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Abstract  

 

Huanglongbing (HLB) is a bacterial disease transmitted by different vectors of sap-sucking insects. It affects all crops of citrus trees, 
decreasing the  values of those fruits in the market and eventually the decay of orchards. In Brazil, the world's leading orange producer, 

citriculture faces severe issues with HLB and substantial economic loss. Technical means of scanning the orchards with high-

throughput becomes essential for the sustainability of this industry. In this study, we propose to investigate an operational strategy 

consisting of scanning large portions of foliage (the canopy of one tree or more) in which there can few early foliage symptoms. It is 
proposed to investigate deep learning tools to solve this complex binary classification problem. The study is based on a dataset 

comprising 1,297 terrestrial multispectral (14 channels) images captured at high spatial resolution in a commercial orange orchard in 

Brazil. It is proposed to adapt and retrain standard neural network architectures, namely ResNets18 and ResNets34, to process such 

images. Our analysis reveals promising results, with both models demonstrating convergence and achieving stable performance. 
Notably, ResNet18 outperformed ResNet34, achieving an accuracy of 76.45% compared to 66.79% from ResNet34. These findings 

suggest that deep neural network methods can effectively manage non-radiometrically calibrated data and accurately distinguish 

images with HLB symptoms from healthy plants . However, with reduced datasets and limited possibilities for transfer learning and 

fine-tuning, it seems that only reasonable sized networks can be trained. Thus, more advanced state-of-the-art tools of the are still 
challenging to deploy for agricultural multi-or hyperspectral data. 

 

 

 

1. Introduction 

Brazil is the major orange producer and the largest exporter of 

concentrated orange juice worldwide. However, orange orchards, 

especially in the São Paulo State and the southwest of the Minas 
Gerais State suffer from a high pathogenic pressure. It is 

estimated that 38% of orange trees are infected by 

Huanglongbing (HLB), the most destructive disease in 

citriculture and a major threat to the industry (Fundecitrus, 2023). 
The most common HLB symptom is asymmetrical yellow spots 

on the leaves. This symptom can occur in any branch of the citrus 

tree, including the lateral ones. HLB infections result in 

significant yield loss, decay of tree population or severe decrease 
in the fruit quality and global marketability (Alquézar et al., 

2022; Bové, 2006).  

 

A proficient disease detection system can help prevent economic 
losses and safeguard food security. In the absence of such a 

system, continuous monitoring of entire areas by highly skilled 

technicians is often unfeasible. Furthermore, distinguishing 
among the various diseases and nutritional deficiencies that can 

often be confused with HLB, poses a significant challenge 

(Barbedo et al., 2018). In the absence of efficient crop protection 

methods, HLB-infected trees are often cut down and removed 
from plots as soon as symptoms are detected to prevent epidemic 

outbursts. There is a recognised need for high-throughput 

scanning and detection systems to detect the very first occurrence 

of infection within orchards. 
 

Image proximal sensing for agricultural application is a scientific 

subject that is on the rise and has shown great potential in 

perennial crops. In this particular case the main information is 

found in the lateral face and thus observable with a ground view 
rather than an top-down on aerial view. On the other hand, 

acquiring terrestrial images under natural lighting conditions 

poses several issues because of the non-uniform illumination in 

natural environment. Image acquisition in fruit orchards is even 
harder due to variations in lighting and tree canopy geometry, 

resulting in complex acquisition (Rançon et al., 2023; Deng et al., 

2019; Aquino et al., 2018; Wendel et al., 2018; Wendel & 

Underwood, 2017; Underwood et al., 2016; Deery et al., 2014). 
 

Radiometric calibration is usually required to settle the problem 

of lighting variation, especially for spectral imaging, where the 

specific signatures are key information to determine the presence 
of symptoms in the canopy. However, the use of radiometric 

calibration panels can be impractical when monitoring large crop 

areas. In this context, conventional processing methods based on 
linear algebra (e.g. chemometrics) (Wold, 1995) are known to be 

sensitive to these variations. However, more complex and non-

linear models, such as deep learning, could overcome the lack of 

inconsistent radiometry. With sufficient datasets combined with 
data-augmentation or even transfer learning, deep-learning has 

shown great potential for processing raw and heterogeneous data 

(Kamilaris & Prenafeta-Boldú, 2018). 

