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Abstract 

 

The January 1, 2024, Noto Peninsula earthquake left many devastated areas. Right after the event, aerial photography provided the 

initial assessment but covered only specific areas. Satellite images with optical sensors that are freely available are limited by spatial 

resolution and oftentimes covered by cloud. The Sentinel-1 Synthetic Aperture Radar (SAR) due to its all-weather sensing capability 

proved to be useful in mapping the extent of the affected areas. This study mapped Wajima City where earthquake aftereffects were 

severe as reported using coherence and intensity mapping. Pre- and post-event images were used to rapidly identify affected areas. 

Based on the result, taking the coherence of one pre- and one post-event images can give an impression of wide earthquake damage. 

The coherence of two post-event images compared with two pre-event images provides a better estimate of affected areas. Taking 

multiple pre- and post- event images improved the map because the large variation of the intensity is minimized through time-series 

averaging. Using a simple RGB composite, the affected areas were mapped. Threshold mapping was also used to extract collapsed 

buildings/houses using a training dataset. The mean coherence difference and mean intensity difference between pre- and post-event 

images were the two variables used. The computed minimum threshold for the mean coherence difference was 0.35. However, the 

average not the minimum of the mean intensity difference of 3.0 was used as initial value. Using mean coherence difference>=0.35 

gave a high accurate prediction of collapsed buildings at 73.47% but also has false identification of 30.95%. To negate the 

overprediction, the mean intensity difference<=4.0 was integrated. The result lowered the overprediction to 20.75% but also lowered 

the accuracy to 64.97%. This assessment was only conducted in the fire-razed morning market in Wajima City. 

 

1. Introduction 

Initial response upon news of a disaster is where it is located 

and how big is the area affected. Remote sensing, although with 

some limitations (e.g. spatial resolution), offers a bird’s eye 

view of the area and provides initial visual assessment. 

Basically, optical images provide the best information of the 

disaster affected area but oftentimes they are obscured by 

clouds and shadows. Radar remote sensing provides an all-

weather observation data, albeit its salt and pepper appearance 

may prove challenging for some users. However, with 

advancement in technology and developed algorithms, it can go 

beyond visual analysis. Hence, inference of the images relies on 

other information that cannot be seen but serves as proxy for 

actual or ground observations. Disaster affected areas can be 

assessed remotely using derived information from said images.  

 

The backscatter energy contains the information necessary for 

the interpretation of the targets being imaged and the basis for 

remote sensing with microwaves (Richards, 2009). This 

depends on the geometric and dielectric properties of the 

targets. The total power density of the incoming wave is its 

intensity (Ibid.). This is also defined as the wave amplitude 

squared (Zhou et al., 2009), an important consideration for 

analyzing the current state of the targets. Change in the 

properties of the object being imaged manifests in the variation 

of reflected intensity received by the radar sensor. However, the 

variation is also due to atmospheric influence (Ding, et al.,2008; 

Ferrettia et al., 2007). To minimize its effect, seasonality should 

be considered in the selection and analysis of the images. 

Coherence is another important parameter for detecting change 

derived from two Synthetic Aperture Radar (SAR) images. A 

detailed discussion on coherence estimation is given by Touzi et 

al., (1999). Waves that are in constant phase with each other are 

said to be coherent (Woodhouse, 2006). It is also the degree of 

correlation between the two constituent images of an 

interferometer that will take the value of 1 if fully correlated 

and 0 if fully decorrelated (Richards, 2009). Thus, a significant 

change in coherence means disturbance in the current state of 

the target from the previous. The formation of interferometric 

SAR images includes the coherence map output. Mapping using 

coherence and intensity estimation serves as preliminary 

assessment of damage caused by disaster. 

