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Abstract

Due to recent technological developments, the acquisition and availability of deep-sea imagery has increased exponentially in the
last years, leading to an increasing backlog in image annotation and processing, attributable to limited specialized human resources.
In this work, we investigate the performance of well-established convolutional neural networks and Vision Transformer (ViT)
based architectures, namely, DeepLabv3+ and UNETR, for the segmentation of fauna in deep-sea images. The dataset consists
of images captured at the Lucky Strike Vent field, located on the mid-Atlantic ridge, of three edifices named Montsegur, White
Castle, and Eiffel Tower. Our experimental investigation reveals that the Vision Transformer consistently outperforms the fully
convolutional deep learning architecture, by approximately 14% in terms of F1-Score, demonstrating the effectiveness of ViTs in
capturing intricate patterns and long-range dependencies present in deep-sea imagery. Our findings highlight the potential of ViTs
as a promising approach for accurate semantic segmentation in challenging environmental contexts, paving the way for improved
understanding and analysis of deep-sea ecosystems.

1. Introduction

Since the discovery of deep-sea hydrothermal vents, there has
been a growing wave of economic and ecological interest in
those environments. The related anthropogenic activities have,
however, raised concerns among scholars and specialists about
the proper analysis and preservation of such ecosystems. For-
tunately, alongside the increasing availability of remote sensing
data captured from drones, planes and satellites, there has been
a rapid increase in the quantity and sizes of deep underwater
image datasets. But such an increase in volume and quality,
particularly in terms of image resolution, has generated a strong
demand for annotating deep-sea images, which is a costly and
time-consuming process that requires highly trained profession-
als (Schoening et al., 2016). In order to cope with such a de-
mand, several solutions have been proposed to automate the
analysis of the ever-expanding datasets.

To date, a number of methods following the traditional pro-
cessing chains of computer vision (CV) and machine learning
(ML) have been proposed. We can mention a few exemplary
cases. Schoening et al. (2012) proposed a semi-automatic im-
age analysis system for assessing megafaunal densities at the
Artic Deep Sea Observatory. The system comprises an en-
semble of Support Vector Machine (SVM) classifiers, each as-

sociated with a particular species. A Maximum Likelihood
Classifier (MLC) combined with two decision tree methods –
Quick Unbiased Efficient Statistical Tree (QUEST) (Loh and
Shih, 1997) and Classification Rule with Unbiased Interaction
Selection and Estimation (CRUISE) (Kim and Loh, 2001) –
were employed in Ierodiaconou et al. (2011) for detecting benthic
biological communities, using video imagery among other cap-
turing systems. Also using different imaging systems, Schmid
et al. (2016); Faillettaz et al. (2016), employed Random Forest
(RF) for zooplankton analysis. The spatio-temporal distribu-
tion of shrimps was the objective of Osterloff et al. (2016).
In that work, images were automatically pre-processed using a
super-pixel segmentation algorithm named Simple Linear Iter-
ative Clustering (SLIC) (Achanta et al., 2012), and RF was used
to classify the super-pixels. Sharma et al. (2010) used shal-
low Artificial Neural Networks (ANN) to estimate the occur-
rence of deep-sea minerals using seafloor images. However, re-
gardless of their specific objectives, the aforementioned efforts
were mainly based on traditional image analysis approaches
that rely on hand-crafted features and shallow-learning tech-
niques, which are deficient in producing expressive image rep-
resentations for proper pattern recognition.

Deep Learning (DL) techniques emerged in the last decade as
the state-of-the-art in computer vision and image-based pattern
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recognition tasks, including deep-sea applications. Villon et al.
(2018) used Convolutional Neural Networks (CNNs) to identify
coral reef fish species. In Durden et al. (2021) CNNs were
trained to classify fauna in seabed images. Xue et al. (2021)
studied the performance of several state-of-the-art DL architec-
tures for identifying deep-sea debris. A method for recogni-
tion and tracking of deep-sea organisms was proposed in Lu
et al. (2020), using the YOLO model (Redmon et al., 2016)
as an object detector. For another deep-sea application, i.e.,
visual monitoring, Gradient Generation Adversarial Networks
(GGAN) were proposed in Ma et al. (2021) to restore noisy
images from the bottom of the sea. Juliani and Juliani (2021)
employed a model based on the U-Net architecture (Ronneber-
ger et al., 2015) for segmenting seafloor mounts directly over
raw bathymetry data. More recently, Katija and co-authors in-
troduced the FathomNet (Katija et al., 2022), which provides
annotated and localized imagery for developing ML algorithms.
They also provide a set of ML models trained to detect the fauna
present in the underwater image data.

