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Abstract

This study aims to evaluate the effectiveness of a modified architecture of convolutional neural network (CNN) VGG19 for detecting
fires and changes in land use and land cover classification (LULC). Remote sensing data from the Landsat 8 Operational Land
Imagery (OLI) satellite was used to collect images from two distinct regions, one of which was used to obtain a dataset containing
1000 labeled images, and the other region was used to perform inference and verify the generalization of the model in an area with
a high annual occurrence of fires. Analyses were conducted using a time series of normalized difference vegetation index (NDVI)
and complementary cumulative distribution function (CCDF), to determine the potential for analysis in that area and define the
periods of burning, pre-burning and post-burning. The VGG19 architecture was modified to maintain the input sizes of the images,
resulting in a significant increase of 20.90 percentage points in the F1 score compared to the original architecture, as well as a
68.76% reduction in convergence time. In addition, the Gradient-weighted Class Activation Mapping (Grad-CAM) technique was
used to improve the interpretability of the model at the moment of inference. The proposed methodology offers an approach for

detecting burns by altering the LULC classification, and the modified VGG19 showed superior results.

1. Introduction

A change in land cover refers to the modification in the
terrestrial environment, including alterations in hydrological
resources, soil composition, and atmospheric contamination.
Meanwhile, land use pertains to how human behavior affects
physical changes on the Earth’s surface (Atef et al., 2023;
Voelsen et al., 2023). Bridging these concepts, the classification
LULC emerges as a pivotal task, aiming to categorize Earth’s
surface into specific land use and land cover classes (Siddam-
setty et al., 2023).

The advancement of Remote Sensing (RS) technology has sim-
plified the image acquisition process and reduced the associ-
ated costs, resulting in an abundance of available data. Con-
sequently, RS imagery has become a crucial data source for
LULC classification, offering benefits such as wide coverage
and continuous monitoring. This enables the collection of time-
series data, essential for comprehending the dynamics of land
use and land cover changes over time (Zhao et al., 2023).

In the recent decades, there has been an exponential increase in
the satellite images and data, driven by advancements in the
RS technology and the launch of numerous satellites. Not-
ably, the Landsat mission, a collaborative effort between Na-
tional Aeronautics and Space Administration (NASA) and the
United States Geological Survey (USGS), currently comprises
nine Earth Observation (EO) satellites that provide freely ac-
cessible data. EO has made it possible to assess the impacts of
the tragedy that occurred in 2019 with the collapse of the Bru-
madinho tailings dam (Rotta et al., 2020), estimate the depth
of the euphotic zone and the depth of the Secchi disk, contrib-
uting significantly to water quality monitoring (Gomes et al.,
2020), among other diverse applications, capable of predicting

or monitoring phenomena without the need for physical contact
with the target of study.

The assessment of variations in LULC changes enables a com-
prehensive evaluation of their effects on ecosystems, biod-
iversity, carbon equilibrium, and water resources, among other
environmental aspects (Wang et al., 2023). These changes influ-
ence land-atmosphere interactions, the surface energy budget,
and the hydrological cycle, which are vital for the manage-
ment of agriculture, forests, and water resources (Tariq et al.,
2023). In the face of adversities, wildfires emerge as a volatile
and ruinous element, capable of profoundly transforming the
landscape (Gajendiran et al., 2024).

In recent years, the integration of convolutional neural networks
(CNNs) in RS has contributed to significant advances (Wang
et al., 2022). In the work proposed by Hang et al. (2020),
a new framework designed for the integration of hyperspec-
tral imagery and light detection ranging (LiDAR) data using
two coupled CNNs was presented. This framework uses one
CNN to learn spectral features from hyperspectral data, and
the other is used to capture elevation information from LiDAR
data. Using the EuroSAT dataset from the Sentinel-2 satellite,
Dewangkoro and Arymurthy (2021) take advantage of CNNs
to advance LULC classification. Renowned CNN architectures
such as VGG19, ResNet50 and InceptionV3 were employed
for feature extraction, enhanced by the integration of a Chan-
nel Squeeze and Spatial Excitation (sSE) block.

