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Abstract 
 
Due to the influence of nonlinear radiation distortion and geometric deformation, achieving multimodal image matching remains a 
challenging task. To address these issues, this paper proposes a method called radiation invariant phase correlation (RIPC) to 
simultaneously estimate the rotation, scale, and displacement changes of multimodal image pairs.  Firstly, based on the local structure 
characteristics of the image itself, we harness the nonlinear invariance of kernel canonical correlation analysis to devise the multimodal 
local self-correlation (MLSC) descriptor. This descriptor is resilient to nonlinear radiative differences, as well as local rotation and 
scale variations. Subsequently, we incorporate the log-polar coordinate transformation to capture the overall rotation and scale changes 
in the image, enabling independent representation of these factors on the Cartesian coordinate system. Finally, drawing upon the 
continuity of displacement estimation, as well as rotation and scale estimation, we construct a five-dimensional descriptor tailored for 
phase correlation. Extensive experiments conducted on five open-source datasets demonstrate that our proposed method surpasses 
state-of-the-art (SOTA) techniques in matching performance. Furthermore, our RIPC method achieves matching accuracy within 2-
pixel threshold, which underscores its effectiveness in multimodal remote sensing image matching. 
 

1. Introduction 

Over the past few decades, remote sensing technology has 
witnessed remarkable advancements, and evolving towards the 
joint application of multi-sensor, multi-resolution, and multi-
temporal data. In contrast to relying solely on single modal data, 
jointly analyzing observation data collected by heterogeneous 
sensors can offer a richer and more comprehensive portrayal of 
scene information. However, due to the physical model of the 
sensor and the relative position of the imaging platform, there 
still exists offset between different images. These misalignments 
in remote sensing images can significantly hinder their 
subsequent utilization. Therefore, achieving the precise matching 
of multimodal remote sensing image pairs serves as a crucial 
prerequisite for downstream tasks, such as image fusion (Ye et 
al., 2024b), change detection (Wang et al., 2023), and three-
dimension reconstruction (Qiu et al., 2018) coupled with multi-
sensor observation data. 
 
Nevertheless, when designing a multimodal image matching 
algorithm, two crucial issues must be taken into account.  
 

(1) Radiation distortion. Usually, radiation distortion 
occurs due to the diverse imaging principles employed by 
different sensors. For instance, optical sensors capture color 
information while infrared sensors record radiation information. 
This diversity leads to distinct textures and intensities within the 
resulting multimodal images, even some image types may even 
contain irreparable system noise.   
 

(2) Geometric deformation. Geometric deformation arises 
from the varying imaging poses in natural scenes. The imaging 
area, direction, amplitude, and resolution can vary significantly 
across different imaging modes. Consequently, differences in 
rotation and proportion between remote sensing images are 
inevitable.  When performing multimodal image matching, it is 
imperative to consider the impact of geometric deformation. An 
illustrative example is presented in Figure 1. 
 
Therefore, the objective of this article is to devise a robust 
matching   method   that   can   effectively   withstand   nonlinear 

 
Figure 1. Multimodal image pair. (a) Optical image. (b) SAR 

image with rotation and scale change. 
 
radiation differences, rotations, and scale variations that exist 
between multimodal remote sensing images. 
 
Multimodal image matching has always been a research hotspot. 
Numerous matching algorithms have emerged, primarily 
categorized into three groups: area-based, feature-based, and 
learning-based methods. Recently, with the growing popularity 
of deep learning, its applications in multimodal remote sensing 
image matching have increased significantly. Prominent methods 
include CNN-based methods (Zhou et al., 2021, Ye et al., 2024a), 
Transformer-based methods (Chen et al., 2023) and GAN-based 
methods (Du et al., 2020). Nevertheless, these methods typically 
rely on extensive training datasets and exhibit limited 
transferability. While unsupervised learning methods do not 
depend on training datasets, they often face challenges in 
parameter    transformation    and    loss    function    configuration 
(Ye et al., 2022), as well as a reliance on high-performance 
computing resources. These limitations significantly restrict their 
application in the realm of multimodal image matching. 
 
