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Abstract

Coarse spatial resolution of Thermal Infrared (TIR) satellites hampers measuring the temperature and emissivity of scene elements
from space that improves our understanding of land surfaces' thermal behavior. The stringent conditions of current TIR unmixing
methods hinder the production of extensive component temperature and emissivity products. To address this, we designed a gradient-
based multi-pixel physical model, TRUST-DART, to derive the temperature and emissivity of urban features from non-isothermal
mixed pixels of satellite images using the DART 3D radiative transfer model. Unlike traditional TIR unmixing methods, TRUST-
DART is not constrained by issues related to spatial, spectral, temporal resolution, angular, scene, field measurement requirements, or
manual operations. Its inputs include an at-surface radiance image, downwelling sky irradiance, a 3D urban mock-up with feature
information, and DART input parameters such as spatial resolution. It generates maps of emissivity and temperature per urban feature.
Its accuracy is validated for two vegetation and urban scenes and two types of images (DART simulated pseudo satellite and ASTER
observed images). The accuracy of the TRUST-DART depends heavily on the fraction of components. TRUST-DART proves robust
for high-fraction components. However, its accuracy decreases with decreasing fractions. TRUST-DART is distributed with DART

and is available for education and research via Toulouse III University (https://dart.omp.eu).

1. Introduction

In thermal remote sensing, the emissivity and temperature of
scene elements are crucial quantities for understanding plant
physiological processes and the thermal behavior of urban
environments (Jiang et al., 2022; Song et al., 2020). They are vital
inputs for evapotranspiration models (Chen and Liu, 2020;
Sanchez et al., 2008) and can help monitor variations in urban
materials and structures (Huang et al., 2017; Ru et al., 2023).

The separation of Land Surface Emissivity (LSE) and Land
Surface Temperature (LST) from pixels is a complex problem,
addressed by many methods categorized as either "stepwise" or
"simultaneous". Stepwise methods, such as single-channel (Ottlé
and Vidal-Madjar, 1992), multi-channel (McMillin, 1975), and
multi-angle methods (Sobrino and Romaguera, 2004), first
determine LSE, then retrieve LST using the determined LSE.
However, these methods may introduce significant errors in the
retrieved LST when the error in LSE is substantial. On the other
hand, simultaneous methods, including the temperature and
emissivity separation method (Gillespie et al., 1998), the two-
temperature method (TTM) (Watson, 1992), and the physics-
based day/night operational method (Wan and Li, 1997), can
retrieve both temperature and emissivity simultaneously. This
approach generally results in higher temperature and emissivity
retrieval accuracy than stepwise methods. However, these
methods operate under the assumption of pure, isothermal, and
flat pixels, an assumption that is challenging to fulfill in TIR

images over urban areas due to the coarse spatial resolutions
(Zhen et al., 2022) and high heterogeneity of urban environments
(Ru et al., 2023). Compared to homogeneous validation sites, the
separated temperature and emissivity data accuracy significantly
decreases when the validation sites are heterogeneous (Hu et al.,
2022).

Extracting component temperature and emissivity data from
current satellite imagery is a valuable yet complex task.
Challenges arise due to factors such as ambiguous definitions of
pixel and component emissivity (Norman and Becker, 1995), the
temperature within mixed pixels (Li et al., 1999), emissivity
directionality (Cao et al., 2019), and the uncertainties introduced
by the unmixing process (Fontanilles and Briottet, 2011). For a
TIR multispectral image with 4 bands measured over a mixed
pixel containing / components, the unknowns include 7
component temperatures, /-1 fraction values (i.e., area fraction)
per component, and 4x/ component emissivity values. These
unknowns greatly outnumber the 4 equations.

