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Abstract 

This study investigates the integration of spaceborne Global Ecosystem Dynamics Investigation (GEDI) LiDAR data with optical 
imagery from Linear Imaging Self Scanning Sensor (LISS IV), Sentinel-1 Synthetic Aperture Radar (SAR) and PALSAR data for 
continuous forest canopy height mapping in Kaziranga National Park (KNP), Assam for the years 2018 and 2022. Four machine 
learning models were trained and evaluated to assess the predictive ability of LISS IV data in conjunction with SAR variables. The 
mean canopy height was measured at approximately 8.58 m in 2018, which increased to about 9.07m in 2022. Results reveal 
Extreme Gradient Boosting (XGB) as the top-performing model, achieving an RMSE of 5.47m and an R2 of 0.55. In comparison, 
Random Forest (RF), Support Vector Machine (SVM), and k-Nearest Neighbors (kNN) achieved RMSE values of 5.49, 5.51, and 
5.73, respectively. Analysis shows a prevalent occurrence of canopy heights below 5 meters in KNP (more than 35% of the area), 
while taller canopies beyond 20m can be found in less than 5% of the area. This finding underscores the importance of integrating 
satellite data and machine learning and highlights the novel application of LISS IV data in enhancing canopy height mapping. 
Furthermore, it represents the first comprehensive attempt to map canopy height in KNP, laying the groundwork for further research 
on biomass assessment and carbon sequestration in this vital biodiversity hotspot. Overall, the study highlights the potential of 
leveraging advanced remote sensing technologies and machine learning approaches for improved understanding and management of 
forest ecosystems. 

1. Introduction

Forest canopy height (CH) serves as both a product and driver 
of ecosystem processes, influencing biomass allocation, carbon 
storage, productivity, and biodiversity (Zhang et al., 2016). 
Accurate estimates of canopy height are crucial for assessing 
parameters like above-ground biomass, carbon stock, canopy 
complexity, and habitat quality (Li et al., 2015). Large-scale 
monitoring of canopy height is especially essential in the 
protected areas as it helps in understanding the disturbances, 
deforestation, and degradation dynamics occurring in these 
areas, serving as a valuable input for policymakers (Gupta & 
Sharma, 2023; Li et al., 2020). Remote sensing, through 
platforms such as synthetic aperture radar, satellite and drone 
oblique photography, and LiDAR/laser scanning, has become a 
pivotal tool for forest canopy height mapping in recent decades 
(Lefsky et al., 2005). Among these, LiDAR stands out as the 
most effective tool for mapping large-scale forest canopy 
height, owing to its unique capability to directly observe forest 
canopy structure in the vertical plane (Li et al., 2020). Although 
terrestrial and airborne LiDAR offer superior detail and 
accuracy at a small scale, spaceborne LiDAR offers broader 
coverage and frequent observations at low cost, making it more 
suitable for large-scale forest monitoring (LaRue et al., 2020). 

The GEDI LiDAR instrument, launched in late 2018 and 
mounted on the International Space Station (ISS), monitors 
forest ecosystems, providing data on canopy structure and 
biomass (Dubayah et al., 2020). It measures forest structural 
characteristics by capturing vertical distributions of forest 
canopies in waveforms, offering valuable data on surface 
topography, elevation, canopy height, relative height metrics, 
plant area index (PAI), and gridded above-ground biomass 
(Potapov et al., 2021). With a spatial resolution of 25 meters, 
GEDI data consists of sparsely distributed footprints, which can 

be supplemented using Machine Learning (ML) models that 
incorporate optical and SAR remote sensing data for wall-to-
wall prediction of canopy height (Jiang et al., 2021).  