Feature-based methods involve extracting invariant features from 
images and aligning them by assessing the similarity between 
those features. This category encompasses various methods, such 
as feature-point-based methods (Li et al., 2019), feature-line and 
edge-based methods (Sun et al., 2015), correlation-region-based 
methods (Li et al, 2022), and local-feature-based methods (Xiong 
et al., 2019). However, a significant challenge with these 
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methods is the difficulty in achieving high repeatability in feature 
detection (Ye et al., 2017), which ultimately hinders their 
matching performance. 
 
The area-based method is a completely different method, with the 
minimum unit of these methods being a region. This method 
aligns two images by calculating the similarity between the 
predefined template and the region to be matched (Jiang et al., 
2021). This type of method can avoid feature detection steps with 
low repeatability between images, and can detect control points 
in small search areas. In addition, commercial software such as 
ENVI also use area-based methods in the automatic matching 
module, which indirectly indicates that this type of method is 
more in line with practical application requirements. 
 
Phase correlation (Kuglin, 1975), as a classic area-based 
measurement method, has been widely applied in image  
matching. However, this similarity measurement method lacks 
adaptability to the inherent nonlinear radiation differences in 
multimodal image pairs. Phase correlation essentially relies on 
the time shift invariance of Fourier transform, so this method is 
only applicable to image pairs with completely consistent or 
linearly varying amplitude spectra. Nevertheless, the significant 
intensity and texture disparities in multimodal images result in 
nonlinear variations in their amplitude spectra after Fourier 
transformation, so the traditional phase correlation method is 
ineffective. Despite the profound differences between 
multimodal images, the topological relationship between their 
overall and local structures remains consistent. Leveraging this 
locally invariant topological relationship, we can estimate the 
correlation of the structures to devise a novel descriptor. By 
incorporating this descriptor into phase correlation methods, we 
can address the challenge of nonlinear radiation differences in 
multimodal image matching. Furthermore, the logarithmic polar 
coordinate transformation offers a means to quantify rotation and 
scale changes between image pairs on the Cartesian coordinate 
system. This transformation enables us to estimate these two 
changes through phase correlation. As a result, we propose a 
radiation invariant phase correlation (RIPC) method. This 
method constructs multimodal local self-correlation descriptors 
(MLSC) that capitalize on the similarity of local structures and 
describes rotation and scale changes using the logarithmic polar 
coordinates transformation. Finally, according to the continuity 
of displacement estimation along with rotation and scale 
estimation, we ultimately construct a five-dimensional descriptor 
for matching.   
 
The main contributions of this article are as follows: (1) 
Constructing a descriptor MLSC that can resist nonlinear 
radiation differences between multimodal images; (2) A template 
matching method, RIPC, has been proposed that can 
simultaneously estimate rotation, scale and displacement changes 
in multimodal images. 
 

2. Methodology 

The essence of image matching is to find and restore the relative 
position of image patches in another image. In this section, we 
will introduce phase correlation and its limitations, and provide a 
detailed description of the RIPC method proposed in this paper. 
 
Based on the local invariant structure of the image, this method 
constructs a multimodal local self-correlation descriptor, then, 
describes  the  scale  and rotation  changes  of  the image  by using  
 

 
Figure 2. The variation and invariance of amplitude. (a) Optical 
image. (b) Optical images with illuminance changes compared to 
(a). (c) SAR image. (d)-(f) represents the visualization results and 

detailed display of the amplitude spectrum of (a)-(c). 
 
the log-polar coordinate transformation, and finally constructs a 
robust five-dimensional descriptor for matching. 
 
2.1 Prior Knowledge—Phase Correlation 

If image I2 is obtained by translating image I1 by (x0, y0) pixels, 
then the cross-power spectrum C of  I1 and I2 in the frequency 
domain is: 
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where F1 and F2 are the results of the Fourier transform of I1 and 
I2, respectively, and F* represents conjugate complex numbers. 
It is not difficult to find that if the content of I1 and I2 are the 
same, the amplitude term in equation (1) will be reduced, and the 
value of C is only related to the phase difference. If this phase 
difference is subjected to an inverse Fourier transform, the result 
is an impulse function that approximates a 2D Dirac function, 
with the only non-zero coordinate being the translation (x0, y0). 
In an ideal situation, this method is only affected by phase 
information, so it is called phase correlation method. Therefore, 
if the amplitude spectra of the two images used for matching are 
different, the amplitude related terms in equation (1) cannot be 
cancelled out, and the inverse Fourier transform result of C will 
no longer approximate a 2D Dirac function. 
 