Several methods have been proposed to unmix component
emissivity and  temperature, including multi-angular,
multispectral, multi-temporal, multi-pixel, and multi-resolution
temperature unmixing methods (Zhan et al., 2013). Each method
has its limitations and requirements: multi-angle unmixing
method requires multi-angle data (Jacob et al., 2008; Kimes,
1983), often lacking time continuity. It is designed for specific
vegetation types and geometrical structures, making it
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challenging to parameterize analytically. Multispectral unmixing
methods (Gillespie, 1992) are for specific land surface types with
known component emissivity values. Multi-temporal methods
(Zhan et al., 2012) require the LST diurnal cycle to be
parameterized. Sometimes, real-time ground records are needed
to assist multi-temporal unmixing in case of inadequate time
observations. Multi-pixel (Dozier, 1981) and multi-resolution
(Archer and Jones, 2006) unmixing methods assume that
component temperatures do not change within a specific spatial
scale. Multi-pixel unmixing methods leverage the geographical
correlation among component temperatures of adjacent pixels,
where the associated component fractions vary from pixel to
pixel. The multi-resolution unmixing method utilizes multi-
resolution data. However, most studies only consider soil and
vegetation, limiting applications over heterogeneous terrain.

A variety of sophisticated techniques have been introduced to
unmix component temperature and emissivity across diverse land
surfaces. For instance, the Thermal Remote Sensing Unmixing
for Subpixel Temperature (TRUST) method (Cubero-Castan et
al., 2014) and its multitemporal variant, TRUST Day and Night
Synergy (TRUST-DNS) (Granero-Belinchon et al., 2020),
perform estimations in straightforward scenarios. Current TIR
satellite resolutions limit the use of TRUST and TRUST-DNS for
generating component temperature products. The TRISHNA
mission offers a 60 m resolution with 4 bands, below the 1 m with
30 bands needed by TRUST and 8 m with 8 bands by TRUST-
DNS. Both models assume spatial invariant emissivity and linear
unmixing, making them unsuitable for complex urban
environments with multiple scattering.

In view of the limitations of existing TIR unmixing methods, this
study introduces a comprehensive multi-pixel TIR nonlinear
unmixing model named TRUST-DART. It is a gradient-based
multi-pixel physical model that simultaneously separates
component temperature and emissivity over both vegetation and
urban areas. It is a TIR adaptation of a DART inversion algorithm
(Landier et al., 2018; Zhen et al., 2021) used for energy exchange
monitoring in the shortwave domain (Chrysoulakis et al., 2018).
In addition to DART common input data (e.g., downwelling sky
irradiance (£7) and spatial resolution), it has two major input data:
an at-surface radiance image (L), and a 3D mock-up with
component classification information. TRUST-DART provides
maps of component emissivity and temperature. Incorporating
knowledge from computer graphics, deep learning, and
geostatistics, it greatly contributes to the field:

* A novel solution to overcome constraints of TIR unmixing
methods on sensor configuration such as spatial, temporal, and
spectral resolutions, as well as multi-angular observations.

- The gradient-based nonlinear unmixing model separates
component temperature and emissivity by considering the
multiple scattering using propagating gradients among
parameters with distinct physical interpretations.

- Easier simultaneous separation of component emissivity and
temperature, considering spatial variability.

TRUST-DART is first presented after a brief presentation of
DART. Its validity is tested with a vegetation scene and an urban
scene, using pseudo-satellite images simulated by the DART
model and an Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) satellite image.

2. Methodology and Data

2.1 DART Model

DART is a comprehensive and precise 3D radiative transfer
model grounded in physics. It facilitates the simulation of Earth-
atmosphere radiation interactions, spanning from visible to TIR
wavelengths, across both urban and natural landscapes,
considering atmospheric and topographic conditions (Gastellu-
Etchegorry et al., 2022; Gastellu-Etchegorry et al., 2020a, b;
Wang et al., 2024; Zhen et al., 2023). Initiated at CESBIO in 1992
and patented in 2003, DART is readily accessible for non-
commercial academic and research purposes via the University
of Toulouse's website (https://dart.omp.eu).

2.2 Methodology

TRUST-DART uses an iterative optimization algorithm to unmix
component temperature and emissivity from mixed pixels in
thermal remote-sensing multispectral images. It has three key
modules: pure pixel selection (PPS), Jacobian iterations (JI), and
spectral correlation (SC) module (Figure 1). The PPS module
provides the initial emissivity (sf ,]f 5) and temperature (TFFS) of
each component in the scene, derived from pure pixels. Then, the

i
ia and

Ti”. Input parameters of TRUST-DART include a 3D urban
mock-up with component class labels, an at-surface radiance
image Lgarz and scene irradiance Ej. Finally, TRUST-DART
gives component temperature T; and emissivity & ; maps.
TRUST-DART modules are presented below.

