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Abstract

Automatic topological graph extraction is critical for intelligent remote sensing image interpretation and cartographic representation.
However, existing approaches neither adopt segmentation-based post-processing nor directly predict the graph, thereby suffering
from limited scalability and poor adaptability to complex spatial structures. To address these issues, we introduce TopoSense,
an innovative framework for extracting topological graphs from remote sensing images through an agent-driven approach. By
employing a novel combination of reinforcement learning and neural network architectures, TopoSense autonomously navigates
through pixel-level data, efficiently constructing topological representations. It not only enhances the accuracy of spatial feature
detection, but also significantly reduces processing time. Experiments on the TOP-BOUNDARY and REALSCENE demonstrate its

superiority in capturing intricate spatial relationships compared to traditional methods.

1. INTRODUCTION

Topological graph extraction (TGE) is essential in intelligent
remote sensing image interpretation, aiming to identify the se-
mantic information of geographical objects and precisely re-
construct their topological connections. The advantages of em-
ploying vector representations for these topological graphs in-
clude minimal redundancy, ease of topological analysis, and en-
hanced accuracy in geographic location queries. TGE has been
instrumental in various applications, including automated map-
ping (Liu et al., 2023b), emergency response for disaster mit-
igation (Zorzi et al., 2020), and the creation of high-definition
maps for autonomous vehicles (Chen et al., 2023)). Consequently,

a variety of TGE methods have been developed, with segmentation-

based (Wei et al., 2020) and graph-based (Belli and Kipf, 2019)
approaches being the most prevalent.

Segmentation-based TGE begin with the creation of a semantic
segmentation map, subsequently utilizing post-processing tech-
niques, such as skeletonization and binarization, to refine and
extract the topological graph. It typically employs CNN or
Transformer (Vaswani et al., 2017) as the backbone and re-
fine it by conducting Douglas—Peucker (Douglas and Peucker,
1973) simplification. For example, GGT leverages the Trans-
former model to iteratively predict nodes and their connections
based on road segmentation results, ultimately establishing a
vector topological structure. Similarly, tools like PolyMapper
and ASIP employ Recurrent Neural Networks and semantic poly-
gon decomposition methods, respectively, to enhance segment-
ation outcomes. Hatamizadeh et al. (Hatamizadeh et al., 2020)
and Girard et al. (Girard et al., 2021) have explored the use of
active contour models with orientation field constraints to im-
prove the representation of building topologies. However, ap-
proaches like those of Wei et al. (Wei et al., 2019), which focus
on simplifying and regularizing building contours, have been
observed to adversely affect boundary precision, as measured
by the Intersection over Union (IoU) metric. A common chal-

lenge faced by these techniques is preserving the topological
integrity, especially in complex urban landscapes with numer-
ous intersecting or overlapping elements.

Another TGE paradigm advocates the usage of graph-based rep-
resentation. It leverages keypoints to reconstruct the topological
structures and represent it as a directed acyclic graph (DAG).
This approach, exemplified by RoadTracer (Bastani et al., 2018),
employs iterative methods to construct DAGs of centerlines by
predicting keypoints and their decision actions. Likewise, the
incremental learning method introduced by (Lian and Huang,
2020), along with RNGDet series (Xu et al., 2022} |Xu et al.,
2023) that employs Transformer models, concentrate on the
adjacency of keypoints to define the vector topological struc-
ture. Graph-based TGE also simultaneously predicts keypo-
ints and their connectivity relationships. APGA (Zhu et al.,
2021)) fall into this paradigm, which learns both the positions of
keypoints and their topological connectivity relations, such as
angle trends. Further innovations include the iCurb series (Xu
et al., 2021a)), which uses keypoints’ adjacency matrices for
road prediction, and the PolyWorld model, which employs op-
timal transport methods to generate DAGs. Liu et al. (Liu et
al., 2023a)) built the PolyFormer model, treating objects in nat-
ural images as sequences of coordinate points and obtaining
target boundaries through regression of coordinate sequences.
Although these methods enhance the accuracy of topological
structure predictions through iterative or incremental approaches,
the occurrence of multiple starting points often leads to the
generation of redundant pathways, thereby diminishing the ef-
ficiency of the iterative process. Successfully amalgamating
global and local topological insights remains a significant chal-
lenge.