 

The use of Sentinel-1 SAR images for mapping after disaster is 

becoming a popular choice due to its all-weather and side-

looking imaging. Washaya et al., (2018) for example used 

Coherence Change-Detection (CCD) for monitoring natural and 

anthropogenic disasters in urban areas. Often mapping of 

damaged-affected areas after natural hazard events (Olen and 

Bookhagen, 2018; Donezar et al., 2019; Meneses and Blanco, 

2022; Ge et al., 2019a) used coherence change because it can 

easily identify significant decorrelation. Several studies that are 

not only specific to utilizing Sentinel-1 but also other SAR 

sensors such as ALOS-2, TerraSAR-X etc. (Lu et al., 2018; Yun 

et al., 2015; Watanabe et al., 2012; Sharma et al., 2017) were 

conducted to map earthquake-induced damages utilizing 

coherence variation. Ge et al., (2019b) conducted building 

damage assessment using intensity from SAR data through 

change detection. This method is best when SAR satellites do 

not work in an interferometric mode (Ibid.). 

 

Statistical mapping is another method for visually analyzing the 

change in an area that is abstracted, aggregated or simplified 

(Foster, 2019). This is because geospatial data is large and 

complex. The discretization of values in the field of statistics 

can be represented by histogram, interquartile range, standard 

deviation, outlier maps (Ibid.) and other representations derived 

from data calculations.  Statistical maps can be from an analysis 

of a single image or many images. The latter is often referred to 

as multi-temporal or time series analysis. The resulting statistics 

derived from these maps indicate changes or no changes in 

areas of interest.  
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The mapping techniques discussed above were applied in this 

study to identify affected areas in Wajima City, Ishikawa 

Prefecture, Japan. The earthquake that occurred last January 1, 

2024, with a magnitude of 7.5 caused damage particularly in 

these cities such as building collapse and landslides (The 

Yomiuri Shimbun, 2024a). In addition, the Geospatial 

Information (GSI) Authority of Japan mapped the emergence of 

land along the coast facing the Sea of Japan using the intensity 

change from ALOS-2 satellite (GSI, 2024a). This study focuses 

only on earthquake aftereffects in the urban areas. The 

aftereffects include building collapse, fire and tsunami damages. 

Coherence and intensity threshold based on the analysis of 

values from training dataset was also determined to facilitate the 

extraction of affected areas. 

 

2. Materials and methods 

2.1 Study areas 

The study area is the city of Wajima (37.376 to 37.411 N; 

136.833 to 136.917 E) located in the Noto Peninsula, Ishikawa 

Prefecture, Japan. This is one of the areas where earthquake 

aftereffects were severe as reported (The Japan Times, 2024). In 

Wajima City, close to 3800 houses collapsed (Crisis 

Management Office, 2024). Many houses were also consumed 

by the fire after the earthquake that razed Wajima Morning 

Market (NHK WORLD-JAPAN, 2024). Wajima City was 

selected to analyze the potential identification of affected areas 

using SAR coherence and intensity estimation with statistical 

mapping. Figure 1 shows the Noto Peninsula and the location of 

the study area. 

 

 

 

 

 

 

 

 

 

 

Figure 1. The study area (Google Map, n.d.). 

 

2.2 Data and software used 

There are 6 SLC images that were used for this study that were 

dated from 06 December 2023 to 02 February 2024. The Noto 

Peninsula earthquake happened on 1 January 2024 hence, there 

were 3 pre-event images and 3 post-event images acquired 

during the winter season. The decision to not only use one pre- 

and post- event images was to ensure the data consistency due 

to variations in the intensity. The VV polarization was selected 

for mapping the affected areas.  The winter season images were 

chosen to avoid significant coherence variations due to season 

influence. The temporal variation was set at 12 days per image 

pair. The Copernicus 30m DEM (Digital elevation Model) was 

used for the terrain correction. The Google Earth images, 

photographs and aerial images from news agencies and GSI 

served as data for validation. Most of the Single Look Complex 

SAR images were downloaded from Alaska Satellite Facility 

(ASF) (n.d.) and Copernicus Browser (CB) (n.d.). The data used 

is listed in Table 1. 

 

The Sentinels Application Platform or known as SNAP, was 

mostly used for processing the SAR images. This collection of 

toolboxes is being jointly developed by Brockmann Consult, CS 

France (FR), CS Romania (RO), SenSar (NL) and SkyWatch 

(CA) (eoPortal, n.d.). SNAP facilitates viewing, processing, and 

analyzing Sentinel products including remotely sensed data 

from other sensors. As it is a collection of free open-source 

toolboxes (Brochmann Consult GmbH, 2019), many users 

benefit from its many image processing functionalities. The 

SNAP latest version of SNAP is the SNAP 10.0.0 that can be 

downloaded from European Space Agency (ESA) Science 

Toolbox Exploitation Program (STEP) (ESA, n.d.). 