Coincidentally, multimodal image pairs often have different 
amplitude spectra, as shown in Figure 2. (a) and (b) are optical 
images with only illuminance differences, and there is basically  
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Figure 3. The construction process of the multimodal local self-correlation (MLSC) descriptor. 

 
no difference when stretching the amplitude spectrum to display 
[0, 255].  (c)  represents the SAR image of the same region, and 
its amplitude spectrum differs significantly from (a) and (b). It 
should be explained here that although the amplitude spectrum 
may not appear to differ significantly, the actual amplitude 
spectrum has a very large order of magnitude. In order to 
facilitate display, the images in Figure 2 were logarithmically 
stretched, so all small differences can correspond to larger 
differences in the actual amplitude spectrum. Therefore, phase 
correlation is difficult to use for multimodal image matching. It 
is necessary to construct a new descriptor that can homogenize 
multimodal images. 
 
2.2 Multimodal Local Self-correlation Descriptor (MLSC) 

Although multimodal images exhibit significant differences in 
intensity and texture, the overall position and topological 
relationships of elements in the image remain unchanged. 
Specifically, regardless of the modality of the image, there is 
basically no significant change in the similarity between a pixel 
neighborhood and the neighboring pixel neighborhood. 
Therefore, we can fully utilize this local similarity relationship to 
construct descriptors that accurately describe image features. 
Such descriptors can better capture the structural information of 
images, providing strong support for subsequent image 
processing and analysis. 
 
The multimodal local self-correlation (MLSC) descriptor 
proposed in this article is an improvement on the classic local 
self-similarity (LSS) descriptor. Although the LSS operator is 
widely used in basic image research, through extensive 
experiments, we have found that this method does not possess 
linear invariance and nonlinear invariance, and is susceptible to 
radiation distortion and noise interference. Meanwhile, the LSS 
descriptor is relatively sparse, making it difficult to accurately 
represent the local structure of multimodal images. The MLSC 
descriptor proposed in this article improves on the above 
shortcomings. This descriptor combines kernel functions with 
canonical correlation analysis to construct a dense descriptor with 
nonlinear radiative invariance, which is suitable for describing 
local structural features in multimodal images. The process of 
constructing feature descriptors for each pixel is shown in Figure 
3. The specific process of this step is as follows: 
 

(1) The first step is to define a circular neighborhood of a 
certain size centred on a pixel, denoted as 0 . And select n 
circular  neighborhoods  of  the  same  size  with  equal  angular 
spacing in an area m pixels away from 0 , denoted 
as1,2, … ,n.  Existing research has shown that using circular 
templates to represent local features can maintain the angle 
invariance of local features (Li et al., 2023). 

 
(2) The  second  step  is  to  define  a  kernel  function   that 

maps0,1,2, … ,n  to   a   high-dimensional   space,  denoted  

 
Figure 4. The MLSC descriptors of optical and infrared images. 
 
as (0), (1), (2), … , (n) . By transforming low 
dimensional linearly indivisible spaces into high-dimensional 
linearly separable spaces, it is possible to find linear relationships 
in high-dimensional spaces that are difficult to determine with 
extremely low computational costs. 
 

(3) For (0)  and (n) , there can always be a set of 
orthogonal   bases  0  and  n   that   maximize   the   correlation 
coefficient between 0(0) and n(n). It is easy to prove that 
any orthogonal basis matrix is linearly invariant, and the k-th 
eigenvalue is the square of the k-th canonical correlation 
coefficient. So, it is possible to calculate invariant features 
through the traces of orthogonal basis matrices. The third step is 
to use the kernel canonical correlation analysis method to 
calculate the orthogonal basis, and use this to construct multi-
directional features of the central and surrounding neighborhoods. 
If ⌊∙⌋ represents the calculation process of a set of orthogonal 
bases, then this feature can be expressed as: 

    1 1

0
tr ( ), ( )

T

n n
U VW V         (2) 

where 
 

 

 

0 0
( ) ( )

( ) ( )

/

1, ,1

/

/

T

X
T

Y n

X

T

X X
T

X Y
T

Y Y Y
T

T

n

U K JK K

K

K

N

N

N

V K JK

W K JK K

J I aa

a





   
   

 








 

 

 (3) 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3-2024 
ISPRS TC III Mid-term Symposium “Beyond the canopy: technologies and applications of remote sensing”, 4–8 November 2024, Belém, Brazil

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-3-2024-309-2024 | © Author(s) 2024. CC BY 4.0 License.

