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Abstract 

 

The study aims to estimate the environmental critical thresholds using statistical approaches to understand the landslide conditioning 

factors that can trigger landslides in the Continental Basaltic Provinces a landslide-prone area, using as reference the landslides that 

occurred in an extreme rainfall event. The study area is a region that was the scene of an extreme hydrological event in January 2017, 

with an accumulated volume of rain of 163.9 mm in 8 hours, causing a widespread event of shallow planar landslides with more than 

400 scars detected. Hydrological, anthropic, geological, geomorphological, and topographical features of this region were analyzed 

considering landslides and non-landslides samples set, and their influence in the event was carried out using the Frequency Ratio 

method, followed by Pearson's Linear Correlation Coefficient and Linear Regression. The results showed that this process helped us 

to understand environmental critical thresholds based on classes of conditioning factors that have a greater influence on rainfall-

triggered landslide occurrences and, consequently, higher predictive capacity in the landslide susceptibility models with the same 

geoenvironmental parameters which is a valuable insight for risk management. 

 

 

1. Introduction 

Shallow planar landslides are often triggered by extreme rainfall 

and are related in particular to saprolitic or lateritic residual 

soils that form a weaker layer than the underlying material on 

steep slopes, forming a layer that can persist deposited under the 

cementation formed by negative pore pressure due to 

incomplete unsaturation or vegetation root reinforcement, but 

can be destroyed by the downward advance of a wetting front 

that is conducive to triggering avalanches or debris flows and 

Landslides (Hungr et al., 2014). 

 

The Serra Gaúcha, in southern Brazil and southeastern South 

America, was hit by a rainfall event on January 5, 2017, that 

lasted approximately 4 hours and showed rainfall accumulation 

similar to that accumulated throughout the month (SEMA, 

2017), which caused widespread shallow landslides on steep 

slopes in the Mascarada River basin, resulting in widespread 

mass flow that mobilized a large volume of sediment and 

showed high destructive potential. 

 

The region affected by the extreme weather event corresponds 

to the Mascarada River basin, which is arranged in residual 

plateau edge levels and is marked by a structural step with three 

cascades in the middle-upper part where is the epicenter of the 

shallow landslides occurred. After the 2017 event, in the 

middle-lower third of the basin, traces of flows were found that 

led to the formation of a debris fan and a mud delta. 

 

This region is based on geological units of ancient basaltic 

flows in thick Paleo-Mesozoic sedimentary sequence and the 

geomorphological characteristics with mountain ranges and 

plateau escarpments which have a saprophytic or lateritic 

residual soil that are substantially weaker than the underlying 

original material are very prone to landslides. 

 

Landslide Susceptibility Mapping (LSM) is an important 

component of geological disaster prevention and control (Yong 

et al., 2022). It is a procedure used to predict the probability of 

landslide occurrence based on the spatial distribution of the 

sample set and the Landslide Conditioning Factors (LCF) 

(Poddar and Roy, 2024) related to the characteristics of the 

physical or geo-environmental conditions (Moghimi et al., 

2024). Susceptibility models can be classified into deterministic 

or data-driven models (Huang et al., 2020; Poddar and Roy, 

2024). Based on data, statistical approaches aim to analyze the 

spatial distribution of past landslides to indicate the probability 

of likely areas of new landslides under similar conditions 

(Reichenbach et al., 2018; Segue et al., 2024; Moghimi et al., 

2024). 

 

These LCF can be classified as dynamic or static data 

depending on the duration, frequency of acquisition, and 

processing of the data to be integrated into models. LCF are 

database features calculated from hydrological, anthropic, 

geological, geomorphological, and topographical data 

considered in this research. Furthermore, other researchers 

consider other features such as human activities (Chen et al., 

2018), anthropogenic factors, climate, radar features, soil 

permeability conditions, earthquakes (Moghimi et al., 2024), or 

Normalized Difference Vegetation Index (NDVI) to assess 

vegetation coverage (Poddar and Roy, 2024). 
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A landslide scar inventory is necessary for statistical analysis, 

which can be obtained manually by vectoring using satellite 

imagery as a reference or using more sophisticated approaches 

methods such as object-based image analysis (OBIA) and Deep 

Learning (DL) that can update the inventory map faster 

regarding the new events landslide (Ghorbanzadeh et al., 2022; 

Moghimi et al., 2024). 

