

speed of 1/640 s, enabled the identification of the shadowed 

fruits, while with a shutter speed of 1/250 s the images did not 

enable the detection of the same object. In contrast, the images 

with a larger shutter speed enabled the identification of fruits that 

are more evident. This can be attributed to the fact that the faster 

the capture of the image, the lower its brightness, making it 

difficult to identify fruits further in the background. On the other 

hand, when the capture speed is slower, more light enters the 

image, causing saturation in some areas, making it more 

challenging to identify objects that are closer. 

 

It should be noted that during data acquisition, we aimed to alter 

only one variable involved in image acquisition, without 

changing the camera aperture and ISO of the image, so that only 

one variable would be studied and learned in the process. 

 

4. Conclusion 

 

In summary, analyzing the precision and recall graphs provides a 

comprehensive understanding of the orange detection model's 

capability. After 300 epochs, the model demonstrated an 

impressive precision of 81.5% and an approximate recall rate of 

85%. These results clearly indicate that the model is well-tuned 

to its parameters, ensuring reliable performance in accurately 

detecting oranges. 

 

Moreover, the computation of the mean Average Precision 

(mAP) at the IoU threshold of 0.5 provides a comprehensive 

assessment of the model's effectiveness by considering both 

precision and recall. The achieved mAP value of 91.6% 

demonstrates the YOLO model's ability to accurately detect 

oranges, exhibiting a substantial alignment between the predicted 

bounding boxes and the ground truth annotations. 

 

Another noteworthy point is that the experiments revealed that 

the choice of shutter speed significantly influences the ability of 

oranges to be detected by the YOLO convolutional neural 

network. It was observed that different shutter speeds, such as 

1/640s and 1/250s, which represent faster and slower speeds 

respectively, presented challenges in detection due to low 

illumination and overexposure. Intermediate values are thus 

more suitable for identifying a larger number of fruits. 

Alternatively, generating High Dynamic Range Images from 

multiple shots is another option. 

 

For future work, there is a focus on improving evaluation by 

expanding the dataset with additional training images, 

incorporating new spectral bands, and exploring different 

confidence intervals. 
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