Jacobian iteration module refines these initial values to &

2.2.1 Pure Pixel Selection (PPS) Module: It derives sf f s

and TFPS per urban component i, using pure pixels in LSE and
LST images, either directly provided or derived from satellite
radiance image Lsa; and irradiance E, using the TES method. The
process begins with a DART simulation to determine the purity
percentage S: of component i per pixel. Then, pure pixels for each
i are chosen based on their value S;. The initial threshold of S; is
set at 0.9. If this threshold fails to select any pure pixels, it is
gradually reduced from 0.9 to 0.1 in steps of 0.1. If no pure pixel
is identified even at the minimum threshold, the emissivity and
temperature specified by the users in the DART simulation for
calculating S; are given to sf S and TFPS. The values of sf *S and

TL-PPS from the mixed pixels are determined by the value of the
nearest (in terms of Euclidean distance) pure pixel. If multiple
pure pixels are selected as the nearest pure pixel, the median
value of all nearest pure pixels is used. The underlying rationale
for these operations is the principle of spatial continuity for each
component. Due to co-registration discrepancies between DART
and satellite imagery, some pixels at the periphery of DART
images may be detected as pure without being so. Consequently,
an erosion process can be employed for images with very high
spatial resolution that possess an adequate number of pure pixels,
thereby ensuring the purification of the selected pixels.

2.2.2  Jacobian Iteration (JI) Module: It uses Jacobians (i.e.,
partial derivatives), DART simulated radiance L{;:RT’A at the
next iteration j+1 is

1 1

'{::\IRTA:L/DART,AJ'_ Z G]s,i,/l'(gi],}TI'EiJ,A) + Z GIT,i,A' (Ti]+1'Ti])r(1)
i=1 i=1

where i = element index

Jj = iteration index

A ="band index

& = emissivity

T = thermodynamic temperature
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L{) arTA — DART simulated radiance image
G : i gradient calculated with sl{ 1

G;,i’ ; = gradient calculated with Tl.j

At iteration j, the inversion must provide sij ; "and Tl.j *1 such that

DART L]D+A1RT ; and satellite Lgy¢ 3 radiance images are equal:
1 1
—7/ J (It T j L (rItl_pi
Lsat,FLDART,A*Z G (ely -€l3) *Z Gria (T77-T), @
i=1 i=1

In Eq.(2), the only unknowns are sij;land Tij 1 This system is
indeterminate because it has only a single equation for each pixel
per band. Thus, it cannot be solved directly. To address this, we
increase the number of equations by assuming that any

component i in adjacent pixels has the same sij Il and Tl.j 1 for
each band 1. Therefore, by considering a window of M pixels, the
total number of equations in the system becomes M X

Ngpectral bands- The full equation system can be written as Eq.(3).

2.2.3  Spectral Correlation (SC) Module: It identifies and

. . . j+1 j+1
rectifies erroneous pixels (i.e., Ti] and 5,‘]/1 ) for each

[Fsaa (oD / > [0, + 6 7]

y - / j j
Loarra(M) \Z, [GLi2M) &, (M) + G, (). T/ (M)
i=1

component i. This is very useful if the retrieved optical /
temperature properties of some components are outside the range
of standard values. Optical / temperature rules for each
component can be customized, enabling the detection and
removal of these erroneous pixels. This is done with operators
whose priority is set by parentheses:

- Arithmetic operators: addition (1),
multiplication (*), and division (/).

- Relational operators: greater than (>), greater than or equal to
(>=), less than (<), and less than or equal to (<=).

- Logical operators: and (&), or (]).

subtraction

)

In the context of emissivity, comparisons can be made between
different bands for the same component and between
components. For instance, one can specify that vegetation
emissivity at 9 pm must be lower than that at 8 um. One can also
specify that water must have a lower or higher temperature than
the ground, depending on whether it is a daytime or nighttime
satellite image. Pixels inconsistent with spectral correlation rules
are set to NaN values and subsequently eliminated using the
median filter. This ensures the accuracy and reliability of the
data.