 

Using a river basin as a unit of analysis, the study aims to 

estimate the Environmental Critical Thresholds (ECT) through 

statistical analysis of Frequency Ratio (FR), Pearson's Linear 

Correlation Coefficient, and Linear Regression to understand 

the LCF that can trigger landslides in Continental Basaltic 

Provinces, using as a reference an event that occurred, in 2017.  

 

The ECT or weight approach create model flexibility to 

integrate Machine Learning models (ML) with Geographic 

Information System (GIS), Remote Sensing (SR) and Artificial 

Intelligence (AI) to develop innovative LSM approaches 

(Moghimi et al., 2024) and it is important to understand the 

LCF that can trigger landslides (Poddar and Roy, 2024). 

 

2. Study Area and Data Set 

The Mascarada River Basin (Figure 1) covers around 295.89 

km² in the northern region of the Porto Alegre Metropolitan, in 

the state of Rio Grande do Sul. The area is situated in the 

Morphostructural Unit of the Campos Gerais Plateau around 

38,863.15 km² on the edge of the Paraná Sedimentary Basin. 

 

 
Figure 1. The Mascarada River Basin in the geological 

structural provinces. 

 

The area of interest is based on geological units of ancient 

Basalt Paleo-Mesozoic thickness sedimentary sequences on 

mountain ranges and plateau escarpments and are transition 

areas between plateaus and depressions that have saprophytic or 

lateritic residual soils that are substantially weaker than the 

original underlying material, which geomorphological 

characteristics are very conducive to high-intensity landslides. 

 

On January 5, 2017, an extreme rainfall event (Figure 2) 

characterized as a convective system occurred in the region of 

the municipality of Rolante, causing hundreds of landslides in 

the Mascarada River basin. The event was analyzed using 

rainfall data from the National Center for Monitoring and 

Natural Disasters (Cemaden) and radar data that made it 

possible to obtain the dynamics of the rain event in relation to 

the duration and distribution of rainfall in the region where the 

landslides began. 

 
Figure 2. The extreme rainfall event in Mascarada River Basin. 

 

This convective system reached a radius of up to 46 km away, 

with a more intense nucleus coinciding with the center of the 

landslides and with a diameter varying around 16 to 28 km. The 

radar data showed that the center of the convective phenomenon 

detected in the area with the highest rainfall coincides perfectly 

with the center of landslide concentration, where it reached a 

volume of 163.9 mm in 8 hours. The phenomenon clearly 

demonstrates a strong relationship with the Serra Gaúcha 

escarpment on the border with the Santa Catarina plateau. 

 

To study this phenomenon together with other LCF related to 

landslides, the following data were used: 

• Meteorological radar data from Morro da Igreja 

(DTCEA) on January 5, 2017, with the accumulated 

volume of rain in the 8 hours of the event from 3 pm 

by value classes and data from Cemaden rainfall 

stations. 

• Planet images of a spatial resolution of 3.5 m from 

before the event (December 06, 2016). The image 

mosaic was used to generate a Land Use and Land 

Cover (LULC) map on a 1:10,000 scale. 

• RapidEye images of a spatial resolution of 5 m after 

the event (March 13, 2017). The image was used to 

extract a landslide scar inventory and sedimentary 

deposits on a 1:10,000 scale. 

• Digital Elevation Model (DEM), generated with 10 m 

spatial resolution, derived from the continuous vector 

cartographic base of Rio Grande do Sul – scale 

1:50,000 (Hasenack and Weber, 2010). 

 

For this research, the software available at the 

Geoprocessing and computer laboratory at ICT/UNESP and 

the Scikit-Learning library (available at https://scikit-

learn.org/stable/; Pedregosa et al., 2011), used in Anaconda 

Navigator development environment with the Jupyter 

Notebook application. Among the software used, there are: 

• ArcMAP and ArcGIS Pro (ESRI): for pre-processing 

data and generating information plans related to LCF. 
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• MATLAB® version 9.13.0 (R2023a): for statistical 

correlation analyses. 

 

3. Methodology 

The methodology consists of manually mapping landslide scars 

to create training and test sample sets representing landslides 

and non-landslides, generating LCF, determining the ECT based 

on FR, and performing correlation analysis of these sample sets 

with the LCF. This best represents the weight approach to 

develop the LSM models. 

 

3.1 Inventory Map and Samples Set 

The landslide scars were manually obtained as interpreted 

polygons based on a scene from the RapidEye satellite images 

after the event (Figure 3) which resulted on the total amount of 

306 landslide scars extracted in the study area. 