 

SLC images Provider 

S1A_IW_SLC__1SDV_20231206 ASF 

S1A_IW_SLC__1SDV_20231218 ASF 

S1A_IW_SLC__1SDV_20231230 ASF 

S1A_IW_SLC__1SDV_20240111 ASF 

S1A_IW_SLC__1SDV_20240123 ASF 

S1A_IW_SLC__1SDV_20240204 ASF 

Copernicus 30m DEM CB 

Precise or restituted orbit files CB 

Table 1. Data used 

 

2.3 Methods 

The general workflow for determining earthquake affected areas 

is shown in Figure 2. The areas analyzed are concentrated in the 

urban areas where damaged to houses and buildings mostly 

occurred. The strong and weak backscatters from these targets 

prior to and after the earthquake respectively, provide 

information about what has changed. The method involves 

geometric and radiometric correction of the SLC images, 

coherence estimation of image pairs, subset to areas of interest 

(AOI), calculating statistics (mean and difference of coherence 

and intensity), and mapping damaged areas using RGB color 

composite, extraction of affected areas and validation using 

high resolution optical images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Workflow for mapping affected areas. 

 

2.3.1 Processing 

 

a) Geometric correction and radar calibration 

 

The SLC images were geometrically corrected and 

radiometrically calibrated after downloading. Prior to these 

activities the required swath and bursts were selected using 

TOPSAR split. In this case the IW1 and bursts 2 and 5 were 

selected because these cover the area of interest. The Precise 

Orbit File (POEORB) or Restituted Orbit File (RESORB) (if 

POEORB is not available yet) that is automatically downloaded 

from Copernicus Browser was applied to provide accurate 

position of the SAR images. This ensures successful co-

registration of several images. All individual images were 

radiometrically calibrated then debursted. The Multilook 
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function was applied to convert the pixel to square grid at the 

same time act as noise filter. Terrain Correction orthorectified 

the images using location and elevation information from the 

DEM. 

 

b) Coherence estimation 

 

Two successive SLC image files 12 days apart were processed 

for coherence estimation. For the initial damage assessment 3 

SLC images were processed (2 pre-event images and 1 post-

event image. In this case 2 coherence maps were produced. This 

is rapid mapping with the first SLC image acquired right after 

the event. With the availability of the second SLC image 

acquired after the event, 2 post-event images were processed 

together with the 2 pre-event images producing 3 coherence 

maps. 

 

c) Computation of intensity mean and difference 

 

Only the VV polarization was considered for mapping the 

earthquake aftereffects in the urban areas. The intensity of 2 

successive images were averaged to produce the mean intensity 

map. Similarly, the difference between these images were taken 

to produce the difference of intensity map. 

 

d) Subset to area of interest (AOI) 

 

To speed up the processing, the urban areas where reports of 

damages occurred were cropped or clipped using the raster 

subset. Although, there are other areas in the Ishikawa 

Prefecture that were also affected but the city of Wajima has 

photos or aerial videos that can be used to validate the 

processing results. 

  

e) Mapping RGB composite 

 

The procedure for mapping using Red, Green and Blue (RGB) 

composite was adopted from tutorial by Chris Stewart (2017) of 

Earth Observation College. An additive RGB color composite 

display for initial visual assessment was used. The coherence 

was assigned in Red band, mean of intensity in Green band, and 

difference of intensity in Blue band. The combinations of the 

following produce: R + G = Yellow, G + B = Cyan and R + B = 

Magenta. For mapping urban areas for example where 

coherence is assigned to R and mean intensity is assigned to G 

the result is mostly yellow due to high coherence and high mean 

intensity. 

 

f) Extraction of affected areas 

 

For the initial extraction of the affected areas, coherence values 

>= 0.4, 0.5 and 0.6 were assumed. Using binary mapping with 1 

as affected area and 0 as unaffected area the locations of 

affected areas were mapped. 