 
311



 

where N is the length of vector (0)  or (n) , and   is a 
minimum term that prevents the generation of singular matrices. 
 

(4) Finally, collect the multi-directional feature descriptors 
into the matching feature vectors. After calculating all pixels, 
normalize according to the direction to achieve better 
illumination invariance.  
 
As mentioned above, MLSC descriptors obtain locally similar 
structural information of images, so as long as two images with 
different modalities have the same structural and geometric 
information, they can be described using this descriptor. Figure 4 
shows the similarity level of this descriptor in multimodal image 
pairs. 
 
2.3 Logarithmic Polar Coordinate Transformation 

If the centers of Ia and Ib are aligned, and Ib is Ia with an angle 
difference of  ° and a scale difference of a. Assuming the image 
center is denoted as (0, 0), then the point (x, y) on Ia  and the 
corresponding points (x', y') on Ib satisfies: 
 

    
1

', ' cos sin , sin cos
b a

I x y I x y x y
a

        (4) 

 
Obviously, both the horizontal and vertical coordinates contain 
four unknown variables: x, y, a, and , so it is not practical to 
directly evaluate these values. We perform a logarithmic polar 
coordinate transformation on equation (4), let   be the minimum 
scale sampling interval, then: 
 

    
0

log ', ' log log ,
b a

I I a        (5) 

 
Equation (5) transforms the coupled rotation and scale changes 
into independent estimation problems regarding the translation of 
scale   and angle  . Even if there are rotation and scaling 
changes between image pairs, the rotation and scaling changes of 
the image itself can still be estimated through the simplest 
coordinate translation. Similarly, rotation and scale changes can 
also be estimated using phase correlation methods. In other word, 
if the MLSC descriptors in section 2.2 are subjected to 
logarithmic polar transformation, it is possible to estimate the 
rotation and scale of multimodal images. If an image with a size 
of m × m in the Cartesian coordinate system has a size of n × n 
on the logarithmic polar coordinate plane, and the matching result 
in “scale - rotation” plane is (u, v), then the scale and angle can 
be expressed as: 
 

 
Angle = 2 /

Scale 
u

v n


 (6) 

 

 
 

Figure 5. The schematic diagram of logarithmic polar 
coordinate transformation. 

 
2.4 The Construction of Five-dimensional Descriptors 

In fact, the estimation of rotation and scale changes in section 2.3 
is flawed, as the features do not exhibit translation invariance 
after logarithmic polar coordinate transformation. Therefore, this 
method   can   only   be   applied   to   cases   of   center   alignment. 
 
However, any linear transformation is not just about rotation and 
scale changes, displacement transformation must also be taken 
into consideration. This section constructs a five-dimensional 
descriptor to simultaneously describe the angle, scale, and 
displacement changes of multimodal images. 
 
Any linear transformation can be expressed as a product of the 
displacement transformation matrix MD, rotation transformation 
matrix MR,  and  scale transformation matrix MS, and it has been 
proven in section 2.3 that MR  and MS  can be estimated 
simultaneously.  So, the process of simultaneously estimating 
three types of changes is essentially estimating matrix MR  and 
matrix MS under the most suitable matrix MD. Since matrix MR 
and matrix MD  are bound, this is actually two consecutive 
translation estimates. In general, the most suitable rotation and 
scale changes are estimated by sliding pixel by pixel in the 
displacement   plane.   However,  the  time  complexity  is  O(n2), 
which greatly reduces the matching efficiency. It is not difficult 
to see that even with pixel by pixel sliding matching, the 
processes of two matches share the maximum value of 
correlation peak. And essentially, the translation amount can be 
estimated through phase correlation, so we can combine the two 
matching processes into one by using the shared maximum value 
of correlation peak, which eliminates the need for repeated pixel 
by pixel sliding matching processes and reduces the time 
complexity to O(1). 
 