 
 

Figure 3. Landslide scars from the January 5, 2017, event in the 

Mascarada River basin and points of landslide and non-

landslide randomly sampled. 

 

 

Landslides points were randomly obtained from the limit of the 

landslide’s scars coverage, totaling an amount of 3,060 points. 

The same number of points was obtained randomly for the 

remaining Mascarada River basin, where no landslide events 

occurred. In total, 6,120 points of landslides (value 1) and non-

landslides (value 0) were produced to use as a sample (Figure 

3). 

 

3.2 Landslide conditioning factors 

 

Choosing the LCF is an important step for the rainfall-triggered 

landslide susceptibility model, as the selection of these factors 

influences the predictive capacity of the models. In this work, 

15 were selected based on the landslide modeling literature 

(Catani et al., 2013; Tien Bui et al., 2016; Park and Kim, 2019; 

Dang et al., 2020; Zhou et al., 2021).  

 

The LCF can be subdivided into meteorological, anthropic, 

geological, geomorphological, hydrological, and topographic. 

Figure 4 presents the LCF divided according to these typologies 

and a brief description is presented as follows. 

 

The rainfall accumulation map was generated from 8-hour 

accumulated data from the Morro da Igreja meteorological radar 

DTCEA). 

 

The LULC map was produced from a mosaic of Planet images 

from 2016 (before the event) through supervised classification 

using the Support Vector Machine algorithm followed by 

manual editing. 

 

The structural lineaments density map was obtained based on 

lineaments extracted using shaded relief derived from the DEM 

with azimuths equal to 315o and 45o and a solar angle of 45o. 

Lineaments as aligned ridges and floodplain downgraded 

valleys were mapped to analyze the role of the geological 

substrate in controlling the development of concave relief forms 

(Avelar and Neto, 1992), which explain the hydrological and 

erosive responses of the landscape and define potential areas of 

slope instability. 

 

 
Figure 4. Characterization of the conditioning factors used 

according to their typology. 

 

The structural lineaments density map was obtained based on 

lineaments extracted using shaded relief derived from the DEM 

with azimuths equal to 315o and 45o and a solar angle of 45o. 

Lineaments as aligned ridges and floodplain downgraded 

valleys were mapped to analyze the role of the geological 

substrate in controlling the development of concave relief forms 

(Avelar and Neto, 1992), which explain the hydrological and 

erosive responses of the landscape and define potential areas of 

slope instability. 

 

The geomorphological map was developed based on the 

elevation range, slope, and shaded relief derived from the DEM 

to represent the morphology, structure, genesis, and chronology 
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of the landscape. The geomorphological classes mapped were 

based on the Geodiversity map of Rio Grande do Sul (Vieiro, 

2010) and the Relief Pattern Library (Dantas, 2016), both 

produced by the Mineral Resources Research Company 

(CPRM, in Portuguese). 

 

The following LCF were generated from the DEM. The Stream 

Power Index (SPI) characterizes the process of erosion and 

sediment deposition, which reflects the topographic effects of 

soil loss according to Burrough and MCDonnell (1998), which 

is similar to the slope factor included in the Universal Soil Loss 

Equation (USLE) (Wischmeier and Smith, 1978) and was 

applied to three-dimensional surfaces by Moore et al. (1991). 

 

The Sediment Transport Index (STI)  represents the runoff 

model (Beven and Kirkby, 1979) that describes the sediment 

transfer capacity in channel streams and has been used as a 

measure of the erosive power of flowing water (Moore et al., 

1991) based on the assumption that discharge is proportional to 

the specific catchment area about the net erosion in areas of 

profile with convexity and tangential concavity (flow 

acceleration and convergence zones) and net deposition in areas 

of profile concavity (zones of decreasing flow velocity) (Gallant 

and Wilson, 2000). 

 

The Topographic Wetness Index (TWI) represents the spatial 

distribution of humidity and extension of saturation zones for 

runoff generation as a function of the slope contribution area, 

soil transmissivity, and slope gradient, therefore assuming, 

steady-state conditions, and uniform soil properties (Gallant and 

Wilson, 2000). This variable has been useful for quantifying the 

effects of topography on hydrological processes and indicating 

the balance between water accumulation and drainage 

conditions according to Bannari et al. (2017). 