ML models, widely employed in remote sensing data analysis, 
offer effective means for continuous mapping of sparsely 
distributed GEDI canopy height (Wang et al., 2021). 
Categorized as parametric and non-parametric, they respectively 
handle linear and complex, nonlinear relationships between 
variables of interest. Examples of non-parametric ML models 
include neural networks, support vector machines (SVM), K-
nearest neighbors (KNN), boosting models, and random forest 
(RF) (Jiang et al., 2021). Many prior studies (Bhandari et al., 
2023; Gupta & Sharma, 2022; Li et al., 2020; Luo et al., 2023) 
have explored these models for canopy height prediction with 
reasonable accuracy. However, the capability of high resolution 
Indian LISS IV satellite data has yet to be explored as a 
predictor for mapping forest canopy height.  

Therefore, this study seeks to leverage robust ML models (RF, 
XGB, SVM, and kNN) to predict canopy height by combining 
GEDI LiDAR and continuous spectral information from high-
resolution LISS IV, Sentinel-1 SAR and PALSAR data in the 
Kaziranga National Park, India. Additionally, it will evaluate 
canopy height changes between 2018 and 2022 to further 
understand the dynamics of this critical ecosystem. 

2. Study area

Kaziranga National Park, located in the Nagaon and Golaghat 
districts of Assam, between 26° 30′ N to 26° 45′ N latitude and 
93° 08′ E to 93° 36′ E longitude (Figure 1). The region sprawls 
in an area of 429.93 km2 across the southern floodplains of the 
Brahmaputra River, gently sloping from east to west, framed by 
the foothills and snow-covered peaks of the eastern Himalayas 
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(Goswami et al., 2019). Its landscape is characterized by 
riverine lakes, wetlands, grasslands, and elevated woodlands, 
which offer vital refuge for wildlife, particularly during the 
annual flooding of the Brahmaputra.  
 

Figure 1. Location of the Study Area 
 
As one of the largest protected areas in the Eastern Himalayan 
biodiversity hotspot region, Kaziranga is home to a diverse 
array of endemic and endangered species, including the iconic 
one-horned Rhinoceros, tigers, elephants, wild buffalos, swamp 
deer, and wild boars. The park's vegetative ecosystem, 
comprising grasslands, mixed deciduous, and semi-evergreen 
forests, owes its productivity and resilience to cyclical flooding, 
which replenishes nutrients and sustains biodiversity. 
Designated as a UNESCO World Heritage Site in 1985, 
Kaziranga remains a beacon of conservation and a testament to 
the rich natural heritage of the region (Borah et al., 2018). 
 
However, in the contemporary years, Kaziranga has been facing 
increasing risks from extreme flooding and human activities like 
encroachment, poaching, and habitat fragmentation. Thereby, 
monitoring canopy height is of great importance as it provides 
crucial data about the forest's health, biodiversity, and 
resilience, guiding conservation efforts in this area. 
 

3. Materials and methods 
 
3.1. Datasets and pre-processing 
 
3.1.1. GEDI LiDAR: NASA’s Global Ecosystem Dynamics 
Investigation (GEDI), a full-waveform LiDAR sensor deployed 
on the International Space Station (ISS) since April 2019, 
captures high-resolution vegetation structure measurements 
across temperate and tropical forests. Following the ISS orbit 
trajectory from approximately 52°N to 52°S, GEDI produces 
25-meter footprints, resulting in eight ground tracks spaced 
about 600 meters across and 60 meters along the track. Its Level 
2A Geolocated Elevation and Height Metrics Product 
(GEDI02_A) contains 100 relative height metrics, with rh_98 
(the 98th percentile of relative height metrics) utilized in this 
study. The raster version of the original GEDI02_A product 
(25m footprint), (LARSE/GEDI/GEDI02_A_002_MONTHLY) 
has been used for analysis. 
 
As a LiDAR sensor operating in the near-infrared wavelengths, 
GEDI's data quality is affected by atmospheric conditions. 
Thus, quality filtering, including removal of low-quality shots 

(value = 0) based on “quality flag”, degraded shots (value > 0) 
based on "degrade flag," as well as filtering out shots with low 
sensitivity (value < 0.95) using the "sensitivity" attribute, is 
conducted. Temporally, cloud-free LISS IV data is used for 
filtering GEDI data. Quality and temporal filtering of GEDI 
data was conducted using the Google Earth Engine (GEE) 
platform. 
 