 
Given this perspective, the contribution of this work consists of 

a practical implementation of deep learning for a binary detection 
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problem using multispectral images acquired under complex 

conditions. The aim of this paper is to analyse the viability of 

using deep neural networks to classify multispectral images 
between HLB-infected and non-HLB canopies in situ. In this 

practical context, it is difficult to grade symptoms or estimate the 

proportions of infected areas. The challenge is to detect the 

presence of the disease regardless of the state of infection or its 
severity or whenever it possible, with early symptoms, i.e. when 

only a few leaves are affected within a large portion of healthy 

canopy. To perform this task, we compare two variants of the 

ResNet architecture, with 18 and 34 layers, which we adapted to 
multispectral images. 

 

2.   Background 

2.1 ResNet 

ResNet, short for Residual Network, is a type of deep neural 

network architecture introduced in 2016. It represents a 

significant advancement in the design of Convolutional Neural 

Networks (CNNs), particularly for tasks such as image 
classification and object detection. It enables to cope with issues 

of overfitting and gradient vanishing, which is essential when 

working with spectral images of  smaller and less diverse 

datasets. Distinguished by incorporating  skip connections and 
the consistent application of batch normalisation layers following 

each convolutional operation, these architectural enhancements 

were devised to facilitate the training of exceedingly deep CNNs, 

exemplified by ResNet-18 and ResNet-34, featuring 18 and 34 
convolutional layers, respectively. Training in ImageNet dataset, 

the ResNet34 exhibited considerably lower training error and was 

generalisable to the validation data. This indicated that the 

degradation problem was well addressed in this setting and 
managed to obtain accuracy gains from increased depth (He et 

al., 2016). 

 

Training a deep neural network with a dataset containing exotic 
data (i.e. for which there is no pre-trained version nor comparable 

databases in terms neither of spatial dimension, nor spectral 

depth) for binary classification (example, HLB vs. non-HLB) is 

an arduous task. Distinguishing between foliage containing only 
healthy leaves form those  with  HLB symptoms within a 

complex canopy, especially under varying light in outdoor 

conditions is a challenging task. Typically, deep learning yields 

favourable results due to transfer learning and fine-tuning. 
However, because of the exotic nature of the data (multispectral, 

canopy, and disease symptoms), transfer learning and fine-tuning 

are not straightforward. 

 

2.2 Disease detection using deep learning 

Recently, Shafik et al. (2024) conducted experiments in the 

search for the classification of diseases in plants through images. 

In their results, an accuracy of 97.79% was achieved. However, 
there still exists uncertainty in the identification or classification 

of the disease in the early signs of green attack. 

 

Rangarajan & Purushothaman (2020), using RGB and YCbCr 
images, proposed disease detection using ResNet (16, 50, 101, 

152). Despite the limitation of the dataset, they were able to 

achieve an accuracy of 99.4% in their work. Furthermore, it is 
noticeable that the colours affect the accuracy of specific disease 

classification, and due to the complexities of the problem, 

overfitting may occur during the training process. 

 
Additionally, Mostafa Ahmed & Ali Ahmed (2023) approached 

the use of the ResNet50 model, among others, to detect diseases 

in palm leaves. The study achieved an accuracy of 99.23% using 

the CNN model to classify the various known diseases in palm 

trees. The authors also addressed challenges such as variation of 
luminance, background differences, image scale variations, and 

inter-class similarity in palm tree disease classification. 

 

In the identification of HLB in citrus trees, current studies focus 
on identifying the disease using individual leaves rather than in 

their field context (Yang et al., 2021, Qiu et al., 2022). 

Additionally, some studies test field issues as proposed by 

Dhiman et al. (2023), but the analysis was conducted on the fruit 
images and not on the leaf symptoms.  

 

3. Method 

3.1 Data acquisition and preprocessing 

Image acquisition was performed on a commercial orange 

producing farm located in the north of São Paulo State, in Brazil. 