  

g) Validation 

 

The satellite images after the disaster were mostly cloudy, hence 

with shadows. Also, the limited spatial resolution posed 

difficulties in identifying affected areas.  Fortunately, many 

news agencies captured many high-resolution images and aerial 

videos that could be used for the validation. The GSI of Japan 

immediately did aerial photography of the affected places right 

after the event. Once features from photographs were identified, 

these were located in Google Earth and the extent of affected 

areas digitized. Google Earth proved very helpful for providing 

pre-event high resolution images for validation. 

 2.3.2  Multi-temporal mapping of affected areas 

 

The same procedure as discussed above was employed in 

mapping affected areas but in this case several images were 

considered. The SLC images used were selected within the 

winter season i.e. December to February. Taking the mean of 

intensity of several images can minimize the large variations in 

the intensity. Again, the images are grouped as pre-event and 

post-event images. This method can be used assuming that 

rebuilding of affected areas has not been completed. In addition 

to the method discussed, time series stacking of several images 

and determining threshold from values of randomly placed pins 

in the affected area were included (Figure 3). This time the 

variables for threshold mapping are 1) the difference of the 

mean of coherence between pre- and post- event maps and 2) 

the difference of the mean of intensity between pre- and post- 

event maps.  

 

 

 
 

Figure 3. Multi-temporal mapping workflow. 

 

3. Results and Discussions 

3.1 Initial damage assessment 

To initially visualize the areas that were affected right after the 

earthquake, 3 SLC images were used, and 2 coherence maps 

were produced. The RGB composite of pre-event map 

(18Dec23_30Dec23) in Figure 4a shows the dominance of the 

yellow pixels indicating high coherence and high mean of 

intensity. The pre- & post- event pair (30Dec23_11Jan24) are 

dominated by cyan and green colored pixels. This indicates low 

coherence as the yellow pixels are eclipsed (Figure 4b). There is 

a decrease of coherence throughout the area but said decrease 

does not necessarily indicate damaged areas. To produce the 

post-event map, 1 SLC image was added (23Jan23) as soon as it 

became available. Figure 4c is the post-event map 

(11Jan24_23Jan24) that shows the emergence of yellow pixels 

again. However, there are still areas where cyan and green 

pixels persist. Therefore, it is wise to consider additional 

image/s for confirmation. 
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Figure 4. Comparison of pre-event; pre- & post- event; and 

post-event maps of affected areas (Yellow=high coh+high int; 

Cyan=high int+high int diff). 

 

Taking the difference between coherence of image pairs can 

give a better indication of affected areas. The pre-event pair 

(18Dec23_30Dec23) coherence map was used as reference 

where pre- & post-event pair (30Dec23_11Jan24) and post-

event (11Jan24_23Jan24) coherence maps were subtracted. The 

affected areas were extracted by assuming a coherence value >= 

0.4, 0.5 and 0.6 using binary mapping. Of the 3 assumed values, 

coherence >=0.4 provides a better estimate. The results using 

coherence >= 0.4 are shown in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Difference of coherence (a) 18Dec23_30Dec23 minus      

30Dec23_11Jan24; (b) 18Dec23_30Dec23 minus   

11Jan24_23Jan 24; and (c) map of the affected area 

The 18Dec23_30Dec23 minus 11Jan24_23Jan24 coherence 

maps better represents the affected areas. The actual affected 

area in Wajima City was delineated using high resolution aerial 

photography taken by GSI (2024b).  

 

3.2 Multi-temporal mapping of affected areas 

This method uses several images of SLC images. In this study a 

total of 6 images; 3 pre-event and 3 post-event images were 

processed. There are 5 coherence maps produced. The 

processed images and coherence maps were stacked into 2 

groups: pre-event and post event time series maps. The mean of 

the intensity and coherence were computed for both time series. 

The differences of the means for the intensity and coherence 

were taken between pre- and post-event time series. 

 

3.2.1 Threshold determination 

 

Instead of assuming the threshold values for mapping, the 

thresholds for coherence and intensity are computed from 

training dataset composed of pixels in the known affected area. 

Pins were placed randomly in the said area and the values 

extracted. The map of the training area and the locations of the 

50 pins is shown in Figure 6. This is the area where cyan and 

green pixels persist in the post-event map. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Locations of pins in the affected area. 