 

The slope orientation map (aspect) aims to evaluate the angle of 

solar incidence on the topographic surface, evapotranspiration 

tendency, and the distribution and abundance of flora and fauna 

(Gallant and Wilson, 2000). 

 

The combined curvature map has a three-dimensional approach 

to slope systems as a basis for the pedogenetic evolution of the 

relief. Thus, the geometric relationships (plan versus profile) 

coupled with the subsurface structure aim to individualize the 

Soil-Landscape system (Hugget, 1975). 

 

The profile curvature map was generated from DEM and 

characterizes the maximum slope along a flow line and the 

degree of downward acceleration or deceleration in the 

landscape (Gallant and Wilson, 2000) as negative for the 

convex flow profile, typical of higher slopes, and positive for 

the concave profile, typical of lower slopes. The objective is to 

indicate the relief forms of the “ramp complexes” that represent 

the reworking of subsurface materials associated with episodes 

of formation of colluvial deposits (Meis and Monteiro, 1979). 

 

The plan curvature map represents the areas perpendicular to 

the direction of the slope and the curvature of the plane that 

characterizes the degree of convergence or divergence of the 

flow in the landscape to represent the amount of water in the 

soil and the characteristics of the soil, being negative for 

divergent flow along ridges and positive for convergent areas 

such as along valley bottoms (Gallant and Wilson, 2000). 

 

The hypsometric map represents the cumulative distribution of 

elevations in a geographic area to demonstrate climatic 

significance for vegetation and measure the energy potential of 

the environment (Gallant and Wilson, 2000). 

 

The slope map indicates the slope gradient in degrees (ranging 

from 0° to 90°) for each grid cell to express the relationship 

between the difference in height between two points and the 

horizontal distance between these points (Valeriano, 2002) and 

how it influence the terrestrial and underground flow, the speed, 

the rate of runoff, the distribution of vegetation, landform 

geomorphology and the amount of water in the soil (Gallant and 

Wilson, 2000). 

 

The Topographic Position Index (TPI) compares the average 

elevation of a specific neighborhood around a cell to isolate 

specific landscape features such as canyon bottoms, steep 

slopes, or other topographic positions (Guisan et al., 1999). 

 

The Terrain Ruggedness Index (TRI) characterizes a measure of 

the local topographic relief regarding its height (Riley et al., 

1999) according to the calculation of the mean squared 

deviation for each grid cell and its eight neighbors. 

 

3.3 Frequency Ratio to Estimate the Environmental 

Critical Thresholds 

The FR is a bivariate statistical probabilistic method based on 

the relationship between the distribution of landslides and the 

LCF in the study area that reveal the landslide density within a 

specific class (Pradhan, 2010; Park and Kim 2019; Sahin et al., 

2020, Yang et al., 2020, Poddar and Roy, 2024). 

 

The FR can be described by Equation 1, which will be used for 

all classes of landslide LCF based on their relationships with the 

scar inventory (Oh et al., 2011). This method was applied based 

on landslide scars as a raster image. 

 

 

             (1) 

where A is the number of landslide pixels for each class LCF; B 

is the total number of landslide pixels in the study area; C is the 

number of pixels in the class area of each LCF, and D is the 

total number of pixels in the study area. 

 

Then, the RF was normalized to FR on a scale of probability 

values from 0 to 1 using Equation 2: 

 

 

     (2) 

The normalization aims for a bivariate probability analysis, 

which if equal to 1, has a strong correlation between the 

incidence of landslides and each class of LCF, and if the 

probability is less than 1, a weaker correlation (Tien Bui et al., 

2016; Park and Kim, 2019, Poddar and Roy, 2024). 

 

This method explains the landslide event and can be used as an 

attribute selection factor according to the calculated weights and 

to estimate the ECTs that determine the predisposition of each 

class of the landslide LCF. Also, it can be useful in calibrating 

landslide susceptibility models. 

 

3.4 Pearson's Linear Correlation Coefficient 

Pearson's Linear Correlation Coefficient is an indicator that 

reflects the degree of correlation between two variables (Gu et 
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al., 2023), describing how strong the linear relationship is 

between the two variables and their direction (positive or 

negative). The Pearson's Linear Correlation Coefficient is used 

to find the correlation between the landslides and non-landslides 

samples set with each LCF. 

 

That way, the X columns correspond to the observations and the 

Y columns correspond to the variables or LCF. For column X 

and column Y, Pearson's linear correlation coefficient r(X,Y) is 

defined by Equation 3. 