As a specialized type of graph-based representation, contour-
based methods focus on instance-level adoption of initial con-
tours. Initially, contours are derived from segmentation out-
come processing or deformations of object detection boxes. Sub-
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Figure 1. [llustration of traditional method and TopSense.

sequently, the sampling points on these initial contours undergo

optimization through techniques such as circular convolution (Yhn

et al., 2021) and graph neural networks, aiming to refine the tar-
get boundary graph. The PolarMask network (Xie et al., 2020)

extracts a rough graph instance via instance center classific-
ation and dense distance regression within a polar coordinate

system. Curve-GCN (Ling et al., 2019) implements GCN and

conceptualizes each instance as a circle of control points. (Wei

utilizes the bounding boxes of instances as initial

contours for areal features, applying Curve-GCN to aerial im-
agery for building extraction. Another study
shapes initial contours as octagons by deforming object detec-
tion boxes, using circular convolution on uniformly sampled
contour points to achieve a refined instance-level topological
graph. Additionally, the SharpContour network
enhances graph precision by predicting offsets of initial
contour points for planar features. These methods simplify the
process by eliminating complex post-processing steps and fa-
cilitating straightforward establishment of topological relation-
ships. However, their suitability is limited to instance-level fea-
ture extraction and they struggle with polyline structures featur-
ing complex topological relationships.

Given the outlined limitations, we introduce a novel TGE frame-
work named TopoSense, which leverages keypoint-based agent
to derive topological graphs. Figrue |I| illustrates the bound-
ary effects managed by keypoint-based strategies. Unlike tra-
ditional segmentation-based and graph-based methods, Topo-
Sense effectively addresses the common negative boundary ef-
fects seen in segmentation-based methods, reduces path redund-
ancy in iterative or incremental approaches, and surmounts the
challenges associated with extending instance-level TGE to more
diverse geospatial feature types. Firstly, to alleviate the negat-
ive boundary effects, TopoSense treats keypoints located along
the primary boundary or centerline as an agent, optimizing the
linkage of points through reinforced historical exploration. This
strategy ensures more accurate boundary delineation. Secondly,
to enhance the efficiency of our iterative graph-building pro-
cess, we have integrated a topology memory-replay module that

significantly reduces redundant path computations, thereby stream-

lining the graph construction process. Finally, by decoupling
the prediction of feature types into type-independent tasks in-
volving the identification of keypoints and their connections,
TopoSense utilizes the keypoint agent’s capacity to model both
local and global topological relationships. This adaptability
makes TopoSense broadly applicable in general TGE, enhan-
cing its utility across a variety of geospatial contexts.

On a glance, we deliver the following contributions:
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Figure 2. Keypoint driven topological graph represenation.

e We revisit and compare different TGE paradigms and present
the an agent driven TopoSense framework.

e The universal negative boundary alleviation and topology
memory-replay modules are proposed, with a Universal-
Topology Hub (UT-Hub) for depicting keypoint connec-
tion and a Topology Memory MiXer (TMX) for replaying
historical cues.

e We investigate the TopoSense generalization capacity by
applying it to geospatial polygon and polyline tyeps and
notice that TopoSense achieves state-of-the-art perform-
ances on the different types of datasets.

2. OUR APPROACH

In this section, we will elaborate the overall TopoSense archi-
tecture in Sec. 2-1] the Universal-Topology Hub in Sec. 2]
and Topology Memory Mixer for reducing path redundancy in

Sec.23l
2.1 TopoSense Architecture

We first introduce the representation of agent’s topology graph
and then show the main components in TopoSense.

Agent Topology Representation. Figure 2| depicts the Dir-
ected Acyclic Graph (DAG) representation for the keypoint-
driven agent. Considering that polyline and polygon targets,
such as roads and buildings, are composed of keypoints, and
that predictions for centerlines or boundaries essentially involve
predicting a DAG, we treat the predictions for these types of
targets as the construction of a DAG. Firstly, keypoints from
the centerline or boundary serve as the initial agents, with their
topology constructed from the connections between keypoints,
i.e., a global DAG. Secondly, we decompose this global DAG
into instance-level segments using commonly shared keypoints,
for example, nodes #1 and #4 in Figure[2]. Given that keypoints
align with these instance-level segments, the formulated DAG,
denoted as G = (V, &), consists of a vertex set V), represent-
ing instance-level nodes, and an edge set £, representing all
instance-level segments. Each vertex v = (vz,vy) € V con-
tains two properties: (i) location, ie., (v, € R,v, € R), (ii)
category, Le., cls. While each edge e = (es,e:) € & is com-
posed of the source keypoint es and target keypoint e;. The
decomposed DAG instance is finaly utilized for topological se-
quence encoding in the UT-Hub.