The layered structure of CNNs, particularly the convolutional
layers, proves highly effective in extracting essential features
from images. CNNs use a mathematical process known as con-
volution. This process is a specific type of linear operation.
Essentially, CNNs belong to a category of neural networks that
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incorporate convolution instead of the typical matrix multiplic-
ation in at least one layer of the network. CNNs are designed
to automatically learn spatial hierarchies of features from input
images in an adaptive manner. This is facilitated through the
utilization of various building blocks, including convolutional
layers, clustering layers, and fully connected layers (Zhao et
al., 2024). Convolutional layers act as feature extractors, tra-
versing the input image and conducting convolution operations
to identify patterns such as edges, textures and shapes. Ad-
ditionally, CNNs demonstrate robustness in handling the con-
siderable variability inherent in satellite imagery, arising from
fluctuations in lighting, weather conditions, and seasonal vari-
ations. Their ability to generalize effectively from training
data to novel, unseen images renders them dependable large-
scale and automated LULC mapping tasks (Tsenov et al., 2023;
Goodfellow et al., 2016).

Thus, the aim of this study is to propose the identification of
fires by detecting changes in the LULC classification using
the modified VGG19 architecture. In addition, a quantitative
analysis will be carried out, comparing machine learning met-
rics, between the original VGG19 model and this adapted ver-
sion. The paper is organized as follows: section 2 presents
the methodology followed, including study area, dataset and
pre-processing, preliminary analysis and architecture model-
ing. Section 3 presents the results and discussions obtained
through the methodology used. Section 4 presents the conclu-
sions reached from the results as well as proposals for future
studies.

2. Methodology

2.1 Study area and criteria
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Figure 1. Pimentel Barbosa IL, Geographical location.

The study area under analysis encompasses a Brazilian Indi-
genous Land (IL) situated between the municipalities of Ca-
narana and Ribeirdo Cascalheira, with a population of 2,369
native peoples (Socioambiental, 2022). This region was se-
lected due to its strong annual burning activity, situated in the
southern portion recognized for having the highest annual burn-
ing activity globally, commonly referred as “Arc of Deforesta-
tion in Brazil” (Giglio et al., 2006).

This study used digital remote sensing data from the OLI sensor
available on the Landsat 8 satellite, obtained through the Earth
Explorer free acquisition service. The acquired scenes were

collected from September 2015 to July 2017. Figure 1 shows
the geographical location of the study area. In the acquisition
of the orbital images, a criterion of maximum interval of three
months was adhered to.

The minimum interval between scenes was set at 16 days, based
on the revisit time of the Landsat 8 OLI satellite. This satel-
lite has a total of 11 spectral bands, of which 9 belong to the
OLI sensor and 2 are obtained by the Thermal Infrared Sensor
(TIRS), which will not be the subject of this study. Another
point to note is its spatial resolution of 30 meters, with the ex-
ception of band 8 (panchromatic) which has a spatial resolution
of 15 meters.

2.2 Dataset and pre-processing

The on-demand acquisition service provided by Earth Explorer
of the USGS was used. To build the training and validation
data set, this service provided a scene of the Sdo Francisco
River region, located between the states of Pernambuco and
Bahia, captured by the LANDSAT 8 OLI satellite. To perform
the model’s inference and check its potential for generalization,
scenes were also obtained from the Pimentel Barbosa IL region,
from September 2015 to July 2017, which were not correlated
temporally or spatially. Both scenes obtained from the Pimen-
tel Barbosa IL and Sdo Francisco River regions were subjected
to preliminary pre-processing in order to reduce the complete
scene into a smaller one, since the scene obtained covers a much
larger area than that required for this study. In addition, to ob-
tain the NDVI in the inference region, the offset method was
used to obtain the radiation levels.

After obtaining the scene of the Sdo Francisco River region,
Quantum Geographic Information System (QGIS) software
was used to create a shapefile containing 1000 points of in-
terest, which were labeled with five different types of LULC.
Each point of interest was assigned to a corresponding class,
allowing geospatial information to be associated with the re-
spective types of features through the shapefile. The shapefile
was used to extract and crop 36x36 pixel images of the regions
of interest (ROI) belonging to the classes: ”Agriculture”, ”Wa-
ter”, "Unvegetated area”, “Forest” and ’Soil”. This process was
carried out using a Python script on the Google Colab platform.
This approach made it possible to create a dataset with 1000
labeled images. First of all, it should be noted that spectral con-
fusion in the context of small-scale images can be a significant
challenge in remote sensing and image classification. This is
particularly true for ROIs, where the spectral signatures of dif-
ferent materials or land covers are very close together. In such
images, a single pixel can contain mixed signals from several
sources, leading to ambiguities in classification and analysis.
This phenomenon is exacerbated when the pixel is placed in a
wider spatial context, where it has to be differentiated from a
diverse set of surrounding elements (Liu et al., 2020).

