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Abstract 
 
Coarse spatial resolution of Thermal Infrared (TIR) satellites hampers measuring the temperature and emissivity of scene elements 
from space that improves our understanding of land surfaces' thermal behavior. The stringent conditions of current TIR unmixing 
methods hinder the production of extensive component temperature and emissivity products. To address this, we designed a gradient-
based multi-pixel physical model, TRUST-DART, to derive the temperature and emissivity of urban features from non-isothermal 
mixed pixels of satellite images using the DART 3D radiative transfer model. Unlike traditional TIR unmixing methods, TRUST-
DART is not constrained by issues related to spatial, spectral, temporal resolution, angular, scene, field measurement requirements, or 
manual operations. Its inputs include an at-surface radiance image, downwelling sky irradiance, a 3D urban mock-up with feature 
information, and DART input parameters such as spatial resolution. It generates maps of emissivity and temperature per urban feature. 
Its accuracy is validated for two vegetation and urban scenes and two types of images (DART simulated pseudo satellite and ASTER 
observed images). The accuracy of the TRUST-DART depends heavily on the fraction of components. TRUST-DART proves robust 
for high-fraction components. However, its accuracy decreases with decreasing fractions. TRUST-DART is distributed with DART 
and is available for education and research via Toulouse III University (https://dart.omp.eu). 
 
 

1. Introduction 

In thermal remote sensing, the emissivity and temperature of 
scene elements are crucial quantities for understanding plant 
physiological processes and the thermal behavior of urban 
environments (Jiang et al., 2022; Song et al., 2020). They are vital 
inputs for evapotranspiration models (Chen and Liu, 2020; 
Sánchez et al., 2008) and can help monitor variations in urban 
materials and structures (Huang et al., 2017; Ru et al., 2023). 
 
The separation of Land Surface Emissivity (LSE) and Land 
Surface Temperature (LST) from pixels is a complex problem, 
addressed by many methods categorized as either "stepwise" or 
"simultaneous". Stepwise methods, such as single-channel (Ottlé 
and Vidal-Madjar, 1992), multi-channel (McMillin, 1975), and 
multi-angle methods (Sobrino and Romaguera, 2004), first 
determine LSE, then retrieve LST using the determined LSE. 
However, these methods may introduce significant errors in the 
retrieved LST when the error in LSE is substantial. On the other 
hand, simultaneous methods, including the temperature and 
emissivity separation method (Gillespie et al., 1998), the two-
temperature method (TTM) (Watson, 1992), and the physics-
based day/night operational method (Wan and Li, 1997), can 
retrieve both temperature and emissivity simultaneously. This 
approach generally results in higher temperature and emissivity 
retrieval accuracy than stepwise methods. However, these 
methods operate under the assumption of pure, isothermal, and 
flat pixels, an assumption that is challenging to fulfill in TIR 

images over urban areas due to the coarse spatial resolutions 
(Zhen et al., 2022) and high heterogeneity of urban environments 
(Ru et al., 2023). Compared to homogeneous validation sites, the 
separated temperature and emissivity data accuracy significantly 
decreases when the validation sites are heterogeneous (Hu et al., 
2022). 
 
Extracting component temperature and emissivity data from 
current satellite imagery is a valuable yet complex task. 
Challenges arise due to factors such as ambiguous definitions of 
pixel and component emissivity (Norman and Becker, 1995), the 
temperature within mixed pixels (Li et al., 1999), emissivity 
directionality (Cao et al., 2019), and the uncertainties introduced 
by the unmixing process (Fontanilles and Briottet, 2011). For a 
TIR multispectral image with Λ bands measured over a mixed 
pixel containing I components, the unknowns include I 
component temperatures, I−1 fraction values (i.e., area fraction) 
per component, and Λ×I component emissivity values. These 
unknowns greatly outnumber the Λ equations.  
 