Architecture components. In FigureEl, our TopoSense system
comprises three principal components: the image feature ex-
traction backbone, UT-Hub, and the Topology Memory Mixer
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Figure 3. Overall architecture of TopSense. The system comprises three main modules: the image feature extraction backbone,
UT-Hub, and the Topology Memory MiXer (TMX). The first two predict keypoints and graph segments, respectively, while TMX
focuses on forecasting keypoint connections by dynamically updating the historical graph.

(TMX). The image feature extractor processes a cropped re- facilitate multi-class learning, formalized as follows:

gion denoted as I € RE*H*W with H, W, and C indicating

height, width, and number of channels respectively. This mod- 1 &

ule generates hierarchical features from the input image, which Lseg = — C Z yi - 1og(ypi), ey
are essential for predicting the positions and types of vertices =0

e®i

and for delineating instance-level segments, either through edge

detection or centerline tracing. The UT-Hub acts as the receiver, ~ Where yi represents the label of the ith class, and yp,i = SN e
processing the predicted segments and keypoints. It utilizes a delineates the predicted probability map, with C' denoting the
graph segments transformer to define boundaries or centerlines total number of classes.

and a keypoint regression transformer to precisely locate key-

points. Lastly, TMX manages the topological connections and ~ Keypoint Regression. Concurrently with graph segments pre-
iteratively predicts subsequent keypoints based on its stored his-  diction, our approach also includes the prediction of keypoints,
torical graph. which are critical for estimating subsequent keypoints within
the TMX module. This process diverges from the typical sequence-
to-sequence translation by directly regressing the coordinates of

2.2 Universal-Topology Hub each keypoint, employing a binary cross-entropy loss function:

In order to construct a coherent graph representation within a Ly, = BCELoss(]_), f))’ )
unified space, UT-Hub transforms image tokens into two spe-
cialized branches: graph segment prediction and keypoint re-
gression. The pathway dedicated to graph segment prediction
aims to accurately forecast segments that coincide with bound-
aries or centerlines. Concurrently, the keypoint regression path-
way is tailored to meticulously estimate the positions of keypo-
ints. This bifurcated approach ensures that both the structural
and positional aspects of the graph are captured and integrated
effectively, facilitating a robust and dynamic representation of
agent topology during the graph updating phase.

where V = {5;}1, signifies the set of predicted keypoints and
V = {#;}2, corresponds to the set of ground truth keypoints.

As each iteration of the TMX module dynamically updates the
historical graph, it is important to elucidate how keypoint re-
gression for the forthcoming step is computed. Consider the
scenario at step t+ 1, where the predicted keypoints are {7; }7,
and the ground truth keypoints are {;}2£,. To identify the
best alignment between predicted and actual keypoints, we un-
dertake an optimization process. This involves solving an as-
signment problem, commonly addressed through a matching al-
gorithm (Date and Nagi, 2016)) that pairs each predicted keypo-
int with a ground truth counterpart in the most efficient manner:

Graph segments prediction. Upon processing the cropped in-
put image with a feature extractor, we obtain hierarchical fea-
tures denoted by f1, f2,..., fn. These features, character- K

ized by varying dimensions, are subsequently relayed to the (= argminz M (v, 0¢), 3)
decoder. The resultant combined feature map, F, is synthes- ¢ :

izedas F = f1 ® f2 @ ... D fn, where & symbolizes the where ( is the indicator that maps the predicted keypoints to
fusion operation applied to amalgamate the hierarchical fea-  their ground truth counterparts, minimizing the pairwise Euc-
tures. This composite map, F, is then transformed into im- lidean distances as captured by M (.) matching function. Once
age tokens through a flattening operation. Further refinementis  the vertices have been matched, the discrepancy between the
achieved by appending positional encoding and an cls token to ~ coordinates is quantified using an L1 loss:

these flattened tokens. They are then fed into a multi-head self-

attention mechanism within the transformer architecture. The 1L

transformer’s output yields a probability distribution, denoted Le= M Z |0¢ — il )
by P = {P1, P, ..., Pn}, for the recovery of multi-class seg- k

ments, where P; signifies the probability associated with seg- It allows for a precise alignment of the predicted keypoints with

ment S;. The training process is informed by the ground truth the actual graph structure, maintaining consistency and preci-
segmentation, utilizing a softmax cross-entropy loss function to sion across iterations.
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Joint Learning. For each predicted keypoint ;, its associated
probability is obtained from Equation 2] During the graph up-
dating phase, we retain only the keypoint with the highest prob-
ability from the predicted set that corresponds to the ground
truth point 9¢. Specifically, if multiple predicted keypoints match
¥¢, only those with the highest scores are selected. The over-
all loss function for joint learning of graph segmentation and
keypoint detection combines the individual loss functions:

L= Lseg+aly,+ BLe, ®)
where the coefficients o and (3 are used to balance the contribu-
tions of each component to the total loss.

2.3 Topology Memory Mixer

The determination to next valid keypoint and topological graph
updating is illustrated in Alg.|l} After making predictions with
UT-Hub, we identify K valid vertices adjacent to v;, forming
the set VE¥={vi }L,. Non-Maximum Suppression (NMS) is
then applied to V¥ to derive the required vertex set V,. From
this set, the vertex indexed by o with the highest score is chosen
as the initial keypoint for the current graph G; at step ¢. Sub-
sequently, we compute the distance d; between this initial ver-
tex v and its adjacent vertex v;, 1, and calculate the probability
P; for this vertice.

If V, is empty, we perform NMS on another cropped image re-
gion. However, if Vp contains only one vertex and it satisfies
both criteria — distance d; exceeds threshold 73 and probab-
ility P, surpasses threshold 7> — this vertex, 941 € Vp, is
chosen as the final addition to the graph G, halting any further
updates to G;. On the other hand, if V, includes multiple ver-
tices, each is evaluated through Maximum Posterior Estimation
(MAP). Vertices that meet the required standards are integrated
into Gy, and these changes are subsequently incorporated into
the main graph G, ensuring it accurately reflects the historical
graph. We repeat the above process until there exists no element
in Vp.

In fact, in the processing of subsequent vertices v;,,, we con-
tinuously conduct Maximum a Posteriori (MAP) estimation un-
til the optimal vertex is identified. The UT-Hub takes K query
vertex queries Q@ = {¢:}:<; and predicts K adjacent vertices.
We define the achieved vertices and its associated probility as
the reward:

V¥—{argmax P[v; 1 |UT-Hub(Q)]}i4,

v

(6)

t+1

Each 2D vertex v{,, is decoded and assigned a validity prob-
ability P(vi,). This probability quantifies the likelihood that
vl 11 is considered valid for integration into the graph G and is
served as the reward score.

3. EXPERIMENTS
3.1 Datasets and Implementation Details

ToOPO-BOUNDARY (Xu et al., 2021b)) is an extensive collec-
tion tailored for enhancing road curb detection through aerial
imagery, comprising 25,295 four-channel images each sized at
1000 x 1000 pixels. Accompanying each image are eight train-
ing labels for various sub-tasks. We have partitioned these im-
ages into distinct subsets: 10,236 patches for training, 1,770

1

N-TE-REEN S LI R )
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Algorithm 1: Topology Memory Mixer

Input: Cropped Image Region I and candidate agent
vertices VX ={vi 1%,
Output: Topology graph G = (V, )

begin
VP < NMS(I, V)
t< 0
o < argmax P (VP)
gt — Vo
while V? not empty do
dt < H'Ut — U%+1H2
Pt < P(U;_;'_l)
if [VP| = 0 then
| break
else if |V?| = 1 and dy > T and P, > T> then
V¢ < T)t1+l
t—t+1
VP = VPAVP.pop()
G+ GiUuy
break
else if [VP| > 1 then
gt < gt @] Vppop()
G+ G
end
return G
end

patches for validation, and 3,289 patches for testing. This struc-
tured dataset is pivotal for topological graph extraction, where
accurate road boundary delineation derived from detailed curb
detection.

REALSCENE is a specialized urban scene remote sensing col-
lection that aligns high-resolution three-channel satellite im-
ages, sized at 1000 x 1000 pixels, with their corresponding Open
Street Map (OSM) data, totaling 2685 images.This dataset is
particularly valuable for its inclusion of vectorized topological
graphs of buildings and roads, providing rich details necessary
for advanced urban mapping and analysis. We have randomly
shuffled this dataset and partitioned it into training, validation,
and testing subsets, which constitute 70%, 20%, and 10% of the
total dataset, respectively.