The images were acquired between August 15th and 18th, 2023, 

in a 9 ha plot of sweet orange Pera Rio (Citrus sinesis (L.) 
Osbeck) with three years old. Two classes of images were 

acquired: first, plants with HLB-symptomatic leaves and, then, 

plants with only healthy leaves. The HLB-symptomatic plants 

were previously identified by a trained team of techninicians who 
inspected each tree walking along rows or on a platform over a 

tractor. The area covered by each image is then comparable to the 

scale at which the monitoring for pathology is conducted. 

 
Figure 1.a presents an example of orange leaves with HLB 

symptoms characterised by asymmetrical yellow spots. Figure 

1.b shows the laborious and time-consuming task of visual 

inspection walking in oranges orchards. 
 

 
Figure 1. a) Orange leaves with HLB symptoms. b) Visual 

inspection of HLB infection in a commercial orange orchard. 
 

The images acquisition was conducted using the Sony Alpha 7R2 

Sextuple Multispectral Camera developed by Agrowing. The 

camera's sensor frame is divided into six parts to acquire the same 
scene in 14 bands through six camera heads (lenses), with the 

following spectral bands: 405, 430, 450, 490, 525, 550, 560, 570, 

630, 650, 685, 710, 735 and 850 nm. The bandwidth is 25 nm for 

visible channels, 15 nm for red-edge channels and 10 nm for the 
near-infrared channel (Agrowing, 2024). 

 

The dataset contains images with noticeable illumination 

variability. The acquisition was conducted with variations in the 
shutter speed in the camera setup. This approach provides a 

dataset with real examples of high illumination and radiometric 

variability. It also enabled a rich basis of data augmentation in 

the radiometrical dimension. This is an important increment, 
since the traditional data augmentation methods mostly focus on 

spatial dimensions.   
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Figure 2 illustrates the Agrowing camera (Figure 2.a), the image 

acquisition   (Figure 2.b), and the imaging preprocessing (Figure 

2.c). The raw images were preprocessed using the camera 
manufacturer's software AwBasic. Each frame was cropped, 

resulting in images sized at 2552 x 2560 pixels.  

 

 

Figure 2. a) Sony Alpha 7R2 Sextuple Multispectral Camera. b) 

Terrestrial acquisition of images in the orange orchard. c) 
Illustration of the extraction of 14 monochromatic images from 

multispectral raw image. 

 

3.2 Dataset 

The dataset consists of a total of 1,297 multispectral images, 

which have been labelled as HLB (865 multispectral images 

infected) and non-HLB (432 multispectral images non-infected). 

Given that each multispectral image contains 14 monochromatic 
8-bits images, the dataset comprises a total of 18,158 images. 

 

Data labeling was done in terms of image based on information 

acquired in the orchard (pre-identification of HLB symptomatic 
trees and acquisition time). The image files were split into two 

folders: HLB and non-HLB images. The dataset was created 

using Hierarchical Data Format version 5 (hdf5) format 

containing all the dataset with its metadata and the necessary 
information for labelling and data splitting. The images were 

subsampled to 1276 x 1280 pixels by nearest neighbour 

interpolation.  

 
The dataset was randomly divided into two smaller datasets: the 

training dataset and the test dataset. The training and test datasets 

consist, respectively, of 80% and 20% data of the original one. 

The images are distributed equally between the 14 spectral 
channels. 

 

3.3 Configuration of the models 

ResNet18 and ResNet34 were used to classify images between 
HLB and non-HLB. It is assumed that the deeper the network, 

the more layers and parameters will be optimised, allowing a 

more complex model and potentially a better discrimination if the 

data are rich enough.  
 

The models were firstly trained with the training dataset. Table 1 

shows the hyperparameters used to configure the training phase 

of the classification models in this work. The ResNet18 
architecture had 11,474,754 trainable parameters, while 

ResNet34 had 21,582,914 trainable parameters. The models were 

then tested with the test dataset. 

 

Hyperparameter Name Value 

Batch size 8 

Number of epochs 200 

Optimisation algorithm Adam 

Loss function Cross Entropy 

Metric Accuracy 

Learning rate 0.001 

Momentum None 

Activation function in convolutional layer ReLU 

Activation function in last layer 
SoftMax 

(Logit) 

Table 1. Hyperparameter configuration. 