2.3 Preliminary analysis

To ensure the analysis potential of this region, statistical eval-
uations were conducted, including the Complementary Cumu-
lative Distribution Function (CCDF). The NDVI was extracted
from each scene to assess vegetation behavior. Subsequently,
a time series of the NDVI index was generated, by index. Re-
cognizing the analytical opportunities presented by this region,
modeling of the VGG19 architecture, as shown in Figure 2.
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Figure 2. Workflow for LULC classification.

2.4 Architecture modeling and evaluation methods

Based on the database, two architectures were trained: VGG19
and its adapted version. Both architectures were trained using
the same hyperparameters, which included a Batch Size of 32
and Momentum of 0.9 (Nesterov, 1983). However, empirical
tests were conducted on both architectures to determine the op-
timal learning rate. Thus, it was adjusted individually for each
architecture, being set at 0.0009 and 0.0045 for the VGG19 and
the adapted VGG19, respectively. It is important to note that
both configurations adopted the Stochastic Gradient Descent
(SGD) optimizer during the training process (Robbins, 1951;
Kiefer, Wolfowitz 1952). To analyze the performance of both
models and compare them, cross-validation was applied with k
=5 folds. In the end, a total confusion matrix of all the folds was
obtained, which was then used to extract the machine learning
metrics: Accuracy, Precision, Recall and F1-score, represented
by equations (1), (2), (3), (4) respectively.

TP +TN

ACCUTacy:TP+TN+FP+FN (D)
. TP
Precision = TP+ FP 2)
TP
Recall = m (3)
=2 Precision - Recall “)

" Precision + Recall

where TP refers to the true positive rate, TN to the true negative
rate, FP to the false positive rate and FN to the false negative
rate.

In addition, in this study, both models were evaluated using a
visual explanation called Gradient-weighted Class Activation
Mapping (Grad-CAM) proposed by Selvaraju et al. (2020).
This approach introduces a technique that enhances the trans-
parency and interpretability of decisions made by a wide range
of CNN based models. The authors propose this technique by
leveraging gradients from target concepts flowing into the final
convolutional layer. These gradients create a coarse localization
map, highlighting significant regions in an image that contribute
to predicting a specific concept. Notably, Grad-CAM is applic-
able to various CNN model families, including those with fully-
connected layers, structured outputs, and multimodal inputs.
The paper demonstrates its effectiveness in image classification,
captioning, and visual question answering tasks, shedding light
on model failure modes, robustness to adversarial images, and
improved localization. Additionally, Grad-CAM helps users es-
tablish trust in model predictions, even for non-attention-based
models, by providing interpretable visualizations

3. Results and discussion

AfterNDVI Time Series and CCDF analysisobtaining In the
first analysis, the average NDVI Index was observed from
September 2015 to July 2017, as can be seen in Figure 3. An
upward trend in NDVI values can be seen from September 2015
to March 2016, indicating a recovery in vegetation during this
period. However, from that date onwards, the NDVI index
showed a significant increase in the magnitude of the decay rate
in July 2016 until it reached its minimum inflection point in
September 2016, which was considered the burning period in
this study. After this fall, the index recovered again until May
2017, when it fell again.
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Figure 4. CCDF in Pre-burn, Burn and Post-burn.

After determining the burn period, the CCDF curves were ob-
tained for the pre-burn, burn and post-burn periods, as shown
in Figure 4. According to the appropriate NDVI index ranges
presented by Akbar et al. (2019), it was observed that the pre-
burn curve showed that the probability of occurrence of NDVI
indices corresponding to sparse vegetation was 79% and 53%
for dense vegetation. During the burning period, the probabil-
ity of NDVI values classified as sparse vegetation is 36% and
only 27% for dense vegetation. The post-burn curve shows
93% sparse vegetation and 36.5% dense vegetation. There-
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fore, during the burning period, the probability of NDVI values
classified as sparse vegetation and dense vegetation decreases
dramatically compared to the burning and pre-burning periods,
confirming that the fires at this time significantly affected the
density of vegetation in the region. The high probability of
sparse vegetation in the post-burn curve shows that the region’s
vegetation is in the recovery phase, given the high probability
of sparse vegetation in this region, making it clear that the time
interval was not enough to “recover” the region’s vegetation.