 

                          (3) 

 

Where n is the number of landslides and non-landslides samples 

set, Xi and Yi are the values of the i-th sample data in X and Y, 

respectively, and  and  are the averages of X and Y, 

respectively. 

 

Pearson Correlation Coefficient values range from –1 to +1, 

where a value of –1 indicates perfect negative correlation, while 

a value of +1 indicates perfect positive correlation, and a value 

of 0 indicates that there is no correlation between the columns 

(MATLAB® version 9.13.0). 

 

Pearson's Linear Correlation Coefficient returns the p-value 

(pval) to test the null hypothesis, which assumes that the 

statistical result was obtained by chance. P-values range from 0 

to 1, where values close to 0 correspond to a significant 

correlation and a low probability of observing the null 

hypothesis. A low p-value (below a significance level, in this 

case 0.05) suggests that observed correlation is statistically 

significant, meaning that it is unlikely to have occurred by 

chance. 

 

Afterward, the linear adjustment was determined through the 

Coefficient of determination (R2) which is the square of the 

correlation coefficient. R2 is a measure of how much of the 

variance in the dependent variable is explained by the 

independent variables X in the linear regression model. It ranges 

from 0 to 1. The larger the R-squared is, the more variability is 

explained by the linear regression model. 

 

4. Results 

The ECT admitted relating to the landslide event analyzed in the 

study area are obtained by the highest weight according to the 

FR are available in Figures 5 and 6 and detailed below: 

• In the rainfall accumulation data, the class that 

triggered the landslide event has about 97% of the 

scars in the 100-165 mm range and 3% in the 50-100 

mm range. 

• In LULC, scars are predominantly located in the 

classes of Native Tree Vegetation (66%), and 

Agricultural Culture (10%). 

• The scars are mainly found in moderate to high 

classes of the structural lineament’s density, mainly in 

areas of channelized and non-channelized embedded 

valley bottoms formed from the development of 

concave relief forms, which explain hydrological 

responses and erosion of the landscape and define 

potential zones of slope instability. 

• By geomorphological data, the scars at the epicenter 

of the event are located mainly in altitude ranges 

between > 300 m (51%) and > 500 m (25%) referring 

to the morphology of the Serra Geral escarpment, 

which has shallow soils of the Neossols type and 

slope > 45o in relation to the river plain areas. 

• SPI indicated that the scars have an epicenter around 

moderate to very high indices, with around 96%, 

which represent areas with convexity and tangential 

concavity where flow acceleration and convergence 

zones predominate. 

• STI indicated that the scars have an epicenter around 

moderate to high rates (around 84%) that indicate 

higher soil losses. 

• TWI indicated that the scars have an epicenter around 

the very low indices below (around 60%) and very 

high (around 21%, indicating the effects of 

topography on hydrological processes and 

accumulation of water in saturation zones to generate 

flow. 

 

 
Figure 5. Graphic showing the FR results for conditioning 

factors (Accumulated rainfall, LULC, Lineament Density, 

Geomorphology, SPI, STI and TWI) and their corresponding 

ECT. 

 

• In Aspect, the scars are located in structures facing 

mainly N-L orientation (more than 50% of them), 

which seems to correlate with the front of the 

meteorological phenomenon. 

• In combined curvature, scars occurred around 63% in 

concave areas of the relief. 

• In profile curvature, the scars occurred mainly, around 

64%, in negative areas with a convex flow profile, 

typical of higher slopes, and around 22%, in positive 

areas for the concave profile, typical of lower slopes 

that have the objective indicate the relief forms of the 
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"ramp complexes" that represent the reworking of 

subsurface materials associated with episodes of 

formation of colluvial deposits (Meis and Monteiro, 

1979). 

• In the plan curvature, the scars occurred mainly in the 

convergent areas, along the valley bottoms, and in 

negative areas with about 41% for the divergent flow 

along the crests. 

• The hypsometry demonstrated that the scars 

developed at an amplitude of 300 to 750 m. 

• The slope demonstrated that the epicenter of the scars 

is located on slopes > 45o (52%), and 35-45o (27%). 

• TPI indicated that the scars have an epicenter around 

very low to moderate indices (around 93%) which 

characterize areas with medium elevation as canyon 

bottoms and steep slopes. 

• TRI indicated that scars have an epicenter around 

moderate to very high indices, with around 43% of 

high roughness of relief and elevation. 