Several methods have been proposed to unmix component 
emissivity and temperature, including multi-angular, 
multispectral, multi-temporal, multi-pixel, and multi-resolution 
temperature unmixing methods (Zhan et al., 2013). Each method 
has its limitations and requirements: multi-angle unmixing 
method requires multi-angle data (Jacob et al., 2008; Kimes, 
1983), often lacking time continuity. It is designed for specific 
vegetation types and geometrical structures, making it 
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challenging to parameterize analytically. Multispectral unmixing 
methods (Gillespie, 1992) are for specific land surface types with 
known component emissivity values. Multi-temporal methods 
(Zhan et al., 2012) require the LST diurnal cycle to be 
parameterized. Sometimes, real-time ground records are needed 
to assist multi-temporal unmixing in case of inadequate time 
observations. Multi-pixel (Dozier, 1981) and multi-resolution 
(Archer and Jones, 2006) unmixing methods assume that 
component temperatures do not change within a specific spatial 
scale. Multi-pixel unmixing methods leverage the geographical 
correlation among component temperatures of adjacent pixels, 
where the associated component fractions vary from pixel to 
pixel. The multi-resolution unmixing method utilizes multi-
resolution data. However, most studies only consider soil and 
vegetation, limiting applications over heterogeneous terrain. 
 
A variety of sophisticated techniques have been introduced to 
unmix component temperature and emissivity across diverse land 
surfaces. For instance, the Thermal Remote Sensing Unmixing 
for Subpixel Temperature (TRUST) method (Cubero-Castan et 
al., 2014) and its multitemporal variant, TRUST Day and Night 
Synergy (TRUST-DNS) (Granero-Belinchon et al., 2020), 
perform estimations in straightforward scenarios. Current TIR 
satellite resolutions limit the use of TRUST and TRUST-DNS for 
generating component temperature products. The TRISHNA 
mission offers a 60 m resolution with 4 bands, below the 1 m with 
30 bands needed by TRUST and 8 m with 8 bands by TRUST-
DNS. Both models assume spatial invariant emissivity and linear 
unmixing, making them unsuitable for complex urban 
environments with multiple scattering. 
 
In view of the limitations of existing TIR unmixing methods, this 
study introduces a comprehensive multi-pixel TIR nonlinear 
unmixing model named TRUST-DART. It is a gradient-based 
multi-pixel physical model that simultaneously separates 
component temperature and emissivity over both vegetation and 
urban areas. It is a TIR adaptation of a DART inversion algorithm 
(Landier et al., 2018; Zhen et al., 2021) used for energy exchange 
monitoring in the shortwave domain (Chrysoulakis et al., 2018). 
In addition to DART common input data (e.g., downwelling sky 
irradiance (Eλ) and spatial resolution), it has two major input data: 
an at-surface radiance image (Lλ), and a 3D mock-up with 
component classification information. TRUST-DART provides 
maps of component emissivity and temperature. Incorporating 
knowledge from computer graphics, deep learning, and 
geostatistics, it greatly contributes to the field: 
 A novel solution to overcome constraints of TIR unmixing 

methods on sensor configuration such as spatial, temporal, and 
spectral resolutions, as well as multi-angular observations.  
 The gradient-based nonlinear unmixing model separates 

component temperature and emissivity by considering the 
multiple scattering using propagating gradients among 
parameters with distinct physical interpretations.  
 Easier simultaneous separation of component emissivity and 

temperature, considering spatial variability. 
 

TRUST-DART is first presented after a brief presentation of 
DART. Its validity is tested with a vegetation scene and an urban 
scene, using pseudo-satellite images simulated by the DART 
model and an Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER) satellite image.  
 

2. Methodology and Data 

2.1 DART Model 

DART is a comprehensive and precise 3D radiative transfer 
model grounded in physics. It facilitates the simulation of Earth-
atmosphere radiation interactions, spanning from visible to TIR 
wavelengths, across both urban and natural landscapes, 
considering atmospheric and topographic conditions (Gastellu-
Etchegorry et al., 2022; Gastellu-Etchegorry et al., 2020a, b; 
Wang et al., 2024; Zhen et al., 2023). Initiated at CESBIO in 1992 
and patented in 2003, DART is readily accessible for non-
commercial academic and research purposes via the University 
of Toulouse's website (https://dart.omp.eu). 
 