Recently, Vision Transformers (ViTs) (Dosovitskiy et al., 2021)
have demonstrated remarkable capabilities in various computer
vision applications. Unlike conventional CNNs, which primar-
ily focus on local image features, ViTs excel at capturing the
relationships among distant parts of an image. This holistic
perspective has proved to be very useful for tasks like object de-
tection, image classification and semantic segmentation. Con-
sequently, ViTs have delivered state-of-the-art performance and
have even surpassed CNNs in those domains. In deep-sea ap-
plications, architectures composed of transformer blocks have
been employed for underwater image enhancement (Peng et al.,
2023; Yang et al., 2023). A convolutional vision transformer
was proposed in Rajani et al. (2023) for segmenting substrata
in sonar images. Target categories in underwater images have
been identified in Sun et al. (2022) through object detection sup-
ported by the Mask-RCNN, utilizing a backbone comprised of
Swin-Transformer (Liu et al., 2021) blocks.

Regarding the specific application of this work – semantic seg-
mentation of benthic fauna communities – a few DL-based meth-
ods have been proposed. For instance, Pavoni et al. (2021) em-
ployed the DeepLabv3+ model (Chen et al., 2018) for automatic
segmentation of corals. Shashidhara et al. (2020) leveraged the
U-Net (Ronneberger et al., 2015)for scale worms segmentation.
Addressing the scarcity of labeled data for deep-sea applica-
tions, Lütjens and Sternberg (2021) proposed innovative data
augmentation techniques involving modifications to the entire
image composition and additional alterations for synthetically
generating them within a CNN-based instance segmentation ap-
proach aimed at counting a limited set of morphotypes.

Despite ongoing efforts, the use of deep learning-based auto-
matic recognition techniques remains limited by the wide vari-
ety of species and complex underwater environments found in
benthic fauna communities. Such limited capacity hinders the
ability to monitor and understand the related ecosystems effi-
ciently.

This work seeks to investigate the use of ViTs-based DL ar-
chitectures for semantic segmentation of fauna in deep-benthic
environments. For that purpose we compare a CNN and a ViT-
based architecture for the task. To the best of our knowledge,
no prior research has employed Vision Transformers (ViTs) for
the semantic segmentation of fauna in deep-benthic environ-
ments, nor has comprehensively compared the performance of

convolutional and vision transformer-based architectures in that
application.

The deep learning models were evaluated using three image
datasets (Ramière et al., 2023), which contain RGB images ac-
quired in different locations at the 1700m deep Lucky Strike
vent field region (Langmuir C et al., 1993).

The remainder of this paper is organized as follows. Section
2 presents the DL-based architectures evaluated in this work.
Section 3 describes the datasets, the experimental setup, the
network implementations and the adopted performance metrics.
Section 4 presents the obtained results, and finally, Section 5
presents conclusions and directions for future research.

2. Methods

Semantic segmentation is most effectively accomplished using
fully convolutional components. These networks are usually
made up of an encoder stage that reduces spatial resolution
through convolution and pooling operations across layers, fol-
lowed by a decoder stage that recovers the original spatial res-
olution. Architectures with encoders composed of consecutive
ViT blocks have recently been proposed.

In the next sections, we will briefly describe the neural network
models evaluated in this work, namely DeepLabv3+ (Chen et
al., 2018) and UNETR (Hatamizadeh et al., 2022).

Among several alternatives that can be explored in semantic
segmentation, DeepLabv3+ is renowned for its strong perform-
ance in this task, especially in scenarios where high-resolution
segmentation is required. On the other hand, UNETR has demon-
strated state-of-the-art performance in various segmentation bench-
marks, showcasing its effectiveness in capturing complex spa-
tial relationships within images.