3.1.2. LISS IV: Linear Imaging Self Scanning Sensor (LISS 
IV) data (5.8 m spatial resolution) from the Resourcesat-2 
satellite, downloaded from the Bhoonidhi portal of NRSC for 
10th December 2022, has been utilized in this study. LISS IV 
operates in multi-spectral mode, capturing data across three 
spectral bands: green, red, and near-infrared (NIR), with a swath 
width of 70 kilometres (Verma et al., 2017). With a 10-bit 
radiometric quantization, LISS IV provides high radiometric 
accuracy, translating radiation intensity into 1024 grey levels. 
However, to optimize this accuracy, atmospheric effects must 
be corrected. Hence, atmospheric correction has been done 
using the MODTRAN-based QUAC module within the ENVI 
software package to derive Surface Reflectance (SR) LISS IV 
bands. Previous studies have highlighted the effectiveness of 
QUAC, particularly in vegetated areas, making it a suitable 
choice for this analysis (Saini et al., 2016). 
 
3.1.3. Sentinel-1 SAR: Sentinel-1, comprising two satellites 
(Sentinel-1A and Sentinel-1B), operates in a near-polar sun-
synchronous orbit at an altitude of 697 kilometres. Equipped 
with C-band synthetic aperture radar (SAR) sensors, the 
Sentinel-1 constellation can cover the entire Earth's surface in 
six days. Operating at a central frequency of 5.405 GHz, 
Sentinel-1A and Sentinel-1B utilize a dual polarization mode 
containing either 1 or 2 out of 4 possible polarization bands 
(VV or HH, and dual-band VV+VH and HH+HV). Sentinel-1 
level 1 dual polarization (VV/VH) Ground Range Detected 
(GRD) scenes, acquired in interferometric wide-swath (IW) 
mode, were downloaded from the Copernicus Browser for 
December 2018 and 2022. The scenes were pre-processed using 
the Sentinel-1 Toolbox in SNAP, resulting in calibrated, terrain-
corrected, and speckle-filtered VV and VH backscattering 
coefficient images. The backscattering coefficients were up-
sampled to a 5-meter resolution to align with the pixel size of 
the LISS IV data, utilizing bilinear interpolation. 
 
3.1.4. PALSAR: The yearly global 25 m PALSAR/PALSAR-2 
data available in GEE were downloaded for the years 2018 and 
2022. These images are ortho-rectified and slope-corrected. The 
HV/HH polarization data, provided as 16-bit digital numbers, 
were converted to gamma nought (γ0) values in decibels (dB) 
using the following equation:  
 

 
 
where  is the backscattering coefficient,  is the raw pixel 
value, and  (-83) is the calibration factor (Ghosh et al., 
2022). 
 
3.1.5. SRTM: NASA’s Shuttle Radar Topography Mission 
(SRTM) data was used in this study to prepare an elevation 
map, as well as slope and aspect maps. These maps, initially 
generated at a spatial resolution of 30 meters, were enhanced to 
a 5-meter resolution through bilinear interpolation to match the 
other datasets in the study. 
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3.2. Methods 

3.2.1. Satellite Data-Derived Proxies for Input Predictor 
Variables: A total of 37 predictor variables from LISS IV, 
SAR, PALSAR and SRTM data were prepared for input into the 
ML models (Table 1). The predictor variables underwent 
resampling to a spatial resolution of 5 meters using bilinear 
interpolation. This adjustment was made to standardize the data 
resolution and reduce the overall data volume. The canopy 
height map was similarly generated at a 5-meter resolution. 
 