2.2 Methodology 

TRUST-DART uses an iterative optimization algorithm to unmix 
component temperature and emissivity from mixed pixels in 
thermal remote-sensing multispectral images. It has three key 
modules: pure pixel selection (PPS), Jacobian iterations (JI), and 
spectral correlation (SC) module (Figure 1). The PPS module 

provides the initial emissivity (��,�
���) and temperature (��

���) of 

each component in the scene, derived from pure pixels. Then, the 

Jacobian iteration module refines these initial values to ��,�
��

 and 

��
��

. Input parameters of TRUST-DART include a 3D urban 

mock-up with component class labels, an at-surface radiance 
image ����,�  and scene irradiance �� . Finally, TRUST-DART 

gives component temperature ��  and emissivity ��,�  maps. 
TRUST-DART modules are presented below. 
 

2.2.1 Pure Pixel Selection (PPS) Module: It derives ��,�
��� 

and ��
��� per urban component i, using pure pixels in LSE and 

LST images, either directly provided or derived from satellite 
radiance image Lsat,λ and irradiance Eλ using the TES method. The 
process begins with a DART simulation to determine the purity 
percentage Si of component i per pixel. Then, pure pixels for each 
i are chosen based on their value Si. The initial threshold of Si is 
set at 0.9. If this threshold fails to select any pure pixels, it is 
gradually reduced from 0.9 to 0.1 in steps of 0.1. If no pure pixel 
is identified even at the minimum threshold, the emissivity and 
temperature specified by the users in the DART simulation for 

calculating Si are given to ��,�
��� and ��

���. The values of ��,�
��� and 

��
��� from the mixed pixels are determined by the value of the 

nearest (in terms of Euclidean distance) pure pixel. If multiple 
pure pixels are selected as the nearest pure pixel, the median 
value of all nearest pure pixels is used. The underlying rationale 
for these operations is the principle of spatial continuity for each 
component. Due to co-registration discrepancies between DART 
and satellite imagery, some pixels at the periphery of DART 
images may be detected as pure without being so. Consequently, 
an erosion process can be employed for images with very high 
spatial resolution that possess an adequate number of pure pixels, 
thereby ensuring the purification of the selected pixels. 
 
2.2.2 Jacobian Iteration (JI) Module: It uses Jacobians (i.e., 

partial derivatives), DART simulated radiance �����,�
���

 at the 

next iteration j+1 is 

L
DART,�
j+1

=L
DART,�
j

+ � Gε,i,�
j

∙���,�
���

-��,�
�

�

�

���

+ � GT,i,�
j

∙

�

���

���
���

-��
�
�, (1)

where  i = element index 
 j = iteration index 
 λ = band index 
 ε = emissivity 
 T = thermodynamic temperature 
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 �����,�
�

 = DART simulated radiance image 

 �ε,i,�
�

 = gradient calculated with �i,�
�

 

 �T,i,�
�

 = gradient calculated with �i
�
 

 

At iteration j, the inversion must provide �i,�
���

 and �i
���

 such that 

DART �����,�
���

 and satellite ����,� radiance images are equal: 
 

L���,�=L
DART,�
j

+ � Gε,i,�
�

∙���,�
���

-��,�
�

�

�

���

+ � GT,i,�
�

∙

�

���

���
���

-��
�
�, (2)

 

In Eq.(2), the only unknowns are �i,�
���

and ��
���

. This system is 

indeterminate because it has only a single equation for each pixel 
per band. Thus, it cannot be solved directly. To address this, we 
increase the number of equations by assuming that any 

component i in adjacent pixels has the same ��,�
���

 and ��
���

 for 

each band λ. Therefore, by considering a window of M pixels, the 
total number of equations in the system becomes M × 

��������� �����. The full equation system can be written as Eq.(3). 

 
2.2.3 Spectral Correlation (SC) Module: It identifies and 

rectifies erroneous pixels (i.e., �i
���

 and �i,�
���

) for each 

component i. This is very useful if the retrieved optical / 
temperature properties of some components are outside the range 
of standard values. Optical / temperature rules for each 
component can be customized, enabling the detection and 
removal of these erroneous pixels. This is done with operators 
whose priority is set by parentheses: 
 Arithmetic operators: addition (+), subtraction (−), 

multiplication (*), and division (/).  
 Relational operators: greater than (>), greater than or equal to 

(>=), less than (<), and less than or equal to (<=). 
 Logical operators: and (&), or (|). 