 

The extracted values of the intensity were graphed to show the 

trend. The plots of the intensity in the affected and unaffected 

areas are shown in Figure 7. 

 

The intensity in the affected areas (Figure 7a) showed a 

decrease after the event (11Jan24) but some increased on 

23Jan24 but again decreased on 4Feb24. These variations in 

intensity pose a challenge for mapping affected areas especially 

in the urban areas where double bounces are prevalent. Out of 

50 pins there were 28 pins that showed this trend. The rest of 

the pins showed a horizontal trend (Figure 7b). Although, it is 

expected that in the area known to be affected, the majority of 

the values will show a decrease after the event. This is assuming 

that many buildings have collapsed. However, backscatters 

from roads, parking areas and other open spaces may also 

contribute to this horizontal trend. 

 

The trend of the coherence is shown in Figure 8. This is referred 

to here as the “Z” trend. A sudden decrease in coherence was 

also observed after the event but some increased in the 

11Jan24_23Jan24 and 23Jan24_04Feb24 pairs.  

 

 

 

b a 

 

(a) 

Pre-event map 

18Dec23_30Dec23 

(b) 

Pre- & post-event map 

30Dec23_11Jan24 

 

(c) 

Post-event map 

11Jan24_23Jan24 

c 
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Figure 7. Trends of intensity in the (a) affected and                    

(b) unaffected areas. 

 

Figure 8. The “Z” trend of coherence. 

 

A scatter plot between coherence and intensity was graphed to 

determine the correlation between the 2 variables. As shown in 

Figure 9, coherence has a negative correlation with intensity but 

is very low. This is due to the large variations in the intensity. 

Hence, using the mean of the intensity as threshold is better for 

mapping affected areas. 

 

The threshold for the intensity was computed by taking the 

difference between the means of intensity in the pre-event and 

post event time series. A positive difference indicates affected 

areas. The min, max and average for the mean intensity 

difference were 0.13, 11.68 and 2.56 dB, respectively. Thus, 

threshold for intensity is the mean value that could take an 

initial value of 3.0. 

 

Figure 9. Correlative plot of coherence and intensity. 

 

The same procedure was used for determining the threshold for 

coherence. The mean coherence difference between pre- and 

post-event time series has a min, max and average of 0.35, 0.64 

and 0.49. The threshold for coherence can have a minimum 

value of 0.35. 

 

3.3 Threshold mapping of affected areas 

Using the computed minimum threshold for mean coherence 

difference, the affected areas are extracted. For comparison a 

value of 0.40 was also tested. The resulting maps for values of 

0.35 and 0.40 are shown in Figure 10a and 10b, respectively. 

The top maps show the whole study area while the bottom maps 

are the zoomed-in views of the reported morning market in 

Wajima City that was razed by fire on January 1, 2024, after the 

earthquake. The polygons are the digitized areas of collapsed 

buildings.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Maps of affected areas using mean coherence 

difference values of (a) >= 0.35 and >=0.40. 

 

The maps extracted using mean coherence difference still 

includes unaffected areas. Combining the mean intensity 

difference with mean coherence difference was tested using 

Boolean operation. The mean intensity difference values of 3.0 

and 4.0 were mapped for comparison. The results showed that a 

threshold value of 4.0 was less noisy. Thus, said value was used 

to combine with mean coherence difference values.  Two 

  

a b 

a 

b 
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combinations were experimented: 1) mean coherence difference 

>=0.35 and mean intensity difference <= 4.0; and 2) mean 

coherence difference >=0.40 and mean intensity difference <= 

4.0. Since the 2 variables are inversely proportional so the <= 

was used for the mean intensity difference. In this case the latter 

served as filter. The resulting maps are shown in Figure 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Maps of affected areas using combination of (a) 

mean coherence difference >=0.40 and mean intensity 

difference <= 4.0; and (b) mean coherence difference >=0.35 

and mean intensity difference <= 4.0. 

 

The maps in Figure 11 are less noisy than the maps extracted 

using mean coherence difference only (Figure 10). Some areas 

that were classified as affected areas wrongly were negated by 

integrating the mean intensity difference. However, during close 

inspection, there were open areas such as parking spaces and 

football/baseball fields that were mapped as affected. Isolated 

cases of buildings/houses collapsed were not mapped wherever 

they are surrounded by standing buildings. As reported, most of 

these collapsed houses were already old, thus the type of 

construction materials affects the strength of the backscatter. 

