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Abstract

Rapid urban growth makes green space management crucial to improve citizens’ well-being. Urban olive trees characterize the
Italian landscapes and their culture. This study explores different methodologies for urban tree assessment in this context, using an
iPhone 14 Pro Max. These included: 1) its integrated Light Detection and Ranging (LiDAR) sensor using the Recon3D app, 2) its
camera with Structure from Motion (SfM) techniques, and 3) its camera for generating 3D models using Neural Radiance Fields
(NeRF). Additionally, a professional Mobile Laser Scanner (MLS), was used for comparison. Total height (H), canopy base height
(CBH) and canopy volume (CV) measurements were extracted using both CloudCompare and allometric formulas. The main aim
of this paper is to compare the 3D models of olive trees obtained from low-cost sensors with those generated from the MLS, which
is a more accurate device but comes with significantly higher costs. The results, in terms of RMSE (iPhone LiDAR - H: 0.46 m,
CBH: 0.12 m, CV: 15.66 m3; iPhone-SfM - H: 0.95 m, CBH: 0.19 m, CV: 25.85 m3; iPhone-NeRF - H: 1.26 m, CBH: 0.31 m, CV:
33.79 m3), bias and volume differences, reveal that the smartphone, in all the methodologies, tends to underestimate measurements
as the size of the trees increases. This is due to the higher MLS range of acquisition. Despite these limitations, low-cost solutions
like smartphone-based methods can be a viable alternative given their economic accessibility.

1. Introduction

In recent decades, the increase in urban population and the ex-
pansion of urban areas have had a significant impact on the
quality of life of citizens. According to data from the United
Nations, in 2018, 55% of the world’s population lived in urban
areas, and it is projected to reach 68% by 2050 (Ritchie and
Roser, 2018). While cities offer many advantages and oppor-
tunities to people, they face serious issues related to climate
change and environmental pollution. Among these, but not
limited to, we can list the urban heat island effect, air pollu-
tion, and the reduction of biodiversity. This increasingly relev-
ant scenario has led local administrations to address the grow-
ing need to promote a better quality of life through the cre-
ation and maintenance of public green spaces where trees play
a central role (Mensah et al., 2016; Artmann et al., 2019; Gav-
rilidis et al., 2022). In addition to providing significant ecosys-
tem services, some plants also represent a symbol of cultural
identity and tradition for a city. This is evident in the case of
the city of Ascoli Piceno, located in central Italy, where the
olive variety known as the “Ascolana Tenera” plays a crucial
role in local agriculture. Its presence is widespread throughout
the Ascoli territory, including the historic center of the city, a
testament to the deep bond that the community has with this
cultivar. Derived from the homonymous variety of the “Olea
europaea” species, the “Ascolana Tenera” represents a genuine
excellence in the agricultural sector of the Marche region, to
the extent of receiving the prestigious DOP (Protected Desig-
nation of Origin) recognition and being designated as “Oliva
Ascolana del Piceno”. Its importance has prompted local au-
thorities to protect it even within the context of urban green-
ery, through a census aimed at collecting the main dendromet-
ric parameters (tree height (H), canopy base height (CBH) and
canopy volume (CV)), that are essential for conducting accurate
inventory and for managing these resources optimally. The de-

termination of the CV represents a particularly challenging task.
The traditional methods used so far involve intensive work for
the multiple manual measurements that need to be carried out,
which also have limitations due to intra- and inter-individual
variability, making the measurements subjective and not repro-
ducible. To address this issue, especially in recent years, the
rapid advancement of three-dimensional (3D) digitization and
reconstruction, besides artificial intelligence (AI) technologies
presents new opportunities in the field of trees’ monitoring and
conservation. These cutting-edge technologies facilitate the im-
plementation of sophisticated approaches in forestry, facilitat-
ing precise data collection and the automatic generation of mod-
els (Huang et al., 2024). This method allows for obtaining
detailed information on tree characteristics and its dendromet-
ric parameters (Wallace et al., 2016). To obtain 3D data on
trees, among terrestrial platforms, we find terrestrial laser scan-
ning (TLS), mobile laser scanning (MLS), and ground-based
photogrammetry. TLS ensures the highest geometric precision
of data among all sensors and platforms, while MLS collects
data efficiently, albeit with slightly lower precision compared
to TLS. On the other hand, ground-based photogrammetry pro-
cesses images captured by various cameras and is commonly
used and easy to operate (Balestra et al., 2024). This approach,
when applied to 3D tree reconstruction, forestry inventory and
vegetation modeling, proves to be automated and effective in
terms of representation (Iglhaut et al., 2019). However, its ac-
curacy is strongly influenced by the complexity of the morpho-
logical branching structures of trees and the shading of internal
branches caused by leaves, as well as the technical characterist-
ics of the camera sensor.