2.1 Fully Convolutional Network: DeepLabv3+

The DeepLab series of fully convolutional CNN architectures
progressively refined semantic image segmentation through a
number of innovations: atrous convolution in version 1, which
enlarged the filter receptive fields for capturing broader context;
Atrous Spatial Pyramidal Pooling (ASPP) in version 2, which
captured multi-scale information; and image pooling in version
3, which incorporated global context.

DeepLabv3+ (Chen et al., 2018) builds upon DeepLabv3 (Gao,
2023) by adding a decoder to improve segmentation quality,
especially at object boundaries. It upsamples the encoder out-
put, i.e., high-level features, and combines it with low-level fea-
tures from the backbone network to preserve spatial details. The
model allows using different architectures as encoders, such as
Xception (Chollet, 2017). In this work, we used the ResNet-
101 (He et al., 2016) as the model’s backbone. Figure 1 depicts
the components of DeepLabv3+ architecture.

2.2 Hybrid Convolutional and Transformer Network: UN-
ETR

Originally proposed for medical image applications, the UN-
ETR (Hatamizadeh et al., 2022) is a hybrid network that adopts
a U-Net (Ronneberger et al., 2015) architecture for segment-
ing 3D images. It uses ViT blocks as encoder and a fully con-
volutional network as a decoder. The encoder learns features
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Figure 1. DeepLabv3+ architecture (Torres et al., 2021).

from input image patches in such a way that allows it to capture
global information and long-range spatial dependencies. The
encoder directly communicates with the decoder through skip
connections to extract multi-scale information and integrate it
to make pixel-wise predictions.

The UNETR encoder operates over 1D sequences, whereby the
input image is partitioned into patches of equal size and repres-
ented in an embedding space. Then, a 1D learnable positional
embedding is added to the embeddings to preserve spatial in-
formation. Subsequently, the patches undergo multiple multi-
head self-attention blocks before reaching the decoding stage.
The transformation to the segmentation mask space is achieved
through CNN up-sampling combined with multi-level feature
aggregation.

The details of UNETR architecture are depicted in Figure 2 and
described as follows. The encoder is made up of 12 ViT blocks
where each block consists of 12 Multi-Head Self-Attention (MH-
SA) and MultiLayer Perceptron (MLP) components. Addition-
ally, Norm stages carry out layer normalization operations, while
patching and flattening procedures are performed in Linear pro-
jection and Embedded Patches stages. The decoder is assembled
through the integration of convolution-based operations, spe-
cifically convolution (conv) and deconvolution (deconv) tech-
niques, along with batch normalization (BatchNorm) layers and
concatenation blocks.

3. Experimental analysis

The experiments conducted in this work aim to evaluate convo-
lutional and ViT-based architectures, i.e., DeepLabv3+ and UN-
ETR, in a particular semantic segmentation problem, namely
ridge and hydrothermal vent fauna classification. The datasets
used in this work comprise images taken from three different
locations on a particular vent field (Vega et al., 2024), as shown
in Figure 3.

3.1 Study area

The study areas are located at the Lucky Strike (LS) vent field
along the Mid-Atlantic Ridge (MAR, 37◦17N, 32◦16W ). LS is
a basalt-hosted hydrothermal vent field located near the Azores
Triple Junction on the slow-spreading MAR at a depth of ap-
proximately 1700 meters (Langmuir C et al., 1993). This large
hydrothermal field extends over more than 1 km2 and lies at
a seamount’s summit, harboring a central fossilized lava lake
surrounded by three volcanic cones and faults (Ondréas et al.,

2009). Figure 3 shows the LS localization as well as the po-
sitions of the Eiffel Tower (ET), Montsegur (MS), and White
Castle (WC) vent edifices.

3.2 Dataset

The dataset1 (Ramière et al., 2023) publicly available, com-
prises RGB images collected during the MoMARSAT 2018 cruise
(Cannat and Sarradin, 2018) using the Remotely Operated Vehicle
(ROV) Victor6000 over and around the following edifices (areas
hereafter called sites): Montsegur (MS, see Marticorena et al.
(2021)), White Castle (WC) and Eiffel Tower (ET, see Girard et
al. (2020)). Each image has a dimension of 4000×6000 pixels
with a spatial resolution of 0.001 m/pixel. Images of the seabed
have been acquired at one image every three seconds with a
downward-looking HD camera OTUS2 with navigation tracks.
Constant ROV altitude (5 ± 2 m) planned in parallel transects
spaced 1.8 m apart to ensure overlap between each captured
image at a constant speed of 0.5 m.s−1.