\
|/
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Figure 1. Algorithm flow chart: input and output parameters (rounded rectangle), processes (square corner rectangle), decision
(diamond), DART inversion (blue), simulation (red) and loop flow (green). j: current iteration. J: maximum iteration. Lg,q 5: satellite
at-surface radiance image at band 4. Lpagrr,a,j: DART radiance image at band / at iteration j. €; 5 ;: emissivity of component i at band

A at iteration ;. T; ;: temperature of component i at iteration j. PPS: pure pixel selection; JI: Jacobian iteration; SC: spectral

correlation.
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2.3 Data

2.3.1 The 3D Mock-up: TRUST-DART accuracy and
reliability are assessed using two scenes. (1) A DART-created
schematic 3D vegetation mock-up with vegetation and ground
components. (2) A realistic 3D urban mock-up representing a
European city, Brussels in Belgium.

The vegetation scene is a 30 m x 20 m zone simulated at 1 m
spatial resolution, with three homogeneous 10 m X 10 m maize
fields at three growth stages with two Leaf Angle Distributions
(LADs) - Spherical and Plagiophile (Figure 2). As the growth
stage increases, the Leaf Area Index (LAI) increases from 0.95
to 5.00, and maize height increases from 0.55 mto 1.95 m. Maize
parameters are taken from the literature (Duthoit et al., 2008).

Phase third

Phase first LTt

1= 0.95 LAD = Spherical

LAD=Spherical H=195m

H=055m

Phase second
320
LAD = Plagiophile
-H=145m

Z--10m-——

—

Figure 2. The vegetation scene: bare ground and 3 maize fields

at 3 growth stages with their height (H), leaf area index (LAI),

and leaf angle distribution (LAD). DART spatial resolution is 1
m.

The urban scene, Brussels, is the focus of this study (Figure 3). It
isat50°51'0" N, 4° 21’ 0" E in the north-central part of Belgium,
at 54 m mean altitude, from 10 m to 121 m. Its 3D mock-up is
from Urbis (https://datastore.brussels/web/urbis-download).
After its conversion to OBJ format, it is merged into a single file,
and errors such as misclassified roofs and holes in the DEM
(Digital Elevation Model) are corrected using specifically
designed algorithms and Blender software. Finally, the 3D mock-
up is converted from the national geo-reference system
(EPSG:31370) to the international system (EPSG:32361).

Brussels is a densely populated urban area with a mean Urban
Heat Island (UHI) effect of 3.22 °C, especially at night, with heat
waves likely to become more frequent (Lauwaet et al., 2016).
Deriving the emissivity and temperature of urban components
from satellite images is essential to simulate the urban radiative
budget, for instance, with a 3D model such as DART.

S151°N (2) ot

50.83°N

50.16°N

49.49°N —
255°E  3.83°E  5.12°E  6.40°E

Figure 3. The urban site. a) MODIS yearly land-cover map of
Belgium with Brussels (). b) Brussels 3D mock-up (water:
blue; vegetation: green; ground: yellow; building: black); c)
RGB true color composite of Brussels (PlanetScope image).

2.3.2  Optical and Temperature Properties: TRUST-DART
accuracy is accessed through its application on pseudo-ASTER
images that DART simulates using optical and temperature
properties of landscape components (Table 1) from the literature
(Zhen et al., 2022). The authors selected representative optical

properties from the ASTER or DART spectral database in this
referenced work. These properties are then resampled using the
ASTER spectral response function to simulate ASTER images
for TES accuracy assessment.

In TRUST-DART, each component in a pixel is assumed to have
constant optical and temperature properties. This is a challenge
when validating accuracy for components with two temperatures,
as in neighbor illuminated and shaded areas. To address this, we
introduce simplifications when simulating the pseudo-ASTER
image: the optical and temperature properties of each component
are isotropic and spatially invariant. Each component is assigned
a single emissivity library and a constant temperature value
across the entire scene. As a result, pseudo-ASTER images do
not have spectral confusion issues.