Novel techniques capable of precisely reconstructing the entire
3D tree canopies from images are based on deep learning ap-
proaches. Neural Radiance Fields (NeRF) (Mildenhall et al.,
2021) is a neural network used to synthesize novel views of
complex 3D scenes by optimizing an underlying continuous
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volumetric scene function based on an initial set of sparse views
(Tancik et al., 2023) . MLPs (Multi-Layer Perceptrons) are
trained to generate 3D objects from two-dimensional images.
A 5D vector function is taken as input: the MLP takes a 5D
coordinate, composed of spatial coordinates within the scene
(x,y, z) and two angles, azimuthal and polar, which define
the viewing direction (θ, ϕ). It outputs a volumetric density,
denoted as σ, and an RGB color, dependent on the viewing
direction (Croce et al., 2024). The resolution-invariant nature
of NeRF’s implicit representation allows much more detailed
and nuanced modeling, free from the constraints of resolution-
dependent approaches. This capability holds significant prom-
ise in tree research, as NeRF’s capacity to capture intricate de-
tails could lead to groundbreaking discoveries in plant struc-
tures, positioning it as a pivotal tool in the progression of con-
temporary agricultural and forestry studies (Arshad et al., 2024).

In our work, we explored two different devices: a professional
MLS (KAARTA Stencil-2) and the low-cost iPhone 14 Pro Max,
utilizing both its LiDAR and camera sensors. Initially, we em-
ployed LiDAR technology from both the iPhone (referred to
as iPhone LiDAR) and the MLS (referred to as KAARTA) to
generate the 3D models. For the iPhone, we used the Recon-
3D app (Recon 3D Website, n.d.), designed for iOS mobile
devices. For the second approach has been employed photo-
grammetry principles, specifically using the Structure from Mo-
tion (SfM) method (Schonberger and Frahm, 2016) to generate
3D point clouds from video frames captured with the iPhone
camera sensors. Agisoft Metashape software was employed for
this purpose. Finally, we utilized NeRF, leveraging deep learn-
ing capabilities to synthesize seamless 3D scenes captured by
the iPhone camera sensors. This study highlights the potential
of geomatics applications in surveying urban olive trees, integ-
ral to the Italian traditional landscape in urban and peri-urban
contexts. The primary objective of this study is to compare the
results of acquisitions made with the iPhone, specifically us-
ing LiDAR, SfM and NeRF, against those obtained with the
KAARTA Stencil-2. Additionally, we aim to compare SfM and
NeRF using the same input data. Our intention is to evaluate the
applicability of the low-cost RGB camera and LiDAR mounted
on a smartphone for detection and point cloud generation for
metric data extraction. We highlight the strengths and limita-
tions of using these devices in terms of generating volumetric
3D scenes that produce novel views and the resolution of the
resulting point clouds. Our results, in terms of RMSE, bias,
and volume differences, reveal that the smartphone tends to un-
derestimate measurements as the size of the trees increases. By
doing so, we hope to contribute to the ongoing development
and refinement of this innovative approach to 3D tree recon-
struction.

In Section 2, the state of the art related to 3D modeling of urban
trees using various technologies is presented. In Section 3, the
materials and methods used in our study are described, includ-
ing details about the devices (KAARTA-Stencil 2 and iPhone
14 Pro Max) and data acquisition techniques (LiDAR, photo-
grammetry, and NeRF). Section 4 presents the results of the
visualization and measurement of the dendrometric parameters
of olive trees. In Section 5, we discuss the results obtained from
the different acquisition methodologies.

2. Related works

In the past years, tree structural and geometrical parameters, as
CV and CBH, were typically obtained through manual meas-