 
Figure 6. The construction of five-dimensional descriptor and the basic process of RIPC. 
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Based on this idea, we can crop the image according to the 
template   image   size (this   process   can   be   quickly   achieved 
through pointers), then construct three-dimensional descriptors 
separately and perform logarithmic polar coordinate 
transformation, and finally expand the three-dimension 
descriptors into five-dimensions along two sliding directions. 
Among them, the 4th and 5th dimensions respectively simulate 
sliding in the X and Y directions. The construction process of the 
five-dimensional descriptor is shown in Figure 6. Since the 4th 
and 5th dimensions simulate sliding processes, the five-
dimensional descriptor is only used for reference images. The 
template image is still three-dimension. However, if phase 
correlation is used to calculate the optimal matching position, the 
data dimension must be consistent. Therefore, it is necessary to 
add zeros in the three-dimensional descriptor of the template 
image to align the data to ensure consistency between the two 
sets of data. At the same time, adding zeros can also separate the 
overlapping frequencies and reduce folding errors in the fast 
Fourier transform process. 
 

3. Experiment and Analysis 

In this section, to verify the superiority of the proposed RIPC 
method in matching performance, we tested it on a large number 
of publicly available datasets and compared it with five state of 
the art methods – SIFT (Lowe, 2004), RIFT (Li et al., 2019), 
Superpoint (DeTone et al., 2018) + Superglue (Sarlin et al., 2020), 
SRIF (Li et al., 2023), and ReDFeat (Deng et al., 2022). 
 
3.1 Datasets 

To verify the effectiveness of our proposed RIPC method, we 
selected nearly a thousand pairs of multimodal images from five 
datasets for experiments. This includes Optical-to-Optical, 
Optical-to-Infrared, Optical-to-SAR, Optical-to-Depth maps, and 
Optical-to-Labels. To ensure the diversity of test data, our testing 
is not limited to remote sensing data, but also includes rich close 
range photogrammetric data, even artificial raster data. These 
data have inconsistent lighting conditions, including normal 
exposure, overexposure, and underexposure data. The resolution 
of an image is variable, ranging from close range images at the 
decimeter level to remote sensing images at the meter level. 
These images have severe distortion, especially radiative 
distortion. The introduction of these images will pose a huge 
challenge to the matching algorithm and can better test the 
robustness of our method. 
 
Optical-to-Optical(Cai et al., 2018): The Optical-to-Optical 
dataset is close range photogrammetric images with high 
resolution and rich texture, but the exposure levels between 
image pairs are different. 
 
Optical-to-Infrared(Xu et al., 2020): The Optical-to-Infrared 
dataset is also a close range photogrammetric image, belonging 
to the autonomous driving dataset. Some of the images are road 
images collected at night, and some are affected by streetlights 
and the Tindar effect. 
 
Optical-to-SAR(Xiang et al., 2020): The Optical-to-SAR dataset 
is a standard pair of remote sensing images, containing images of 
various scenes, and this type of dataset has significant nonlinear 
radiative differences. Due to the large size of the dataset, we 
extracted 200 pairs of images for experimentation. 
 
Optical-to-Depth maps(Silberman et al., 2012): The Optical-to-
Depth maps dataset is indoor data, and due to the fact that depth 
maps are a mode of manually expressing depth of field, the 

structural richness of depth maps is low, resulting in limited 
texture information. There are significant differences in radiation 
between images. Due to the large size of the dataset, we extracted 
200 pairs of images for experimentation. 
 
Optical-to-Labels(Silberman et al., 2012): The Optical to Labels 
dataset  is  consistent  with  the  Optical  to  Depth  maps  dataset, 
but Labels have a more pronounced geometric structure but a 
more monotonous texture. 
 
Due to the inconsistent resolution of the data, in order to facilitate 
batch processing, we sampled the size of all data to 512 * 512. 
All examples are shown in Figure 8. Meanwhile, in order to 
prevent substantial errors caused by significant differences in 
initial conditions, the images used in this study were corrected by 
physical models and resampled. The initial images were aligned 
between pixels without any differences in rotation, scale, or 
translation. The rotation, scale, and displacement changes used in 
this experiment are all simulated by manually rotating, scaling, 
and cropping the image. However, this method often reduces 
image quality and causes black edges due to rotation, further 
complicating matching. 
 