&l

Components Ti(K) g3 1\ g65um 9.1um 10.6um  11.3um
Vegetation 305.65 0.9726 09656 09573 09597  0.9628
Ground  311.65 0.9828 0.9822 0.9781 0.9703 _ 0.9669

Table 1. Emissivity (1) and temperature (7;) to simulate
ASTER pseudo image. ¢;,: is resampled to ASTER spectral
sensitivity.

2.3.3 Satellite Data and Preprocessing: TRUST-DART is
tested with ASTER satellite images of Brussels. Table 2 shows
its date, spectral bands, and spatial resolution.

Parameters Values

ID 00309262018212643

Time 2018.09.26 21:26:43

Bands A (um) AA(pm)  Ar(m)
Bl 8.300 0.350 90
B2 8.650 0.350 90
B3 9.100 0.350 90
B4 10.600 0.700 90
B5 11.300 0.700 90

Table 2. ASTER image information of Brussels: date and bands
(central wavelength A, spectral bandwidth A4). Spatial
resolution Ar=90 m. Data from USGS
(https://lpdaac.usgs.gov/data/get-started-data/collection-
overview/missions/aster-overview/).

The preprocessing of images involves two key steps: reprojection
and co-registration. To minimize the impact of resampling on the
spectral data of the image, we project the urban 3D mock-up to
its satellite image coordinates, WGS 1984 UTM Zone 31N. For
co-registrating the ASTER and DART images, we use the
GeFolki software (Brigot et al., 2016; Plyer et al., 2015), a
product of the French Space Agency
(https://w3.onera.fr/medusa/gefolki). This software claims a
geometric accuracy of 0.1 pixels. However, it is essential to note
that any unavoidable inaccuracies in co-registration could
potentially deteriorate the precision of inversion.

3. Application and Accuracy Assessment

3.1 Application on Simulated Vegetation Plots Scene

3.1.1 Visual Accuracy Assessment: We use false RGB color
composites to display the differences between pseudo-ASTER
images and images simulated by DART using the maps of
temperature and emissivity per scene component. Figure 4 shows
the pseudo-ASTER image (Figure 4.a) and DART simulated
image after inversion (Figure 4.b). These images are visually
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very similar, particularly the pure ground pixels. We can note a
slight difference for vegetation: The vegetation in the DART
simulated image after inversion appears slightly lighter than the
pseudo-ASTER image.

(a) Pseudo ASTER image
Figure 4. Vegetation plots images using false RGB
composition. (a) Pseudo ASTER image. (b) DART simulated
image using emissivity and temperature from TRUST-DART.

(b) DART image after inversion
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3.1.2  Quantitative Accuracy Assessment: TRUST-DART
emissivity and radiance relative error and temperature residual
error are quantified by two statistical parameters: median error £
interquartile range (Figure 5) and mean error + standard deviation
(Figure 6). They depict how the error distribution evolves with
iterations. Nearly every median error showed a decreasing trend
with iterations (Figure 5). For the mean error (Figure 6), although
radiance and temperature errors show a stable decreasing trend,
emissivity error fluctuates. This is because certain components in
pixels (such as soil covered by vegetation) contribute less to the
pixel radiance, making retrieving temperature and emissivity
more difficult. However, even if these errors are relatively large,
their impacts on the radiance error of the pixel are minimal.
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Figure 5. Accuracy assessment of component temperature, emissivity, and pixel radiance by the absolute value of the median error
indicator. Temperature error (Rt) is assessed using the residual error. Radiance (Epart) and emissivity (Eop) errors are assessed using
the relative error. The values used to simulate the pseudo-ASTER image are considered true values, and the values retrieved by
TRUST-DART are considered estimated values.
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Figure 6. Accuracy assessment of component temperature, emissivity, and pixel radiance by the absolute value of the mean error
indicator. Temperature error (Rr) is assessed using the residual error. Radiance (Epart) and emissivity (Eop) errors are assessed using
the relative error. The values used to simulate the pseudo-ASTER image are considered true values, and the values retrieved by
TRUST-DART are considered estimated values.