Data Predictor Variables 

LISS IV 

Difference Vegetation Index (DVI), 
Global Environmental Monitoring Index 
(GEMI), Green Difference Vegetation 
Index (GDVI), Green Normalized 
Difference Vegetation Index (GNDVI), 
Green Ratio vegetation Index (GRVI), 
Infrared Percentage Vegetation Index 
(IPVI), Modified Chlorophyll Absorption 
ration Index – Improved (MCARI-I), 
Modified Non-Linear Index (MNLI), 
Modified Simple Ratio (MSR), Modified 
Triangular Vegetation Index (MTVI), 
Modified triangular vegetation Index – 
Improved (MTVI-I), Non-Linear Index 
(NLI), Normalized Difference Vegetation 
Index (NDVI), Optimized Soil Adjusted 
Vegetation Index (OSAVI), Red Green 
Ratio Index (RGRI), Renormalized 
Difference Vegetation Index (RDVI), 
Simple Ratio (SR), Soil Adjusted 
Vegetation Index (SAVI), Sum Green 
Index (SGI), Transformed Difference 
Vegetation Index (TDVI) 

SENTINEL – 
1 SAR 

VV, VH, VV + VH, VV/VH, Normalized 
Difference Index (NDI), Radar Vegetation 
Index (RVI), Modified Radar Vegetation 
Index (mRVI) 

PALSAR 
HV, HH, HV + HH (Palsar_SUM), 
HV/HH (Palsar_Ratio) 

SRTM Elevation, Slope, Aspect 
 

Table 1. Predictor variables for machine learning models 
derived from diverse data sources 

 
3.2.2. Recursive Feature Elimination (RFE): RFE is an 
effective feature selection method that ranks and removes the 
least important features by recursively building models. Starting 
with all features, RFE iteratively eliminates those with the 
lowest importance based on model metrics until the optimal 
subset is found. In this study, RFE was used with Random 
Forest via the "caret" package in R, employing 10-fold cross-
validation to ensure stable and reliable results. This process 
refined the feature set, ensuring model accuracy and 
interpretability. The final model, thus, incorporated 17 key 
variables, viz., Elevation, HV, VH, GRVI, VV, SGI, Sen_SUM, 
RGRI, B2, Slope, B4, GDVI, Palsar_SUM, GNDVI, HH, 
Sen_Ratio, and DVI. 
 

3.2.3. Machine learning: The GEDI canopy height data points, 
distributed sparsely and uniformly, underwent outlier filtering, 
removing observations with canopy heights exceeding 35 
meters or falling below 2.5 meters. Subsequently, a fishnet 
matching the GEDI pixel size was generated to extract mean 
pixel values from all predictor rasters. Rows containing NA 
values for any predictor variable were then eliminated, resulting 
in the retention of 11,521 observations. These observations were 
then randomly split into training and testing sets in an 80:20 
ratio for input into the machine-learning models (Figure 2). 
 

 
Figure 2. Methodology Flowchart 

 
Four machine learning models were employed in this study 
utilizing the CARET package in RStudio (Kuhn, 2023), viz., 
Random Forest (RF), Extreme Gradient Boosting (XGB), 
Support vector Machine (SVM) and K-Nearest Neighbor (kNN) 
(Gupta & Sharma, 2022). SVMs stand out for their robustness 
and accuracy in machine learning, adept at discerning optimal 
hyperplanes to classify data across various dimensions, whether 
linear or nonlinear. kNN, while simple in concept, relies on 
memorized data to classify new points based on proximity, with 
sensitivity to distance metrics and k values. RF offers a versatile 
ensemble approach, resilient against overfitting and noise, 
making them ideal for both classification and regression tasks. 
Key parameters like randomly selected variables (mtry) and tree 
quantity (ntree), enable RFs to excel in handling high-
dimensional datasets. XGB emerges as a leading machine 
learning library, known for its scalability and efficiency in 
implementing gradient-boosted decision trees. It employs 
regularization to curb overfitting and often outperforms other 
algorithms in speed and accuracy. 
 