The acquired images were pre-processed in the following order.
First, blurred and obscured samples were removed. Second, a
non-overlapped set of pictures was selected using the MATISSE
3D software (Arnaubec et al., 2015) (Ifremer). The MATISSE
3D computes image overlaps through geo-referencing, using
the ROV’s navigation parameters and camera positions. Third,
the set of non-overlapped images of each site was corrected by
attenuating the blue color and homogenizing the light condi-
tions, contrast, and saturation in MATISSE 3D.

Figure 4 shows the categories considered in this study. Human
experts manually labeled each image at pixel scale, considering
an overall set of categories distributed differently among the
three sites – MS: 35, WC: 32, ET: 44. We have focused on a
subset of all possible categories, primarily those that are com-
mon to the three sites and with a number of images that allow
the splitting of the training, validation, and test sets.

As shown in Figure 4, the datasets associated with each site are
quite unbalanced regarding the number of samples in the dif-
ferent classes. For example, the classes of ”Blue glass sponge”
and ”Cataetyx laticeps” are represented less frequently in MS
and WC, while the ET site has more images than both MS and
WC combined. It is important to observe that when training a
classifier, if the problem of imbalanced classes is not explicitly
considered, undesirable biases may be introduced, and strongly

1 https://www.seanoe.org/data/00838/95015
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Figure 2. UNETR architecture (Hatamizadeh et al., 2022).

Figure 3. Map of the Lucky Strike vent field (northern
Mid-Atlantic Ridge) (Vega et al., 2024).

affect the classifier’s performance. In such cases, the classi-
fier will tend to predict the over-represented classes more fre-
quently due to the smaller impact of the errors associated with
their samples in computing overall accuracy. In the following
section, we will explain how we addressed class imbalance in
this work.

3.3 Classifiers training setup

For the accuracy assessment of fauna characterization, we split
every set of images into training, validation, and testing sub-
sets. More specifically, 60 % of the images from each site were
randomly selected for training, 20% for validation, and the re-
maining 20% for testing.

To compensate for class imbalance (see Figure 4), we adopted
a weighted cross-entropy cost function to train the networks.
The intention was to force the DNNs not to be biased towards
the over-represented classes by assigning larger weights to the
underrepresented ones. Equation 1 shows the loss function (L)
employed in the training of the networks.

L = − 1

N

N∑
n=1

C∑
c=1

∑
i<I,j<J

wc(yn(i, j) log(h(xn(i, j)))) (1)

In the equation, N stands for the number of training images,
xn represents the nth training image, while yn represents the
respective true label (or labels) codified into a one-hot vector.
Furthermore, h(xn) corresponds to a vector comprising the pre-
dicted likelihood values for each class of xn, computed with the
learned function h(·). Additionally, wc = N

Nc
is the weight of

each class c ∈ C, which comprises Nc images. Furthermore,
i, j represent the pixel coordinates, and I, J are the number of
pixels in rows and columns of the input images.

During training, the network backbones – ResNet-101 and ViT
Base – of DeepLabv3+ and UNETR, respectively, were initial-
ized with parameters trained on ImageNet datasets. The inputs
to the networks were patches with dimensions 512×512×3, ex-
tracted from the original full-resolution images. The patches
were extracted using a sliding window procedure, with an over-
lap of 5% in each direction. As in applications such as those ad-
dressed in (Vega et al., 2024), splitting the images into patches
functions as a data augmentation strategy and also eases GPU
memory handling. Additionally, the loss function was minim-
ized using the Adam optimizer (Kingma, 2017), with an ini-
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Figure 4. Number of images in each site and in fauna category.