Implementation details. Our models are trained on eight Tesla
V100 GPUs with an initial learning rate (LR) of 1e >, adjus-
ted over 80 epochs using a poly strategy with a power of 0.95.
The first 30 epochs feature a warm-up phase, reducing the LR
to 0.1 its initial value. We utilize the AdamW optimizer, cel-
ebrated for its efficiency, with settings including an epsilon of
le™8, weight decay of 1e2, and a batch size of 2 per GPU.
Augmentation techniques such as random resizing (ratio 0.5—
2.0), color jitter, horizontal flipping, and Gaussian blur are em-
ployed to bolster model robustness. Additionally, ImageNet-
1K pre-trained weights are integrated into the accompanying
branch to enhance performance comparability.

Evaluation metrics. Unlike previous metrics that primarily
concentrate on overall pixel-level metrics, our approach em-
phasizes evaluating the boundary status and the corresponding
topological graph within a trimap. In alignment with common
practices, we adopt precision, recall, F1-score, averaged path

length similarity (APLS), and mean intersection over union (mloU)

as our metrics, applying them within a trimap of three pixels.
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TOPO-BOUNDARY REALSCENE
Model name #Params(M) GFLOPs | Precision@3 Recall F1 APLS mloU | Precision@3 Recall F1 APLS mloU
FCN 5432 204.83 61.4 63.8 62.4 57 56.3 56.3 56.6 564 0.4 187
OCRNet 62.06 806.80 58.7 61.9 60.1 79 54.6 54.8 509  50.6 1.1 48.0
Segmentation-based | SegFormer 61.94 161.79 59.9 63.0 61.2 9.3 55.4 53.8 550 542 1.3 48.2
BEIT 360.72 3727.34 59.2 62.5 60.5 7.5 55.0 54.8 56.6 555 0.9 48.9
RoadTracer 27.30 20479 689 66.6 677 142 60.2 50.4 505 504 0.1 430
VecRoad 31.69 504.65 67.8 54.6 57.2 7.3 53.3 49.7 489 288 2.7 18.1
ConvBoundary  46.95 334.61 72.8 63.1 66.5 14.1 59.4 49.0 464 445 1.1 36.4
Graph-based DAGMapper 31.56 213.41 68.9 65.5 67.0 18.1 59.7 52.4 502 7.2 1.3 3.8
Enhanced-iCurb  46.07 253.01 50.3 50.2 50.2 2.4 49.2 50.8 515 223 1.3 12.7
TopDiG 23.56 448.74 75.4 69.3 71.1 16.5 62.7 67.3 502 447 1.6 39.9
PolyWorld 39.53 2054.81 - - - - 531 524 527 1.3 482
Frame Field 117.14 1851.74 - - - - 51.4 50.9 51.0 1.5 48.3
Contour-based HiSup 74.29 725.74 - : : - : 542 515 518 14 490
Agent-based TopScene 124.33 1883.44 78.3 62.5 69.5 183  65.26 82.8 438 573 4.6 532

Table 1. Evaluation on TOPO-BOUNDARY and REALSCENE. We count the number of parameters (#Params) and GFLOPs with the
size of 640x640 pixels. Precision@3 indicates the score is evaluated with a buffer size of three pixels.

3.2 Comparison against the State of the Art

To verify the efficacy of TopoSense framework, we conduct ex-
tensive experiments on these two datasets. And the ablation
studies are conducted on REALSCENE dataset. Table [T shows
the comparisons against the state-of-the-arts.

Results on TOP-BOUNDARY. Table[T|presents a comprehens-
ive comparison of our TopoSense against other recent methods
on the TOP-BOUNDARY dataset. Overall, TopoSense achieves
state-of-the-art performance across most of the metrics. Not-
ably, the APLS score is marginally lower in segmentation-based
methods, ranging from 5.7% to 9.3%. This suggests that relying
solely on the Douglas—Peucker simplification as post-processing
may negatively affect the topological structure. In contrast,
graph-based methods better preserve the topological integrity,
thereby enhancing the APLS status. However, these methods
still suffer from low recall rates when addressing complex road
curbs. Our approach maintains the topological graph and strikes
a balance between preserving the topological integrity and man-
aging intricate structures. In the case of contour-based algorithms,
direct application to linear boundaries, such as road curbs, leads
to detrimental effects since they are not dedicated design for the
open-set curbs. Nonetheless, TopoSense overcomes this limita-
tion with minimal topological loss, outperforming segmentation-
based, graph-based, and contour-based baselines by significant
margins of +9.10% in APLS.