 

 
Figure 6. Graphic showing the FR results for conditioning 

factors (Aspect, Combined Curvature, Profile Curbature, 

Curvature in Plan, Hipsometry, Slope, TPI and TRI) and their 

corresponding ECT. 

 

Pearson's Linear Correlation Coefficient (rho) between the LCF 

(matrix with stacked rasters) and the landslides and non-

landslides samples set indicated a positive correlation between 

the two columns since no value was lower than 0. Thus, all the 

LCF presented a positive correlation as shown in Figure 7. The 

rainfall accumulation was the one that have the greatest 

correlation (0.68), indicating a moderate correlation. TRI, 

Slope, Geomorphology, hypsometry, STI, and SPI also present 

moderate correlation, with pho ranging 0.40 to 0.47.  

 

 
Figure 7. Graphics represent the Pearson's Linear Correlation 

Coefficient (rho) between the conditioning factors and 

coefficient of determination R2. 

 

Figure 7 also demonstrated a very weak correlation (rho lower 

0.20) for aspect and density of structures lineaments LCF based 

on the distribution of random samples selected. 

 

The p-value analysis indicated that all LCF present a significant 

correlation (with a significance level of 0.05) since the p-value 

close to 0 corresponds to a correlation in R² and a low 

probability of observing the null hypothesis. 

 

The coefficient of determination R2 (Figure 7) indicates that 

46% of the set of landslide and non-landslide samples were 

triggered by the extreme rainfall events of 2017, with rainfall 

accumulation being the LCF. While TWI, profile curvature, 

density of structure lineaments, and aspect explain values 

smaller than 5% of the sample set. 

 

5. Discussion 

Of the total number of landslide scars interpreted and extracted 

by the image, around 74.26% are in the Plateau Edge 

Escarpment geomorphological domain, with a relief range 

greater than 300 m and a slope greater than 45°. Of the 

remaining scars, around 25.74% are in the Serra Geral 

geomorphological domain, which has a relief amplitude of over 

500 m and a slope above 45°. It is worth noting that both reliefs 

have shallow Neossolo Litólico soils. 

 

High slopes are not always indicative of high susceptibility to 

landslides (Gameiro et al., 2022). Landslides on slopes above 

30° are not as common, however, extreme rainfall events such 

as occurred in this region can induce landslides on greater 

slopes (Riffel et al., 2021). Gameiro et al. (2019) also report 

landslides with slopes above the average in the study for the 

region. 

 

It is worth considering that the LCF anthropic represented by 

LULC has so far been little explored in studies related to these 

landslide events. In this work, it was found that 66% of 

landslides are related to the native vegetation class, showing 

that anthropized areas did not have a greater influence on the 

triggering of the event.  

 

The rainfall accumulation was the one that have the greatest 

influence on landslide occurrences, with a correlation value 

(rho) of 0.68 and a coefficient of determination R2 equal to 0.46 
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(46%). This shows that most landslides coincide with the 

epicentre of the hydrological event.  

 

Others LCF such as slope, TWI, geomorphology, hypsometry, 

STI, and SPI also showed a moderate correlation with the 

sample set, indicating their importance in the susceptibility 

model.  

 

LCF least correlated with the landslide and non-landslide 

samples set were TWI, profile curvature, density of structure 

lineaments, and aspect. Gameiro et al. (2019) also verified that 

aspect or orientation and TWI presented the lowest correlation 

with the event in the study area. 

 

6. Conclusion 

 

ECT for landslide events that occurred in 2017 at the Mascarada 

River basin were investigated based on 15 LCF (meteorological, 

anthropic, geological, geomorphological, hydrological, and 

topographic) using the FR method and correlation analysis to 

identify the integration of geoenvironmental parameters and 

landslide prone area for Continental Basaltic Provinces.  

 

ECT derived by the FR method can be tested in other Basaltic 

Provinces outcrops found in various places around the world or 

can be used in mass movement prediction models in areas of 

interest with geological and similar geomorphological 

characteristics also, which is a valuable insight for risk 

management. 

 

The Pearson Correlation analysis between the LCF and the 

samples set is an important phase antecedent to the landslide 

susceptibility model allows finding LCF more correlated and 

best explain landslide events, as well as those that do not 

contribute to their understanding, and may even degrade the 

results in the susceptibility model. 

 

This sample set of landslides and non-landslides will be tested 

in LSM using ML algorithms, such as Random Forest. 

Moreover, it could be used in hybrid models for innovative 

LSM  
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