The model performance was assessed through R-squared (R2) 
and Root Mean Square Error (RMSE). The robustness of the 
model's fit was explained by the Mean Absolute Error (MAE). 
The following formula were used to calculate these statistics: 
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where Pobs is the observed canopy height values, Ppred is the 

predicted canopy height values from the ML models,  is the 
mean observed canopy height values of the selected test 
samples and n is the sum of all selected test samples. Each 
model underwent 10-fold cross-validation to fine-tune their 
hyperparameters. Subsequently, the hyperparameters yielding 
the lowest RMSE were chosen as the optimal configuration for 
predicting canopy height. 
 

4. Results 

4.1 Canopy Height and Model Accuracy  

Among the four machine learning models trained in this study, 
XGB emerged as the top performer, achieving an RMSE of 
5.499 m and an R² of 0.55 in the region (Figure 4). In contrast, 
kNN had the lowest performance, with an RMSE of 5.73 m. 
The models were ranked by performance as follows: XGB > 
Random Forest > Support Vector Machine > kNN for KNP 
(Table 2).  

 
Figure 3. Variable importance for Forest Canopy height 

prediction in KNP 
 

 
Figure 4. XGB based Actual vs Predicted Canopy Height in 

KNP 
 
Based on its superior performance, XGB was selected for the 
wall-to-wall canopy height prediction in Kaziranga National 
Park for the years 2018 and 2022 in this study. 
 
 
 
 
 

Tuned Hyperparameters RMSE R2 MAE 

RF 
mtry = 6, ntree = 

800 
5.499 0.553 3.77 

XGB 

nrounds = 500, eta 
= 0.015,  

max depth = 3, 
gamma = 0,  

col sample = 0.6, 
min child = 2,  

sub-sample = 0.75 

5.479 0.557 3.75 

SVM 
Sigma = 0.03125,  

C = 0.7894737 
5.51 0.559 3.47 

kNN k = 25 5.73 0.515 3.92 

Table 2. Performance metrics and tuned hyperparameters of 
machine learning models for canopy height prediction 

 
Notably, elevation, Sentinel-1 derived VV+VH, VH and VV, 
along with Palsar HV, emerged as the top 5 significant predictor 
variables for estimating canopy height according to the random 
forest based variable importance analysis (Figure 3). 
 
4.2 Spatial Variation of Canopy Height in Kaziranga 

KNP, predominantly covered by grasslands, generally exhibits 
canopy heights under 5 meters (Figures 5 and 6). However, in 
the southwestern extremity and eastern region of the park, 
forests feature canopies exceeding 20 meters. Along the 
riverbanks, canopy heights also surpass 15 meters. The eastern 
part of the park can be seen to have taller canopies compared to 
the western and southern areas.  
 

 
Figure 5. Canopy Height Map of KNP for 2018 

 
In the two years considered for the study, the mean canopy 
height in Kaziranga National Park was approximately 8.58 ± 
5.24 meters in 2018, rising to about 9.07 ± 5.61 meters in 2022. 
The overall canopy height across the park ranged from 2 meters 
to 25 meters. 
 
The predicted canopy height in KNP has been categorized into 
five classes, as shown in Table 3. In both years, the largest 
portion of the park had a canopy height of less than 5 meters, 
covering 130.54 km² in 2018 and expanding slightly to 135.43 
km² in 2022. Trees with heights ranging from 5 to 10 meters 
were more prevalent in 2018, spanning 104.29 km², but this 
decreased to 79.73 km² in 2022. Notably, the area with canopy 
heights exceeding 10 meters grew significantly, from 110.38 
km² in 2018 to 130.04 km² in 2022. Thus, it can be seen that 
significant changes have taken place in canopy height across 
KNP between 2018 and 2022, with a notable increase in areas 
with taller canopies. 
 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3-2024 
ISPRS TC III Mid-term Symposium “Beyond the canopy: technologies and applications of remote sensing”, 4–8 November 2024, Belém, Brazil

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-3-2024-39-2024 | © Author(s) 2024. CC BY 4.0 License.