Results on REALSCENE. The results in the fourth column of
Table[T]highlight challenges in the REALSCENE dataset, which
features smaller polygon-shaped buildings and polyline-shaped
roads. Most methodologies reviewed failed to significantly en-
hance performance, especially in boundary or centerline ac-
curacy. The Average Path Length Similarity (APLS) scores
remained below 5%. This limitation likely stems from two
factors. First, the training samples exhibit wide scale variab-
ility, from tiny buildings to extensive polylines. Second, the
different encoding strategies for polylines and polygons may
impede the model’s ability to provide consistent boundary se-
quence lengths. Consequently, adjusting the number of keypo-
ints offers minimal benefit. Despite these obstacles, our Topo-
Sense model stands out, achieving a 30% increase in preci-
sion over the segmentation-based baseline. It also surpasses
graph-based methods, with a 10% improvement in F1 scores
and a 4% increase in mloU scores. When handling topological
graphs, TopoSense demonstrates significant enhancements: it
shows gains of 17.52% mloU compared to the BEiT. Moreover,
TopoSense operates with roughly one-third the parameters of
the BEiT method. These results underscore TopoSense’s su-
perior adaptability and efficiency in processing complex spatial

datasets, suggesting its strong potential for precision-focused
applications.

Segmentation-based VS. Graph-based. As can be seen from
Table[I] the segmentation-based approaches like FCN and OCR-
Net show robustness on the TOPO-BOUNDARY dataset with
high Recall and F1 scores, indicating their effectiveness in region-
based accuracy. However, these methods demand considerable
computational resources, exemplified by SegFormer’s GFLOPs
reaching 161.79, potentially limiting their usage in the resource-
constrained environments. On the REALSCENE, segmentation-
based methods fall behind, with lower Precision@3 and mIoU
scores than their graph-based counterparts, signaling difficulties
in capturing intricate boundary or centerline topologies. In con-
trast, graph-based models such as RoadTracer and DAGMap-
per, while less computationally efficient with GFLOPs—for in-
stance, VecRoad at 504.65—exhibit superior precision, partic-
ularly in the Precision@3 metric on TOPO-BOUNDARY. How-
ever, their performance in terms of Recall and F1 is modest
compared to the segmentation-based methods on the same data-
set. Notably, graph-based approaches outshine with higher APLS
scores on REALSCENE, suggesting an advantage in capturing
the likeness of boundary or centerline paths, despite lower region-
based accuracy as indicated by mloU scores. While agent-
based TopoSense take the advantages of segmentation-based
method for keypoints predication and the local graph encoding
in graph-based approaches.

Contour-based VS. Graph-based. The contour-based method,
Frame Field, displays moderate Precision@3 and F1 scores of
51.4% and 51.0%, respectively, on the REALSCENE dataset.
These scores suggest a competitive edge in scenarios requiring
precise edge delineation. However, with a substantially high
computational cost, as indicated by its GFLOPs of 1851.74,
contour-based methods may be less viable for resource-sensitive
applications. Additionally, they exhibit a lower mloU score,
at 48.3% on REALSCENE, indicating a potential shortfall in
region-based accuracy compared to graph-based approaches.
Graph-based methods, on the other hand, demonstrate a more
balanced performance with respect to precision and computa-
tional load. For example, TopoDiG achieves a higher mloU
score of 62.7% on TOPO-BOUNDARY with comparatively lower
GFLOPs at 448.74, illustrating its efficiency and accuracy in
delineating complex structures. However, these methods do not
universally excel, as seen with Enhanced-iCurb’s APLS score
of 2.4% on TOPO-BOUNDARY, suggesting possible improve-
ments in path similarity metrics. By contrast, TopoSense retains
a balance of achieving competitive scores and computational ef-
ficiency.
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(a) Ground truth

(b) SegFormer (c) BEIiT

(d) VecRoad

(e) DAGMapper  (f) Enhanced-iCurb (g) Ours

Figure 4. Qualitative demonstrations on TOPO-BOUNDARY. We visualize the road curb extraction results with line-shaped targets.
The size of each image is 1000 x 1000. (a) Ground-truth graph (cyan lines). (b)-(c) The road network graph predicted by
segmentation-based approaches (cyan lines). These two approaches have poor topology performance such as incorrect disconnections.
(d)-(f) The road network graph predicted by graph-based approaches (we represent the topological orientation with arrows, best view
by zooming in). Compared with VecRoad, DAGMapper, Enhanced-iCurb does not produce desired outputs due to the reliance of

initial vertices that are diffult to train.
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Figure 5. Error rate with respect to 77 and 1%
3.3 Ablation Studies on REALSCENE