3.2 Application on Realistic Urban Scene

3.2.1 Visual Accuracy Assessment: The ASTER images are
used to assess the accuracy of the TRUST-DART. Here, RGB
false color composites are used to visually compare the ASTER
and DART images simulated with temperature and emissivity
maps derived from TRUST-DART. The ASTER image (Figure
7.a) and the DART simulated image after inversion (Figure 7.b)
are very similar. The DART simulated image is sharper than the
ASTER image, probably due to the modulation transfer function
and atmospheric effects.

3.2.2 Quantitative Accuracy Assessment: Figure 8 and
Figure 9 show that no matter the median or mean error, the error
of pixel radiance always decreases with the iterations for all
bands. In addition, the median error shows a much clearer
decrease trend than the mean error, similar to the vegetation case.
In contrast, the final convergence accuracy is different for distinct
bands. Depending on the mean radiance, usually low radiance
(shorter wavelength) bands produce a high relative error.
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(a) ASTER image

(b) DART image after inversion

Figure 7. Brussels false RGB composite images. a) ASTER
image. b) DART image simulated with emissivity and
temperature from TRUST-DART.

4. Discussion and Conclusions

4.1 Discussion

4.1.1 Advantages: This study introduces TRUST-DART, a
versatile, physical-based, nonlinear thermal unmixing model that
eliminates many restrictions faced by existing TIR unmixing
methods. Unlike traditional methods, TRUST-DART does not
require strict spatial, spectral, and temporal resolutions, angular
or land cover requirements, a priori field measurements, or
manual operations. It offers better physical interpretability than
neural network models by transferring gradients between
parameters with clear physical meanings. TRUST-DART
requires fewer satellite requirements and can separate component
emissivity and temperature simultaneously, providing spatially
varying maps. TRUST-DART is compatible with other TES-
based methods and can enhance its accuracy by incorporating
advanced TES methods (Michel et al., 2021), making it sensor-
independent and versatile for various sensors. It also introduces
a 3D mock-up for nonlinear thermal infrared unmixing, which
can be suitable for heterogeneous areas.

4.1.2 Limitations: TRUST-DART faces limitations due to its
reliance on spatial correlation-based multi-pixel unmixing
methods, which require adjacent pixels with varying surface
parameters. In homogeneous scenes, like vegetation plots, strong
linear  correlations complicate  equation-solving,  and
autocorrelations among neighboring pixels reduce spatial
resolution when decomposing component temperatures (Zhan et
al., 2013). It also cannot detect variations in temperature and
emissivity within a single pixel. The use of a 3D mock-up can
lead to geometry misregistration and viewing angle variations,
impacting the accuracy of separated component properties.
Although TRUST-DART requires a 3D mock-up, with urban
mock-ups becoming more and more commonly available
(https://blender-addons.org/blosm/) and the booming plant 3D
architecture modeling (Zhen et al., 2024), 3D radiative transfer
modeling has also gained wider application. We use ASTER
images at 90 m spatial resolution, with almost no completely pure
pixels in Brussels. This potentially compromises the accuracy of
the PPS module. Higher spatial resolution imagery may help to
ameliorate this problem.

4.2 Conclusions

We propose the TRUST-DART model for separating component
emissivity and temperature from surface TIR multispectral
images. TRUST-DART is free from the common problems of the
TIR unmixing methods, such as spatial, spectral, temporal
resolution, angular, scene, field measurement requirements, or
even manual operations. TRUST-DART has three modules: PPS,
JI, and SC. Its validation is carried out using a DART-created
schematic vegetation cover and the realistic urban 3D mock-up
of Brussels, Belgium. TRUST-DART may suffer from some
common problems faced by multi-pixel and multi-source data.
TRUST-DART is robust for high-fraction components, but its
accuracy decreases with lower fractions.
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Figure 8. Accuracy assessment of DART simulated pixel radiance by the median relative error (Epart) absolute value relative to
ASTER pixels.
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Figure 9. Accuracy assessment of DART simulated pixel radiance by the mean relative error (Epart) absolute value relative to
ASTER pixels.
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