 
To analyse the trained and tested models, the confusion matrices 

were determined and from them, accuracy, precision, recall and 

Area Under the Receiver Operating Characteristic Curve (ROC 

AUC) were calculated. 
 

4. Results and Discussion 

4.1 Dataset 

Figure 3 shows some examples of images from the dataset to 
illustrate the complexity of the data and, consequently, the 

training and classification issues. Figures 3.a, 3.b and 3.c are 

examples of images labelled as HLB-infected. Figures 3.d, 3.e 

and 3.f are examples of images labelled as non-HLB.  
 

 

 
Figure 3. Examples of images from the dataset collected with 
the 710 nm channel. a) Image with HLB symptoms; b) image 

with HLB symptoms and sky; c) blurred image with HLB 

symptoms; d) leaves without HLB symptoms; e) image with 

leaves without HLB symptoms and sky; and f) blurred image of 
leaves without HLB symptoms. 

 

Figure 3.a presents symptoms easily visualised in the 710 nm 

channel image. The image also includes objects such as oranges 
and wood. Finally, it is possible to observe how some leaves are 

more illuminated than others. These characteristics in the image 

illustrates the complexity of the canopy and the challenges that 

the model may encounter in identifying symptoms within this 
context. Figure 3.d is an example of an image from non-HLB 

label and presents leaves, orange, and some stem. The figure also 

presents the complexity of illumination due to the positions and 

shapes of the leaves. 
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Figures 3.b and 3.e illustrate the challenge posed by the sky in 

the images, in addition to symptomatic and non-symtomaitc  

leaves. These issues reflect a real-world field scenario where 
backgrounds such as the sky or neighbouring trees from adjacent 

planting rows are captured by the images. Such occurrences 

introduce further complexity into the training and classification 

process. 
 

Figures 3.c and 3.f show blurred images to depict the variability 

of the data acquisition. The more variability within the training 

data the more generic the models will become. Blurred images 
can be common in real-word acqusitions, since wind is very 

likely to disturb acquisitions and that multispectral sensor have 

fixed focus. This is a positive point since the spectral dimension 

cannot be augmented by traditional methods of data 
augmentation commonly used in preprocessing data to deep 

neural networks. Therefore, for this dataset the images were 

acquired varying the camera shutter speed and  the camera to the 

object range. These variations in acquisition produced a "physical 
augmentation" to the dataset.  

 

HLB citrus image datasets are lacking in the scientific 

repositories, especially multispectral image datasets. Rauf et al 
(2016) and Hughes & Salathé (2016) are examples of fruits 

datasets and repositories, but both included only RGB images and 

leaves detached from the canopy.   

 

4.2 Training and testing 

The training process of the models, as shown in Figure 4, 

demonstrated consistent improvement over 200 epochs with 

stable performances after approximately 70 epochs for ResNet18 
(Figure 4.a) and after around 90 epochs for ResNet34 (Figure 

4.b). Initially, the training loss showed a sharp decline, indicating 

a phase of rapid learning, while the training accuracy steadily 

increased, suggesting that the model’s predictions are 
increasingly aligning with the training dataset. Notably, the 

training loss for Figure 4.a and Figure 4.b stabilises after 70 and 

90 epochs, respectively, while the training accuracy achieved 

around 90%, which may indicate that the model has reached its 
learning capacity with the provided data. The results presented in 

Figure 4 point to a robust learning process. 

 

Figure 4. a) Training loss curve and training accuracy curve of 

ResNet18 and b) Training loss curve and training accuracy 

curve of ResNet34. 

 

Considering training due to dataset characteristics and the 

inherent complexities of binary classification (HLB or non-HLB) 

within a complex canopy environment, the models demonstrate 
satisfactory performance. Notably, despite the absence of 

established learning pipelines commonly sutilised in deep 

learning approaches such as transfer learning and fine tuning 

(Pan & Yang, 2010), the models still yield promising results. 
 

By analysing the confusion matrices and the metrics derived from 

them, it is possible to understand the strengths and weaknesses of 

the models. Figure 5 presents confusion matrices of ResNet18 
and ResNet34 after 200 training epochs when tested with the test 

dataset, which is the data that was not used in model training.  