Sites MS WC ET
Categories/DNNs DeepLabv3+ UNETR(Base) DeepLabv3+ UNETR(Base) DeepLabv3+ UNETR(Base)

Background 98.3 98.3 96.5 97.8 98 97.8
Bathymodiolus azoricus + microbial mats 69.3 64.7 20 40.1 52.1 58
Bathymodiolus azoricus 46.9 48.3 3.1 9.5 16.2 13.9
Blue glass sponge 62 66.4 0 0 9 59.5
Cataetyx laticeps 10.2 70 0.3 70.6 1.9 59.1
Microbial mat 66.1 69.7 2.3 9.9 14.3 36.7
Orange 46.1 47.3 46 47.6 30.1 26.4
Average F1 Score 56.9 66.3 24 39.3 31.6 50.2
mIoU 44.3 52 19.6 31 24.5 38

Table 1. Accuracy scores (%) of different semantic segmentation methods.

tial learning rate µ0 and momentum β1 equal to 0.0001 and
0.9, respectively. Aiming at better convergence during training,
we adopted a learning rate decay procedure following a cosine
function. During test time, the networks predict input patches
of the same dimension as in training, extracted in the same way
but with an overlap of 25 %.

The networks evaluated in this work were implemented using
the Pytorch deep learning framework on a hardware platform
with the following configuration: Intel(R) Xeon(R) processor,
64 GB of RAM, and NVIDIA GeForce RTX 2060Ti GPU. The
batch size was 4, and the early stopping procedure was used to
avoid overfitting. The patience parameter, which controls the
number of epochs without improvements in the validation loss,
was set to 50 for a total of 200 epochs. Some data augmenta-
tion operations were applied to all extracted patches, they were
color transformations for changing brightness, contrast, hue and
saturation.

3.4 Metrics

The performances of the classifiers in all experiments were ex-
pressed in terms of the average F1-scores and Intersection over
Union (IoU) computed for each individual class. Specifically,

the F1-score is expressed as the harmonic mean of Precision
(Pc) and Recall (Rc), for each class, as follows:

F1− scorec =
2× Pc ×Rc

Pc +Rc
, (2)

where:

Pc =
tp

tp + fp
. (3)

Rc =
tp

tp + fn
. (4)

The IoU on the other hand is expressed as:

IoUc =
tp

tp + fn + fp
. (5)

In equations 3, 4, and 5, tp denotes the number of pixels cor-
rectly assigned to class c (true positives); fp represents the num-
ber of pixels erroneously classified as class c (false positives);

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3-2024 
ISPRS TC III Mid-term Symposium “Beyond the canopy: technologies and applications of remote sensing”, 4–8 November 2024, Belém, Brazil

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-3-2024-387-2024 | © Author(s) 2024. CC BY 4.0 License.

 
391



and fn corresponds to the number of pixels of class c incorrectly
classified as another class (false negatives).

4. Results and discussion

Table 1 presents the accuracy results achieved by the DNN mod-
els in terms of F1 scores and mIoU. The models were trained
and tested using data from the same site, namely, MS, WC,
and ET. The results obtained for each fauna class are shown
in Table 1 in terms of F1 scores. The second to last row of
the table shows the average F1 class (considering all classes).
Also considering all classes, the last row of the table shows the
mean IoU. The highest performances achieved for the average
F1 score and mean IoU for each site are shown in bold digits.
Also, the best results for each class in each site are highlighted
in italics.

Figure 5 shows some exemplary images of the different sites,
together with the respective ground truths and predicted maps,
computed by both networks. The first column (figures 5(a)(d)(g))
shows the ground truth information; the second (figures 5(b)(e)(h),
shows the DeepLabv3+ predictions; and the third column (fig-
ures 5(c)(f)(i)) shows the UNETR predictions. In all images the
class maps (ground truth and predictions) are overlaid on the
original images, leaving the background class transparent.

The results show that the UNETR consistently outperformed
the DeepLabv3+ models. Specifically, UNTER surpassed Dee-
pLabv3+ performance by +9.4 %, +15.3 %, and + 18.6% for
MS, WC, and ET, respectively, in terms of F1 scores. These
results are consistent with previous deep semantic segmentation
works in which ViTs-based architectures, like UNETR, excel
in capturing global information and long-range dependencies
as compared to architectures based on convolutional kernels,
such as DeepLabv3+. Moreover, when comparing the results
obtained for each class, UNETR outperformed DeepLabv3+ in
the vast majority of cases. DeepLabv3+ achieved slightly better
scores in specific categories, namely ”bathimodiolus azoricus”
and ”orange,” but only within the ”ET edifice” site.