Analysis of threshold 77 and 7. Both thresholds 77 and
T, are crucial in determining the agent’s subsequent status in
our model. We utilize probability estimates derived from Max-
imum a Posteriori (MAP) estimation techniques. As depicted
in Figure 3} we systematically evaluate the impact of varying
distances {5, 10, 15,25, 30,35} on error rates. The minimum
error rate occurs at a distance of 30 units, with a quantified er-
ror reduction of 18% compared to the next best setting at 25
units. This suggests that 77 is optimally set around this dis-
tance to minimize predictive inaccuracies. Regarding 7>, which
regulates the number of vertices selected for further processing,
our analysis indicates a direct correlation between 75 and ver-
tex selection: higher 7> values correspond to stricter selec-
tion criteria, effectively reducing the number of points chosen.
Quantitatively, increasing 75 from a lower threshold to an upper
threshold results in a selection reduction of approximately 40%,
emphasizing its sensitivity and the need for careful calibration.

mloU (%)

1 2

3 4 5
3 6 9 12 Tri

6 7
map Width

Figure 6. Impact of K and trimap width.

Analysis of query vertex number K. As depicted in Figure[g]
we conducted a comprehensive examination of the impact that
varying the number of query vertices has on the boundary IoU
score. The results indicate that performance peaks when K =6.
As K increases beyond this value, performance gains dimin-
ish, culminating in a plateau at K = 10. This plateau likely
results from the dynamic adjustments made by the UT-Hub,
which is influenced by the regressed ground truth points. Con-
sequently, performance fluctuations remain minimal, within a
range of £0.5% mloU. This observed stabilization implies that
the system reaches a point of efficiency, effectively balancing
computational load and accuracy. A closer quantitative analysis
shows that incrementing K from 6 to 10 results in a marginal
increase in mloU by only 0.2%, demonstrating the principle of
diminishing returns as query vertices increase. These findings
elucidate a critical threshold for K, suggesting that exceeding
this number does not proportionally enhance performance and
instead leads to unnecessary computational expenditure.
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Structure #Params(M) GFLOPs mloU(%)
TopSense 124.33 1883.44 |53.2
"~ —with ResNet50 =~ 205.58" = 687.78 |52.6 (-0.6)
— without ResNet101  319.22 775.05 |534
— with ConvNeXT 2153.00 2023.92 |53.3
— without Swin-T 224.83 740.89 |55.1
— without Swin-B 580.94 1148.00 |55.3
— without Swin-L 1232.00 1845.92 |54.9

Table 2. Ablation study of the TopSense backbones.

Impact of different trimap width. As shown in Figure [6]
we investage the effects of different number of trimap width
for topological graph extraction. The incremental increase in
mloU with respect to trimmap width observed in this figure has
significant implications for topological graph extraction. The
positive correlation between trimap width and mloU suggests
that providing a wider contextual margin allows the agents to
better distinguish between the features of interest and the sur-
rounding environment. The incremental increase in mloU with
the widening of the trimap width from 1 to 8 suggests that the
agents benefit from a broader spatial context when identifying
and delineating topological features. A trimap width that is too
narrow may restrict the agent’s perception, impeding its abil-
ity to accurately resolve complex spatial relationships for topo-
logical graph extraction. As the trimmap width expands, the
agents appear to gain a more comprehensive view of the sur-
roundings, likely aiding in more precise decision-making pro-
cesses for edge detection and graph construction. The consist-
ent upward trend observed in the graph indicates that a wider
trimap allows for better distinction between the pertinent fea-
tures and the background.