3.2 Implementation Details and Evaluation Criteria  

In our proposed method, there are a total of four parameters that 
need to be set, namely the circular neighborhood radius of 
descriptor r, the number of descriptor directions N, the polar 
radial sampling spacing of log-polar transformation N, and the 
angular sampling spacing of log-polar transformation N . The 
parameter r determines the size of the local circular patches used 
for feature description, which reflects the richness of local 
information. Appropriate parameters can reasonably describe 
features. However, excessively large image patches are highly 
susceptible to local geometric distortion. The parameter N 
represents the number of sampling directions in the multi-
directional feature description process. Usually, the higher the 
number of directions, the richer the information content of the 
constructed descriptor, but the higher the computational 
complexity. The parameters N  and N  represent the sampling 
spacing in the scale and angle directions. If these parameters are 
small, that is, the sampling is dense, excessive interpolation will 
lead to local information inflation, resulting in extremely high 
computational complexity and changes in local features. On the 
contrary, sparser sampling results in more loss of image features 
and greater errors. Taking all factors into consideration, we will 
set r as 2, N as 9, N  to 1.022, and N  to 1.41° . Under this 
condition, theoretically, when the scale difference is less than 1.6 
times, the scale error will not exceed 2%. Meanwhile, the angle 
error will never exceed 0.7 °. 
 
In order to describe the matching effect more reasonably, the 
successful matching rate (SMR) is used as an evaluation criterion, 
which calculates the proportion of the number of successful 
matches (NSC) in the total number of matches (TN), which 
SMR = NSC / TN × 100% .  Here, to clarify the criteria for 
successful matching, as the image itself has true values and there 
is no non-rigid deformation inside, we define that a successful 
matching is achieved when the RMSE is less than 3 when the 
matching result is projected onto the original image according to 
a linear transformation matrix. 
 
3.3 Evaluation of matching performance 

This section compares our RIPC with five SOTA matching 
methods:   SIFT,   RIFT,   Superpoint + Superglue,   SRIF,   and 
ReDFeat, and evaluates them from both quantitative description 
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and qualitative visualization perspectives. In addition, all data 
undergoes random angle, scale, and displacement 
transformations, with an angle range of [0, 2] and a scale range 
of [1, 2]. The size of the artificially simulated images used for 
matching is fixed at 384 × 384. To ensure the fairness in the 
comparison process, we obtained specific implementation codes 
for various methods used for comparison on the corresponding 
author's personal website. To ensure optimal matching 
performance, all hyperparameters and implementation details 
depend on the best parameters and details provided in the original 
text. Among them, the deep learning method uses the pre-trained 
model provided in the paper. 
 
3.3.1 SMR and Matching accuracy.  
 
Figure 7 shows the SMR metrics for mixed rotation, scale, and 
displacement changes using different methods on multiple 
datasets. Among them, the SMR of RIFT is very low because the 
method itself does not have scale invariance and can only be 
applied to situations with no scale changes or small scale changes. 
The SIFT and Superpoint + Superglue methods have excellent 
performance on optical datasets, but they perform poorly on 
multimodal datasets, especially on SAR, Depth map, and Label 
datasets with significant nonlinear radiation differences, where 
SMR approaches 0. This is because these methods do not have 
radiation invariance and are only effective for visual images. 
SRIF, ReDFeat, and our proposed RIPC all exhibit good 
performance on multimodal datasets. Our RIPC method achieved 
SMR of 92.78%, 88.07%, 75.5%, 73%, and 77.5% on five 
datasets, respectively. On multimodal datasets, the SMR of our 
method is approximately 5% higher than SRIF and 
approximately 7% higher than ReDFeat. 
 
 

 
Figure 7. The SMRs of SIFT, RIFT, Superpoint + Superglue, 

SRIF, ReDFeat and our RIPC. 
 
Figure 8 visualizes the registration performance of the proposed 
RIPC method using checkboard. In these example images, it can 
be seen that the edges of each checkboard can be aligned well 
without obvious misalignment. This further validates the 
robustness of our proposed RIPC method. Overall, these analyses 
demonstrate that our RIPC is more effective than state-of-the-art 
matching methods in resisting significant radiation differences 
and achieving estimation of multimodal image rotation and scale. 
 