3.1 Modified VGG19

Initially, it was observed that in the VGG19 model, the size of
the feature maps decayed rapidly, which resulted in a significant
loss of relevant information and led the training to underfitting.
To overcome this challenge, it became necessary to resize the
images during training in VGG19. However, resizing the im-
ages also introduces more spectral confusion, which can have a
negative impact on the model’s performance. Given this com-
plexity, the adaptation of the architecture focused on maintain-
ing the original size of the input images (36x36 pixels). In or-
der to achieve this goal, it was decided to remove the initial and
final convolution blocks, reducing the number of blocks from
five to three, as illustrated in Figure 5. Additionally, in order
to avoid overfitting, dropout layers, L2 regularization were in-
corporated into the adapted VGG19. Moreover, it was observed
that both architectures adjusted slowly at certain times. To mit-
igate this issue, the inclusion of Batch Normalization layers had
a significant impact.
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(a) VGGI09. (b) Modified VGG19.

Figure 5. VGG19 and Adapted VGG19 architecture.
3.2 Training performance comparison

Cross-validation with k = 5 was carried out on both architec-
tures to evaluate performance. Performance metrics such as
precision, recovery, accuracy and fl score were also obtained.
The loss curve for both architectures can be seen in Figure 6.
Both curves represent the average training loss over the 5 folds.
It was observed that the modified VGG19, despite starting with
a higher loss, reaches a loss close to zero approximately after
epoch 150. In comparison, the VGG19 reaches these same val-
ues approximately after epoch 220. This shows that the modi-
fied VGG19 was able to reduce loss more quickly than its ori-
ginal counterpart. In addition, both architectures were trained
on 250 epochs for comparison. The number of epochs was ad-
justed to be unbiased, carefully evaluating the evolution of the
models through validation sets.

Figure 7 shows that at a certain point, the accuracy of VGG19
seems to stagnate, remaining practically constant for a period.
This may indicate that the model has reached a temporary plat-
eau, perhaps due to a local minimum in the loss function. How-
ever, after this stagnation phase, the curve rises again.On the
other hand, the modified VGG19 shows faster and more effi-
cient progress. The accuracy curve of this modified version
quickly approaches 100%, indicating that the model achieved
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Figure 6. Average loss for 5 folds.

high accuracy well before the standard VGG19. This suggests
that the modifications implemented to the network architecture
have been successful in optimizing the learning process, allow-
ing the model to learn more complex patterns more efficiently
or to be better adjusted to the specifics of the data set in ques-
tion.
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Figure 7. Average accuracy for 5 folds.

The average recall curve for training both architectures is shown
in Figure 8. It can be seen that VGG19 initially starts off com-
pletely stagnant, remaining constant until epoch 70. This sug-
gests that the model had difficulty recovering the true positives
at the start of training. On the other hand, the recall curve for
the modified VGG19 shows a different behavior. It starts rising
from the beginning of training, which indicates that the model
is already capturing true positive examples from the first few
epochs. In addition, the absence of stagnation suggests that the
modifications made to the network architecture have allowed
the model to learn more quickly to identify true positives.

3.3 Validation performance comparison

The metrics were collected from the predictions at the end of
each fold for data not seen during training, thus obtaining a total
confusion matrix with all the predictions made. The confusion
matrix in Figure 9 shows the prediction performance of VGG19
without adaptations, while Figure 10 shows the confusion mat-
rix for modified VGG19
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With the confusion matrix it is possible to evaluate the metrics
and compare performance in terms of accuracy, precision, recall
and f1-score, as shown in Table 1. It is clear that the adapted

VGG19 significantly outperformed the original VGG19 in all
the metrics evaluated, indicating that the modifications made to
the architecture contributed positively to the model’s perform-
ance in this specific data set.

Models | Accuracy | Precision | Recall | F1-Score
VGG19 87.00 76.74 67.50 69.02
VG§19 95.96 89.36 88.90 88.92
Modified

Table 1. Metrics comparison in percentages.