 
In the context of emissivity, comparisons can be made between 
different bands for the same component and between 
components. For instance, one can specify that vegetation 
emissivity at 9 μm must be lower than that at 8 μm. One can also 
specify that water must have a lower or higher temperature than 
the ground, depending on whether it is a daytime or nighttime 
satellite image. Pixels inconsistent with spectral correlation rules 
are set to NaN values and subsequently eliminated using the 
median filter. This ensures the accuracy and reliability of the 
data. 

 

 

Figure 1. Algorithm flow chart: input and output parameters (rounded rectangle), processes (square corner rectangle), decision 

(diamond), DART inversion (blue), simulation (red) and loop flow (green). j: current iteration. J: maximum iteration. ����,�: satellite 

at-surface radiance image at band λ. �����,�,�: DART radiance image at band λ at iteration j. ��,�,�: emissivity of component i at band 

� at iteration j. ��,�: temperature of component i at iteration j. PPS: pure pixel selection; JI: Jacobian iteration; SC: spectral 

correlation. 
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2.3 Data 

2.3.1 The 3D Mock-up: TRUST-DART accuracy and 
reliability are assessed using two scenes. (1) A DART-created 
schematic 3D vegetation mock-up with vegetation and ground 
components. (2) A realistic 3D urban mock-up representing a 
European city, Brussels in Belgium. 
 
The vegetation scene is a 30 m × 20 m zone simulated at 1 m 
spatial resolution, with three homogeneous 10 m × 10 m maize 
fields at three growth stages with two Leaf Angle Distributions 
(LADs) - Spherical and Plagiophile (Figure 2). As the growth 
stage increases, the Leaf Area Index (LAI) increases from 0.95 
to 5.00, and maize height increases from 0.55 m to 1.95 m. Maize 
parameters are taken from the literature (Duthoit et al., 2008).  

 

Figure 2. The vegetation scene: bare ground and 3 maize fields 

at 3 growth stages with their height  (H), leaf area index (LAI), 

and leaf angle distribution (LAD). DART spatial resolution is 1 

m. 

 
The urban scene, Brussels, is the focus of this study (Figure 3). It 
is at 50° 51′ 0″ N, 4° 21′ 0″ E in the north-central part of Belgium, 
at 54 m mean altitude, from 10 m to 121 m. Its 3D mock-up is 
from Urbis (https://datastore.brussels/web/urbis-download). 
After its conversion to OBJ format, it is merged into a single file, 
and errors such as misclassified roofs and holes in the DEM 
(Digital Elevation Model) are corrected using specifically 
designed algorithms and Blender software. Finally, the 3D mock-
up is converted from the national geo-reference system 
(EPSG:31370) to the international system (EPSG:32361).   
 
Brussels is a densely populated urban area with a mean Urban 
Heat Island (UHI) effect of 3.22 °C, especially at night, with heat 
waves likely to become more frequent (Lauwaet et al., 2016). 
Deriving the emissivity and temperature of urban components 
from satellite images is essential to simulate the urban radiative 
budget, for instance, with a 3D model such as DART. 
 

 

Figure 3. The urban site. a) MODIS yearly land-cover map of 

Belgium with Brussels (★). b) Brussels 3D mock-up (water: 

blue; vegetation: green; ground: yellow; building: black); c) 

RGB true color composite of Brussels (PlanetScope image). 

 
2.3.2 Optical and Temperature Properties: TRUST-DART 
accuracy is accessed through its application on pseudo-ASTER 
images that DART simulates using optical and temperature 
properties of landscape components (Table 1) from the literature 
(Zhen et al., 2022). The authors selected representative optical 

properties from the ASTER or DART spectral database in this 
referenced work. These properties are then resampled using the 
ASTER spectral response function to simulate ASTER images 
for TES accuracy assessment.  
 
In TRUST-DART, each component in a pixel is assumed to have 
constant optical and temperature properties. This is a challenge 
when validating accuracy for components with two temperatures, 
as in neighbor illuminated and shaded areas. To address this, we 
introduce simplifications when simulating the pseudo-ASTER 
image: the optical and temperature properties of each component 
are isotropic and spatially invariant. Each component is assigned 
a single emissivity library and a constant temperature value 
across the entire scene. As a result, pseudo-ASTER images do 
not have spectral confusion issues. 
 