Impact of different backbone. Table |2| presents a compar-
ative analysis of the TopSense structure’s performance when
integrated with various backbone architectures versus its per-
formance when those backbones are omitted, as measured by
the number of parameters, computational cost (GFLOPs), and
mloU. The baseline TopSense model, without any additional
backbones, is relatively lightweight with 124.33 million para-
meters and requires 1883.44 GFLOPs for processing, achieving
a 53.2% mloU. When enhanced with ResNet50, the parameter
count increases to 205.58 million and the computational cost
significantly drops to 687.78 GFLOPs, a sign of increased ef-
ficiency. However, this integration slightly reduces the mloU
by 0.6%. The exclusion of ResNet101 yields a slightly heav-
ier model with 319.22 million parameters and a lower compu-
tational cost of 775.05 GFLOPs, while marginally increasing
mloU by 0.2%. The integration with ConvNeXT leads to a sub-
stantial increase in parameters to 2153.00 million and GFLOPs
to 2023.92, with a marginal mloU gain of 0.1%. Omitting Swin
Transformer variants shows a varied increase in mloU: Swin-T,
Swin-B, and Swin-L contribute to gains of 1.8%, 2.1%, and
1.7% respectively. Notably, these omissions also reduce the
computational cost to varying degrees, with Swin-T requiring
740.89 GFLOPs, Swin-B at 1148.00 GFLOPs, and Swin-L at
1845.92 GFLOPs. The parameters also reduce correspondingly
with the exclusion of these backbones.

Impact of agent’s reward. We use the MAP to estimate the
probality for the next vertices that current agent (vertice) is to
be connected. This posteriori estimation is served as the re-
ward function for the agent. The impact factor for this reward
is the total layers of transformer blocks in UT-Hub. We fur-
ther analysize such factors with different layers of Transformer
blocks, which offers a quantitative insight into the impact of

transformer block architecture on the learning efficacy in an

agent-driven topological graph extraction framework. A dis-

cernible trend of enhanced performance is observed with an in-

creasing count of transformer blocks within the model’s archi-

tecture. Models comprising 12, 24, and 36 transformer blocks

exhibit a concomitant rise in mIoU values across training epochs,
with the 36-block model achieving an mloU of nearly 60%,

juxtaposed against approximately 50% for the 12-block model.

This gradation of performance, showcased over 80 epochs, sub-

stantiates the pivotal role of architectural depth, particularly

emphasizing that models with more transformer blocks are more
adept for agent-driven tasks, a trait crucial for accurate vertex

connectivity in the realm of topological graph extraction. The

ascent in mloU is especially steep in the early epochs, indic-

ating a rapid initial learning phase, followed by a plateau that

suggests a diminishing return on model complexity as the mod-

els approach their learning capacity.

4. Conclusion

In conclusion, TopoSense represents a paradigm shift in the
extraction of topological graphs from remote sensing images,
marking a substantial leap forward in the field of geospatial
data analysis. This innovative framework, by harnessing the
synergistic potential of reinforcement learning and advanced
neural network architectures, stands out by autonomously nav-
igating the intricate maze of pixel-level data. It achieves not
only a higher degree of accuracy in spatial feature detection
but also a remarkable reduction in processing time. The com-
prehensive experiments conducted on REALSCENE and the
TOP-BOUNDARY dataset lay testament to the superior capab-
ilities of TopoSense. It adeptly captures complex spatial rela-
tionships, delineating a clear advance over conventional meth-
odologies that are often constrained by scalability and adapt-
ability issues. As the demand for accurate and efficient topo-
logical graph extraction grows, TopoSense offers an adaptable
and scalable solution that is well-poised to meet the challenges
presented by the increasing complexity of remote sensing data.
It embodies the potential to revolutionize the automation of car-
tographic representation and could serve as the cornerstone for
future innovations in remote sensing image interpretation.

Limitations and future work. Agent-driven topological graph
extraction from remote sensing images is poised to be signi-
ficantly advanced by leveraging the power of language mod-
els and the push towards more efficient, lightweight computa-
tional architectures. The integration of these elements prom-
ises to catalyze a new era of high-performance, scalable re-
mote sensing technologies that can operate across various agent
types and applications. Language models, particularly those
fine-tuned for spatial data interpretation, could be pivotal in
improving the semantic understanding of remote sensing im-
ages, enabling agents to discern complex features and relation-
ships with greater precision. When coupled with lightweight
neural networks, these agents can perform tasks with reduced
computational overhead, making them more accessible for de-
ployment on edge devices and in real-time systems. Further-
more, multi-agent collaboration, powered by advancements in
communication protocols and decentralized learning, can amp-
lify efficiency, whereby different agents specialize in distinct
aspects of the task, such as feature detection, boundary delin-
eation, or object classification. Such collaboration can lead to a
more nuanced extraction of topological graphs, effectively ad-
dressing the diverse and dynamic nature of spatial structures in
remote sensing images.
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