 
42



 

 
 

Figure 6. Canopy Height Map of KNP for 2022 
 

 
Canopy Height (m) 2018 2022 

< 5 130.54 135.43 
5-10 104.29 79.73 

10-15 51.86 60.23 
15-20 47.50 55.45 
> 20 11.02 14.36 

Table 3. Area in Percentage (%) in different Canopy height 
classes as predicted by different machine learning models 

5. Discussion 

This study examines the integration of spaceborne GEDI 
LiDAR data with LISS IV optical imagery, Sentinel-1 SAR, and 
PALSAR data to improve the precision of high-resolution 
canopy height models and achieve comprehensive, wall-to-wall 
mapping of forest canopy height in Kaziranga National Park, 
Assam. Employing four distinct machine learning models, the 
research aims to enhance the accuracy of canopy height 
predictions. The results reveal that the models' predictions of 
canopy height fall within an acceptable accuracy range. 
Spaceborne LiDAR's moderate prediction accuracy in this study 
could stem from factors like uneven terrain, diverse species, and 
a lack of complex predictors, hindering precise canopy height 
estimation. Similar results were obtained in the study done by 
(Gupta & Sharma, 2022) in a mixed tropical forest of Gujarat. 
Also, the prediction accuracies are comparable with the study 
done by (Ghosh et al., 2022) in the forested areas of India. XGB 
emerges as the top-performing model in this study, attaining the 
highest accuracy metrics with an R-squared value of 0.557 and 
an RMSE of 5.479, followed closely by RF, SVM, and kNN.  
 
The analysis of canopy height distributions in Kaziranga 
National Park reveals that nearly 40% of the area has a canopy 
height below 5 meters, largely due to the park's alluvial 
grasslands, which are maintained by annual flooding and 
burning, allowing it to support many threatened species. 
However, a notable shift has occurred between 2018 and 2022, 
with a significant increase in taller canopies exceeding 10 
meters, while the area covered by vegetation between 5 to 10 
meters has decreased. This pattern reflects the region's flood 
dynamics, where the heavy floods of 2017 led to primary 
succession, resulting in shorter canopies in 2018. While, the 
absence of major floods in 2021 and 2022 allowed vegetation to 
regrow, increasing canopy heights above 10 meters (Karmakar, 
2024).  
 
The results provide valuable insights into the region's vegetation 
resilience and regrowth in response to its annual flood cycles. 
Moreover, the incorporation of LISS IV data in this study marks 
a significant advancement in high-resolution canopy height 

mapping, especially within complex ecosystems like Kaziranga 
National Park. Despite being used for the first time in this 
context, LISS IV imagery demonstrated substantial potential in 
enhancing the accuracy of canopy height models when 
integrated with other satellite data sources, such as GEDI 
LiDAR and SAR. The study underscores the importance of 
utilizing multi-source data to capture finer details of forest 
structure, which is crucial for informed conservation efforts and 
better management of protected areas. 
 

6. Conclusion 

This study highlights the potential of integrating GEDI LiDAR 
data with optical (LISS IV) and microwave (SAR) imagery 
through machine learning for continuous forest canopy height 
mapping in Kaziranga National Park. By training and evaluating 
four machine learning models, the research emphasizes the 
importance of LISS IV and SAR data, with elevation and SAR 
variables being identified as key predictors. XGB emerged as 
the most accurate model. The analysis revealed that KNP is 
predominantly covered by grasslands with canopy heights 
below 5 meters, while taller canopies exceeding 20 meters are 
rare.  
 
The study provides valuable insights into vegetation response to 
flood dynamics, offering a foundation for improved forest 
management and biodiversity conservation in KNP and similar 
ecosystems. As the first comprehensive attempt to map canopy 
height in KNP, these findings are critical for assessing above-
ground biomass, CO2 sequestration, and mitigating forest fire 
risks, contributing to better conservation strategies and forest 
loss prevention. 
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