Components Ti (K) 
ελ,i 

8.3µm 8.65µm 9.1µm 10.6µm 11.3µm 

Vegetation 305.65 0.9726 0.9656 0.9573 0.9597 0.9628 
Ground 311.65 0.9828 0.9822 0.9781 0.9703 0.9669 

Table 1. Emissivity (ελ,i) and temperature (Ti) to simulate 

ASTER pseudo image. ελ,i is resampled to ASTER spectral 

sensitivity. 

 
2.3.3 Satellite Data and Preprocessing: TRUST-DART is 
tested with ASTER satellite images of Brussels. Table 2 shows 
its date, spectral bands, and spatial resolution. 
 

Parameters Values 
ID 00309262018212643 

Time 2018.09.26 21:26:43 
Bands λ (μm) ∆λ (μm) ∆r (m) 

B1 8.300 0.350 90 
B2 8.650 0.350 90 
B3 9.100 0.350 90 
B4 10.600 0.700 90 
B5 11.300 0.700 90 

Table 2. ASTER image information of Brussels: date and bands 

(central wavelength λ, spectral bandwidth ∆λ). Spatial 

resolution ∆r = 90 m. Data from USGS 

(https://lpdaac.usgs.gov/data/get-started-data/collection-

overview/missions/aster-overview/). 

 
The preprocessing of images involves two key steps: reprojection 
and co-registration. To minimize the impact of resampling on the 
spectral data of the image, we project the urban 3D mock-up to 
its satellite image coordinates, WGS 1984 UTM Zone 31N. For 
co-registrating the ASTER and DART images, we use the 
GeFolki software (Brigot et al., 2016; Plyer et al., 2015), a 
product of the French Space Agency 
(https://w3.onera.fr/medusa/gefolki). This software claims a 
geometric accuracy of 0.1 pixels. However, it is essential to note 
that any unavoidable inaccuracies in co-registration could 
potentially deteriorate the precision of inversion. 
 

3. Application and Accuracy Assessment 

3.1 Application on Simulated Vegetation Plots Scene 

3.1.1 Visual Accuracy Assessment: We use false RGB color 
composites to display the differences between pseudo-ASTER 
images and images simulated by DART using the maps of 
temperature and emissivity per scene component. Figure 4 shows 
the pseudo-ASTER image (Figure 4.a) and DART simulated 
image after inversion (Figure 4.b). These images are visually 
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very similar, particularly the pure ground pixels. We can note a 
slight difference for vegetation: The vegetation in the DART 
simulated image after inversion appears slightly lighter than the 
pseudo-ASTER image. 
 

  

(a) Pseudo ASTER image (b) DART image after inversion 

Figure 4. Vegetation plots images using false RGB 

composition. (a) Pseudo ASTER image. (b) DART simulated 

image using emissivity and temperature from TRUST-DART. 

3.1.2 Quantitative Accuracy Assessment: TRUST-DART 
emissivity and radiance relative error and temperature residual 
error are quantified by two statistical parameters: median error ± 

interquartile range (Figure 5) and mean error ± standard deviation 
(Figure 6). They depict how the error distribution evolves with 
iterations. Nearly every median error showed a decreasing trend 
with iterations (Figure 5). For the mean error (Figure 6), although 
radiance and temperature errors show a stable decreasing trend, 
emissivity error fluctuates. This is because certain components in 
pixels (such as soil covered by vegetation) contribute less to the 
pixel radiance, making retrieving temperature and emissivity 
more difficult. However, even if these errors are relatively large, 
their impacts on the radiance error of the pixel are minimal. 

 

 

Figure 5. Accuracy assessment of component temperature, emissivity, and pixel radiance by the absolute value of the median error 

indicator. Temperature error (RT) is assessed using the residual error. Radiance (EDART) and emissivity (EOP) errors are assessed using 

the relative error. The values used to simulate the pseudo-ASTER image are considered true values, and the values retrieved by 

TRUST-DART are considered estimated values. 

 

  

Figure 6. Accuracy assessment of component temperature, emissivity, and pixel radiance by the absolute value of the mean error 

indicator. Temperature error (RT) is assessed using the residual error. Radiance (EDART) and emissivity (EOP) errors are assessed using 

the relative error. The values used to simulate the pseudo-ASTER image are considered true values, and the values retrieved by 

TRUST-DART are considered estimated values. 