Meanwhile, in order to evaluate the accuracy of matching, we 
calculated the average value of root mean square error (RMSE) 
of the image pairs correctly matched by the proposed method on 
each dataset. The test results are shown in Tabel 1. 

 

Dataset 
RMSE 
(pixels) 

Dataset 
RMSE 
(pixels) 

Optical 1.67 Infrared 1.88 

SAR 1.84 Depth 1.75 

Label 1.77   

Table 1. The RMSE of RIPC on Each Datasets 
 
As can be seen, our method has an average RMSE of less than 2 
on each dataset, indicating high accuracy and stability. 
 
3.3.2 Matching efficiency.  
 
In addition to SMR and accuracy, matching time is also an 
important evaluation indicator. The experiment in this article was 
implemented on a personal computer with an Intel i7-12700KF 
CPU, NVIDIA RTX 3090 GPU, and 16GB RAM. We only report 
the average matching time for a single match here, as shown in 
Tabel 2. 

 

Method Time (s) Method Time (s) 

SIFT 

(C++) 
1.17 

SRIF 

(C+MATLAB) 
4.17 

RIFT 

(MATLAB) 
24.77 

ReDFeat 

(Python) 
2.12 

S+S* 

(Python) 
0.66 

RIPC 

(MATLAB) 
17.23 

*  S+S represents Superpoint + superglue. 

Table 2. The Running Time of Each Algorithm 
 
From Table 2, it can be seen that the Superpoint + Superglue 
method has the shortest matching time, while the RIFT method 
has the longest matching time. The time consumption of the other 
methods, sorted in descending order, is SIFT, ReDFeat, SRIF, 
and RIPC. Our proposed RIPC method also has a longer 
matching time. This is because the RIPC method requires 
building a large five-dimensional descriptor, which will take a lot 
of time. Of course, this also depends on our RIPC method not 
using any acceleration modules. 
 
Based on the above experiments, it can be concluded that our 
proposed RIPC method has higher SMRs on all datasets, 
followed by SRIF. Although RIPC is more time-consuming than 
most SOTA methods, it is more robust to nonlinear radiative 
differences between multimodal images. And it is one of the few 
multimodal image matching methods that can handle rotation and 
scale changes. Therefore, considering all factors, RIPC is a more 
robust method for multimodal image matching. 
 

4. Conclusion 

In this paper, we introduce the radiation invariant phase 
correlation (RIPC) method, specifically designed to overcome 
the challenges associated with multimodal matching using phase 
correlation. This method enables us to simultaneously assess 
rotation, scale, and displacement variations between multimodal 
image pairs. Firstly, we utilize kernel canonical correlation 
analysis to delve into the local structure of the image, 
constructing a multimodal local self-correlation (MLSC) 
descriptor resilient to local rotation invariance. Subsequently, the 
logarithmic   polar   coordinate   transformation   is  employed  to  
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Figure 8. Checkboard visualization of RIPC. 

 
effectively capture rotation and scale changes, which are often 
difficult to quantify in the Cartesian coordinate system. Finally, 
leveraging the continuity of the matching process, we develop a 
five-dimensional descriptor tailored for phase correlation. This 
method establishes a versatile multimodal image matching 
framework, with the flexibility to replace MLSC descriptors with 
any rotation-resistant descriptor. Through extensive testing on 
nearly a thousand pairs of multimodal images and comparisons 
with five state-of-the-art (SOTA) methods, the RIPC method 
demonstrates superior matching performance. However, it is 
worth noting that the RIPC method, due to the size of its 
descriptors, is relatively time-consuming and memory-intensive. 
To address these limitations, our future work will focus on 
rewriting the algorithm using faster computation methods. 
Additionally, we plan to explore the integration of traditional 
dimensionality reduction techniques, such as PCA, with deep 
learning methods to achieve a more lightweight descriptor. 
Furthermore, given that the method proposed in this article is 
inherently self-iterative, we also aim to introduce unsupervised 

learning strategies to enable unsupervised or self-supervised 
learning in future iterations. 
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