The resolution of the image at around 13m also contributed to 

some misclassifications. Usually, scatterers such as plain 

concrete and galvanized iron sheet roofing will dominate the 

backscatter in a mixed type of buildings/houses in urban setting.  

 

The study area was also mapped using RGB composite using 

the mean of coherence, mean of intensity of the post-event 

images and the difference in the mean of intensity of pre- and 

post-event images from time-series stacking. The color 

composite map is shown in Figure 12 with the map taken from 

the The Yomiuri Shimbun (2024) based on the received data 

from aerial photographs taken by Kokusai Kogyo Co., for 

validation. 

 

High resolution optical images, e.g. aerial photography, can 

effectively show areas of devastation from natural disasters but 

has limited area of coverage. Satellite images that have high 

spatial resolution can also be used but usually, they are not 

available freely. While Sentinel data are readily available at no 

cost they are also limited by spatial resolution. However, for 

indication of disaster affected area, these satellite images can 

already provide general information of the extent of the disaster.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. (Top) RGB composite map of affected areas from 

time-series averaging of coherence and intensity and (bottom) 

map of destroyed buildings in Wajima City (The Yomiuri 

Shimbun, 2024b). 

 

3.4 Accuracy assessment 

 

The accuracy assessment was made only on fire-razed morning 

market in Wajima City. The digitized polygons covering the 

collapsed/devastated buildings were used as ground truth. The 

conditions set as discussed above were the best representation 

of the affected areas. Table 2 is the summary of the accuracy 

assessment. 

 

Conditions 
Accurately 

predicted 

Under 

predicted 

Over 

predicted 

A. Mean coh 

diff≥0.35 
73.47 26.53 30.95 

B. Mean coh 

diff≥0.40 
62.93 37.07 21.77 

C. Mean coh 

diff≥0.35 and 

Mean int 

diff≤4.0 

64.97 35.03 20.75 

D. Mean coh 

diff≥0.40 and 

Mean int 

diff≤4.0 

57.14 42.86 11.22 

Table 2. Accuracy assessment (%) 

 

Although condition A has the highest percentage of pixels 

accurately predicted and the lowest underpredicted or 

unidentified pixels, it has also the highest overpredicted pixels 

or pixels falsely identified as collapsed buildings. Condition C 

negated the overprediction of Condition A, but it has resulted in 

lowering the accuracy and increasing the missed pixels but 

  

a b 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3-2024 
ISPRS TC III Mid-term Symposium “Beyond the canopy: technologies and applications of remote sensing”, 4–8 November 2024, Belém, Brazil

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-3-2024-347-2024 | © Author(s) 2024. CC BY 4.0 License.

 
352



 

performed better than Conditions B and D. Further studies 

could improve the results by incorporating other conditions or 

improving the process.  

 

4. Conclusions 

A combination of coherence and intensity images can be used to 

identify in general areas affected by earthquake right after 

disaster using RGB color composite. However, the method 

presented cannot identify specific locations of isolated collapsed 

buildings/houses due to the limitation of the spatial resolution 

and large variations in the intensity caused by signal double 

bounces in the urban area. The type of roofing materials such as 

ceramic tiles, plain concrete and galvanized iron sheet also 

contribute to the variations. In the case of the study area where 

old houses are mixed with new buildings, the intensity within a 

pixel is dominated by strong scatterers. Thus, there are 

collapsed houses not mapped because the surrounding buildings 

are giving a strong backscatter. 

  

A minimum threshold of 0.35 from mean coherence difference 

between pre- and post-event maps derived from time series 

images can be used to extract affected area but this may vary 

depending on the area. Due to the large variations in the 

intensity, the mean or average of the intensity was used instead 

of the minimum. Threshold mapping using mean coherence 

difference>=0.35 gave the highest accuracy of identifying 

collapsed buildings at 73.47% but also has the highest false 

identification at 30.95%. To negate the overprediction the 

condition of mean intensity difference<=4.0 was added. This 

lowered the overprediction to 20.75% but as a consequence 

reduced the accuracy to 64.97%. 
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