 

 
Figure 5. a) Confusion matrix of the ResNet18 and b) 

Confusion matrix of the ResNet34, both on the test dataset with 

200 epochs of training. 

 

From Figure 5.a it can be seen that the main confusion of the 
ResNet18 model is the false positive of non-HLB samples 

predicted as HLB. In practice, this shows that the model 

overestimates the probability of the disease's presence in the 

canopy. In such a case, a double check on these trees should be 
conducted to confirm the presence of HLB symptoms. The 

opposite (false negative predictions) happens with a lesser 

frequency, i.e. the model rarely labbels infected canopies as 

healthy ones. This scenario represents where the desired 

sensitivity, since neglected infected trees can be the focus of a 

larger dissemination of the HLB on the orchard. From Figure 5.b 

it  can seen that with ResNet34 the number of false positives to 

HLB is almost the same as ResNet18. However, false negative 
predictions are significantly higher than in ResNet18. Eventually, 

the achieved results with ResNet34 model is insufficient and 

unreliable in the field. With the simpler ResNet18, HLB 

symptoms are accurately detected within complex canopies, but 
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the false alarm rate still requires  improvements to be considered 

as a technique to monitoring orchards.   

 
Upon evaluating the performance of the ResNet models with the 

test dataset, a disparity in accuracy is observed. The ResNet34 

model achieved an accuracy of 66.79%, considerably lower than 

the 76.45% accuracy achieved by the ResNet18 model (Table 2). 
This validates the indication of the better performance of the 

ResNet18. 

 

 ResNet18 ResNet34 

Accuracy 76.45% 66.79% 

ROC AUC 68.34% 61.99% 

Precision 
HLB 76.92% 74.58% 

Non-HLB 74.51% 50% 

Recall 
HLB 92.48% 76.30% 

Non-HLB 44.19% 47.67% 

Table 2. Evaluated performance of the models on the test 
dataset with 200 epochs of training.  

 

The ROC AUC provides an overall assessment of the model's 

ability to distinguish between classes. This is particularly useful 
as an overview of model performance. Table 2 shows the ROC 

AUC for the models. ROC AUC of ResNet18 suggests a model 

with a moderate capacity to distinguish the classes; 68.34% of 

the time, the model will correctly classify a positive instance as 
more likely to be positive than a negative instance. However, 

ROC AUC of ResNet34 (61.99%) suggests a model with some 

discrimination capability but only a slightly better skill than a 

random classifier (50%). This performance suggests that the 
model may not be extracting features in the data efficiently.  

 

Precision is the rate of true positives regarding the total of 

positives predicted. ResNet18 presents similar precision in two 
classes: 76.92% and 74.51% to HLB and non-HLB, respectively. 

However,  the precision with ResNet34 was not similar between 

classes: 74.58% to HLB and 50% to non HLB.  

 
Recall is the rate of true positives regarding the total of cases truly 

positives. The recall for the test of ResNet18 is 92.48% for HLB 

and 44.19% for non-HLB class. This means that in 92.48% of the 

cases that the model predicts an image as HLB, the prediction is 
correct, which is a high rate of correction predictions. However, 

this rate is significantly lower for non-HLB class, achieving 

44.19%. These results can be attributed to the unbalanced dataset, 

since HLB class has more images than non-HLB class. ResNet34 
model test presented recall results of 76.30% and 47.67% to HLB 

and non-HLB, respectively. Again, the imbalance between 

classes is evident. Furthermore, the ResNet18 presented an 

improved performance, which was coherent with accuracy, 
precision and ROC AUC. 

 

This result suggests that ResNet18, with fewer layers, 

outperformed its more complex counterpart in the test dataset. 
These findings leads to a deeper investigation into the efficiency 

of the models' architectures, the possibilities of overfitting, and 

the complexity of the dataset. The superior accuracy of ResNet18 

might indicate that, when dealing with the provided test dataset, 
a less complex model with fewer convolutional layers is more 

ffective, possibly due to better generalisation and prevention of 

overfitting.  