It should be noted that the adapted VGG19 achieved a signi-
ficant increase of 20.90 percentage points in the fl-score. In
addition, there was a reduction in training time. While the ori-
ginal VGG19 required 653 seconds, the adapted architecture
converged in 204 seconds. In other words, the adapted version
had a convergence rate three times faster than the original, rep-
resenting a reduction of 68.76%.

3.4 Test performance comparison and burning detection

To test and compare the models, 3 samples were obtained from
the pre-burning, burning and post-burning periods at IL. Pimen-
tel Barbosa. In addition, the Grad-CAM technique was used
to better interpret the model. As can be seen in Figure 11, the
modified VGG19 was able to detect the change in LULC dur-
ing the burning period. Through this approach, it can be said
that there was a burn, since drastic changes in LULC within
forested areas in this context are highly correlated with burn-
ing. Furthermore, using Grad-CAM it is possible to verify that
the activation regions that led to the classification are coherent.
Normal VGG19, on the other hand, showed difficulties in clas-
sification, as was also evidenced by Grad-CAM.
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Figure 11. Comparison of the models for the first inference

sample.

As can be seen in Figure 12, the modified VGG19 was able
to detect the variation in LULC during the firing period. This
once again demonstrates the superiority of the adapted VGG19
in terms of the complexities analyzed.

In Figure 13, it can be seen that the degradation caused by the
burn has consumed a large part of the vegetation, which has led
VGG19 to classify the region as soil in the post-burn period as
well. In general, in all three samples, the modified VGG19 was
able to detect the change in LULC, which in this context is most
likely to have been caused by a burn. Normal VGG19, on the
other hand, was unable to generalize or even predict the classes
correctly, as evidenced by Grad-CAM.
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4. Conclusions and future studies

This study presents an approach to burn detection by evaluat-
ing changes in Land Use and Land Cover (LULC) classifica-
tion using a modified VGG19 architecture. The study’s infer-
ence area was a Brazilian IL located between the municipalities
of Canarana and Ribeirdo Cascalheira. The research method-
ology consisted of building a training and validation database,
pre-processing, preliminary analysis, architecture modeling and
performance comparison. To collect the data set for training
and validation, Earth Explorer’s on-demand acquisition service
was used to obtain a satellite image of the Sdo Francisco River
region, this region being neither spatially nor temporally correl-
ated with the inference region where the tests were conducted.

The VGGI19 architecture was modified to maintain the input
size of the images (36x36). The modifications included remov-
ing the initial and final convolution blocks and reducing the
number of convolutional blocks from five to three. Dropout lay-
ers, L2 regularization, and the Leaky ReLU activation function
were also utilized. The study then compared the performance of
the modified VGG19 model with the original VGG19 in terms
of accuracy, precision, recovery and fl score. Furthermore, it
should be noted that the adapted VGG19 obtained a significant
increase of 20.90 percentage points in the f1 score.

The study found that the modified VGG19 outperformed the
original architecture in all evaluated metrics, with a signific-
ant increase in the fl-score. Additionally, the adapted model
achieved a convergence rate three times faster than its original
counterpart. In the test dataset, the modified VGG19 identified
changes in LULC during the pre-burning, burning, and post-
burning periods. On all occasions, the model could identify the

change from forest to vegetation after the burn. In contrast, the
original VGG19 failed to generalize significantly for the LULC
classification task. Overall, the study concludes that the pro-
posed methodology can be used in burn classification through
changes in LULC classification.

Convolutional neural networks, in particular CNNs, are occupy-
ing an essential place in LULC mapping and are proving to be
highly effective in extracting essential features from images.
This research also highlights the usefulness of CNNs in deal-
ing with the considerable variability inherent in satellite images.
The results of this study contribute to the field of remote sensing
technology and land cover classification and offer promising
potential for further applications in related research areas.

For future research, it is advisable to utilize high or medium-
resolution satellite images or images obtained from drones. Ad-
ditionally, consider using multispectral and thermal cameras.
Explore other neural network architectures such as YOLO,
Unet, and SegNet. Regarding modifications to VGG19, fur-
ther enhancements can be made, such as incorporating different
activation functions and including transformer blocks.
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