 
 
3.2 Application on Realistic Urban Scene 

3.2.1 Visual Accuracy Assessment: The ASTER images are 
used to assess the accuracy of the TRUST-DART. Here, RGB 
false color composites are used to visually compare the ASTER 
and DART images simulated with temperature and emissivity 
maps derived from TRUST-DART. The ASTER image (Figure 
7.a) and the DART simulated image after inversion (Figure 7.b) 
are very similar. The DART simulated image is sharper than the 
ASTER image, probably due to the modulation transfer function 
and atmospheric effects. 
 

3.2.2 Quantitative Accuracy Assessment: Figure 8 and 
Figure 9 show that no matter the median or mean error, the error 
of pixel radiance always decreases with the iterations for all 
bands. In addition, the median error shows a much clearer 
decrease trend than the mean error, similar to the vegetation case. 
In contrast, the final convergence accuracy is different for distinct 
bands. Depending on the mean radiance, usually low radiance 
(shorter wavelength) bands produce a high relative error. 
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(a) ASTER image (b) DART image after inversion 

Figure 7. Brussels false RGB composite images. a) ASTER 

image. b) DART image simulated with emissivity and 

temperature from TRUST-DART. 

 
4. Discussion and Conclusions  

4.1 Discussion 

4.1.1 Advantages: This study introduces TRUST-DART, a 
versatile, physical-based, nonlinear thermal unmixing model that 
eliminates many restrictions faced by existing TIR unmixing 
methods. Unlike traditional methods, TRUST-DART does not 
require strict spatial, spectral, and temporal resolutions, angular 
or land cover requirements, a priori field measurements, or 
manual operations. It offers better physical interpretability than 
neural network models by transferring gradients between 
parameters with clear physical meanings. TRUST-DART 
requires fewer satellite requirements and can separate component 
emissivity and temperature simultaneously, providing spatially 
varying maps. TRUST-DART is compatible with other TES-
based methods and can enhance its accuracy by incorporating 
advanced TES methods (Michel et al., 2021), making it sensor-
independent and versatile for various sensors. It also introduces 
a 3D mock-up for nonlinear thermal infrared unmixing, which 
can be suitable for heterogeneous areas. 

 
4.1.2 Limitations: TRUST-DART faces limitations due to its 
reliance on spatial correlation-based multi-pixel unmixing 
methods, which require adjacent pixels with varying surface 
parameters. In homogeneous scenes, like vegetation plots, strong 
linear correlations complicate equation-solving, and 
autocorrelations among neighboring pixels reduce spatial 
resolution when decomposing component temperatures (Zhan et 
al., 2013). It also cannot detect variations in temperature and 
emissivity within a single pixel. The use of a 3D mock-up can 
lead to geometry misregistration and viewing angle variations, 
impacting the accuracy of separated component properties. 
Although TRUST-DART requires a 3D mock-up, with urban 
mock-ups becoming more and more commonly available 
(https://blender-addons.org/blosm/) and the booming plant 3D 
architecture modeling (Zhen et al., 2024), 3D radiative transfer 
modeling has also gained wider application. We use ASTER 
images at 90 m spatial resolution, with almost no completely pure 
pixels in Brussels. This potentially compromises the accuracy of 
the PPS module. Higher spatial resolution imagery may help to 
ameliorate this problem. 
 
4.2 Conclusions 

We propose the TRUST-DART model for separating component 
emissivity and temperature from surface TIR multispectral 
images. TRUST-DART is free from the common problems of the 
TIR unmixing methods, such as spatial, spectral, temporal 
resolution, angular, scene, field measurement requirements, or 
even manual operations. TRUST-DART has three modules: PPS, 
JI, and SC. Its validation is carried out using a DART-created 
schematic vegetation cover and the realistic urban 3D mock-up 
of Brussels, Belgium. TRUST-DART may suffer from some 
common problems faced by multi-pixel and multi-source data. 
TRUST-DART is robust for high-fraction components, but its 
accuracy decreases with lower fractions.  

 

 

Figure 8. Accuracy assessment of DART simulated pixel radiance by the median relative error (EDART) absolute value relative to 

ASTER pixels. 
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Figure 9. Accuracy assessment of DART simulated pixel radiance by the mean relative error (EDART) absolute value relative to 

ASTER pixels. 
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