 

4.3 Comparative analysis of results 

In the background literature, despite the high accuracy values, all 

focus on detecting the disease was given on using an isolated leaf 

from the tree. In our work, we aimed to apply binary disease 

classification in a more complex context with part of the citrus 

tree and various situations, such as low lighting, high lighting, 

shadow, and object overlap, containing parts of the sky in the 

image, as highlighted in Figure 3.b.  
 

For the detection of HLB in citrus, Farzaneh et al. (2019) 

investigated the possibility of using image data collected by 

UAVs, combined with 16 vegetation indices, achieving 81.75% 
of accuracy in identifying healthy and diseased trees. They also 

concluded that it is necessary to explore more advanced machine 

learning algorithms for classification tasks in multispectral image 

analysis. 
 

In 2024, the Institute of Food and Agricultural Sciences (IFAS), 

affiliated with the University of Florida, published a citrus 

production guide for the years 2023-2024 (Kadyampakeni and 
Duncan, 2023). This guide covers the main symptoms that can be 

easily confused with other diseases, such as citrus rust, 

Phytophthora root rot, and waterlogging.  

 

Therefore, diagnosing HLB based solely on symptoms becomes 

a labour-intensive and time-consuming task. Currently, in large 

plantations, the work is performed by trained technicians who can 

make this labbeling. However, even experienced individuals may 
make mistakes due to fatigue and long hours under the sun. 

 

Using image detection for disease identification would allow 

farmers to pinpoint affected areas in their crops with less human 
labour, achieving an accuracy rate of 76.45%, as demonstrated 

by the model. This method could enable disease management 

through imagery, reducing human fatigue and analytical bias. 

 
Currently, this is the only comparative detection rate study for 

HLB (citrus greening) using this technique, as field assessments 

are still conducted manually. The success rate can be compared 

to other crops, emphasising the benefits of automated image 
analysis in agriculture. 

 

5. Final Considerations 

The present study introduces an investigation aimed at assessing 

the feasibility of employing the deep neural network ResNet for 

the binary classification of HLB disease in orange trees utilising 

multispectral images. These images were captured under in situ 

conditions in a young orange orchard on a commercial farm. 
 

The dataset reveals the challenges associated with identifying 

HLB symptoms within citrus canopies using multispectral 

imaging. The complexity of the canopy environment is evident, 
with variations in natural illumination and the presence of other 

objects, such as oranges and wood, which can potentially obstruct 

the symptoms. Additionally, real-world field complexities during 
data acquisition, such as the presence of sky in the image, 

variations in image lighting, and blur induced by environmental 

factors like wind, further complicate the analysis. Notably, the 

dataset's inclusion of such variability through augmentation via 
variations in shutter speed and acquisition distance enhances its 

representativeness, facilitating more robust model training. 

Moreover, the scarcity of multispectral datasets tailored 
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specifically to HLB citrus imagery underscores the novelty and 

importance of this work. 

 
However, the use of ResNet18 and ResNet34 showcased 

optimistic performance even with limited training data, rendering 

it especially valuable for tasks involving small datasets, a 

frequent scenario in the domain of multispectral imagery 
analysis. Finally, contrary to expectations, ResNet18 results in a 

higher accuracy and, in general, better performance evaluation 

compared to ResNet34. These results suggest that a model with 

fewer convolutional layers is more effective, potentially 
attributed to an improved generalisation and the mitigation of 

overfitting. Moreover, the results indicate that deep neural 

network approaches can adeptly handle non-radiometric 

calibrated data and discern differences between HLB and non-
HLB images. 

  

As a perspective to improve the robustness of the models, image 

augmentation (channel by channel since is not possible spectral 
augmentation) and more in situ data collection will be conducted. 

In addition, reducing the spectral dimension with band selection, 

vegetation index and PCA can turn feasible a form of transfer-

learning and/or fine-tuning. Sharma & Ross (2020) suggest 
augmenting the weights trained on the ImageNet database to 

adapt them to the dimensions of different spectral images and use 

them as initial conditions to retrain standard backbones or fine-

tune them. 
 

Future works will be directed at confirming the results with 

svisualise attention maps to "understand" which visual artefacts 

will provide qualitative understanding of the relationship 
between patches in an image and the model's prediction (Ribeiro 

et al., 2016).  
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