When analyzing the per class results, it is interesting to observe
that for the WC dataset, both models failed to recognize the
”blue glass sponge” category. This is likely due to the low
number of training samples representing that species. Addi-
tionally, the species occupy very small areas in the images,
which may make their recognition particularly difficult. Sim-
ilarly, poor results were also obtained for the ”bathimodiolus
azoricus” and ”microbial mats” classes, for the WC dataset,
in which the occurrence of those classes are also low (refer to
Figure 4). It is worth highlighting that the classes ”bathimodi-
olus azoricus” and ”microbial mats” use to appear together or
in close proximity (see figures 5(g)(h)(i)), so that the specialists
created a category denominated ”bathimodiolus azoricus + mi-
crobial mats”. This represents a challenge in terms of the mod-
els’ generalization capacity. On the other hand, both architec-
tures performed more accurately when recognizing ”b. azoricus
+ microbial mats” than separately (refer to Table 1). An inter-
esting case is class ”cataetyx laticeps” for which DeepLabv3+
performed poorly, while UNETR consistently achieved fair re-
cognition scores in all sites. The scores were as follows: 10.2%
vs. 70%, 0.3% vs. 70.6%, and 1.9% vs. 59.1%. Again, these
results underscore the efficiency of transformers in capturing
global information, which seems to be particularly beneficial in
scenarios where object characteristics align with morphotypes
present within this category. Figures 5(b)(c) in the bottom left

corner of both images shows examples of segmentation maps
produced by the networks for this category (which is a fish spe-
cies).

In general, considering results along the sites, models trained
and evaluated in MS achieved the highest accuracies, and the
lowest in WC. The results for the ET site were in between those
obtained for MS and WC. After carefully analyzing such a be-
havior, it is worth noting that the results for ”bathimodiolus
azoricus”, ”bathimodiolus azirocus + microbial mats”, ”blue
glass sponge” and ”microbial mats” in WC and ET were lower
than in MS, for both architectures. Interestingly, such categor-
ies are more frequent in MS than in WC and ET, and are less
represented in WC (refer to Figure 4). Thus, such underrepres-
entation adversely affected the overall performance of the mod-
els trained with images from the WC and ET sites. Additionally,
both architectures struggle to classify ”orange” accurately and
have obtained similar results among the three sites. The latter
should be due to the abundance of shells and white fragments
on the sea floor (see figures 5(e)(f)(h)(i)).

5. Conclusions

In this work, we compared convolutional and Vision Trans-
former (ViT)-based deep neural network architectures in the
identification ofsix fauna species within the Lucky Strike Vent
field. Utilizing RGB images obtained from a Remotely Op-
erated Vehicle (ROV), we evaluated the performance of models
with those architectures across three distinct sites within the hy-
drothermal vent environment: Montesegur (MS), White Castle
(WC), and Eiffel Tower (ET).

The study unveiled the potential of the tested networks as an
automated alternative for fauna characterization in deep-sea en-
vironments, where significant visual interpretation is often re-
quired. On average, UNETR consistently exhibited the highest
accuracy across the conducted experiments, although DeepLabv3+
occasionally surpassed it in a small number of cases.

Analyzing the results for the individual classes, it became ap-
parent that the limited availability of training samples and the
intricacies of each morphotype influenced both UNETR and
DeepLabv3+. Notably, ”microbial mats”, ”bathimodiolus azori-
cus”, and ”blue glass sponge” emerged as the most challenging
species for semantic segmentation methods.

Given the success of Vision Transformers (ViTs) in the task
addressed in this study, their capacity to capture long-term de-
pendencies and global information proved crucial. However,
we believe that exploring other approaches, such as Graph Neural
Networks (GNNs), could be a valuable direction for further re-
search in this context.

The study presented here represents a step in the monitoring of
deep-sea environments, offering a more agile, less subjective,
and more accurate approach. However, definitive and univer-
sally applicable conclusions regarding the strengths and limita-
tions of automatic mapping methods necessitate further invest-
igation, encompassing data that captures the full spectrum of
environmental diversity. Our ongoing research endeavors will
be dedicated to advancing towards this overarching goal.
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