urements of canopy height and width. However, due to the
slow and costly nature of this methodology, alternative methods
have been increasingly employed over the last decade (Chiap-
pini et al., 2022b). Various technologies can be employed for
the geometric characterisation of crops, including digital pho-
tographs (Balestra et al., 2023), ultrasound-based systems (Za-
man and Schumann, 2005), stereoscopic images (Rovira-Más et
al., 2005), high-resolution radar images (Bongers, 2001), light
sensors (Castillo-Ruiz et al., 2016), and laser sensors (Sola-
Guirado et al., 2018). It is important to emphasise that not all
the technologies mentioned earlier have proven equally effect-
ive in accurately depicting the 3D structure of trees, primarily
due to real-world field conditions. Within these options, LiDAR
and stereoscopic vision systems stand out as likely the most
promising methods for acquiring 3D images and maps of plants
and canopies (Rosell and Sanz, 2012). One of the widely util-
ised approaches for quantifying biophysical parameters of olive
trees involves the application of stereoscopic vision techniques,
specifically utilising the SfM method (Eltner and Sofia, 2020).
This method entails employing RGB cameras, with or without
an infrared filter, enabling the reconstruction of 3D images. The
benefit of these technologies resides in their easy-to-use and re-
liable application, combined with their cost efficiency (Roma
and Catania, 2022). In the work of Caruso et al. (2019), the
authors study the capability of UAVs equipped with RGB-NIR
cameras to estimate the leaf area index, H, canopy diameter,
and CV of irrigated or rain-fed olive trees. In particular, they
propose a methodology for estimating the CV of trees based on
the processing of Digital Terrain Model (DTM) and Digital Sur-
face Model (DSM) generated through the SfM technique, data
obtained from a low-cost RGB camera. In addition, the study
conducted by Zarco-Tejada et al. (2014) showed that the use of
consumer-grade cameras on unmanned aerial platforms can en-
sure precision similar to that achieved with LiDAR systems.
The use of a low-cost camera allowed for the acquisition of
high-resolution images, which were employed to create ortho-
mosaics and Digital Surface Models (DSM) through automated
3D reconstruction techniques. Using statistical parameters, this
approach proved to be economically advantageous compared
to the use of expensive and complex LiDAR systems, com-
monly utilised in agriculture and environmental applications.
In the same context, Anifantis et al. (2019) demonstrated that
precise assessments of tree canopy structure and morphology
can be achieved through the utilisation of an affordable drone
with a simple RGB camera. To achieve this, they acquired im-
ages with a camera mounted on a DJI SPARK, which is a low-
cost UAV. This sensor enabled the creation of an orthomosaic,
and reconstruction of a DSM using the SfM technique. Sub-
sequently, GIS analysis was employed to calculate the height
and diameter of the canopy. A DSM represents a digital rep-
resentation of a topographic surface, including both the ground
and objects on it, and can be utilised to gather information about
tree heights. On the other hand, a DTM only represents the
ground height, excluding the height of objects present. Similar
results have been obtained in the work proposed by Dı́az-Varela
et al. (2015), within the context of olive tree breeding programs,
applicable to both fragmented and continuous canopy cropping
systems.

Many studies have employed LiDAR technology, facilitating
the precise, impartial, and swift determination of morpholo-
gical parameters. An example is the paper of Sola-Guirado et
al. (2018) that uses 2D LiDAR sensors, able to obtain a point
cloud corresponding to a section of the object of interest. They
successfully acquired dynamic measurements suitable for quan-
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tifying the canopy in diverse agricultural activities. As evid-
enced in the study by Escolà et al. (2017), where the LiDAR
sensor was employed, the authors achieved a remarkably strong
correlation with manual estimation. Moreover, they succeeded
in discerning the behaviour of sunlight within the canopy by
the coefficient of determination. Possessing detailed spatial in-
formation on canopy geometry (height, width, and volume) and
canopy structure (light penetration, leafiness, and porosity) can
result in improved decisions for orchard management. Overall,
compared to the methods discussed earlier, this technology of-
fers the advantage of achieving substantially higher resolution
levels, albeit at the expense of being more expensive.

Finally, it is necessary to refer to works that are based on deep
learning approaches (Mescheder et al., 2019), which have ex-
perienced rapid progress in various fields, including computer
graphics and 3D reconstruction. NeRF stands out as a notable
recent development in this realm, with applications that come
from virtual reality (Deng et al., 2022) to architectural recon-
struction (Tancik et al., 2022). The objective, given a set of
calibrated images as input, is to produce a volumetric 3D scene
capable of rendering new viewpoints. In the work of Arshad
et al. (2024), to evaluate the performance of NeRF method, the
authors employed different methods of NeRFs to reconstruct
plants in 3D across diverse environments, spanning from indoor
settings (single and multiple corn plant indoor) to outdoor envir-
onment (multiple corn plants in a field with other plants. They
examined three scenarios of increasing complexity and com-
pared the results with the point cloud obtained using LiDAR
as ground truth data. The experimental results highlighted the
effectiveness and accuracy of NeRFs in challenging environ-
ments. In another recent work (Huang et al., 2024), the au-
thors study underscores NeRF’s potential for tree reconstruction
by applying the NeRF technique to create detailed 3D models
of individual trees using images from various cameras. These
models were compared with those generated by photogrammet-
ric reconstruction and laser scanning methods. The findings in-
dicate that NeRF excels in tree reconstruction, boasting higher
accuracy and efficiency, especially in canopy areas, with fewer
input images. However, NeRF-generated point clouds often
suffer from noise and low resolution. Moreover, photogram-
metric methods yield more accurate structural parameters.

3. Materials and methods

3.1 Detection using KAARTA-Stencil 2

This study was conducted in the city of Ascoli Piceno (in the
Marche Region), which features a typically Mediterranean cli-
mate characterized by hot and dry summers (26◦C) and mild
winters (7◦C). The average annual precipitation of around 700
mm delineates an ideal climatic environment for this variety
of olive tree. The study area of our research is located near the
“Istituto Tecnico Agrario, Celso Ulpiani” where, in the adjacent
green area, there are olive trees of the “Ascolana Tenera” vari-
ety. As part of our research, the data acquisition campaign was
conducted on April 29, 2023. The dendrometric parameters of
each olive tree, derived from the point cloud obtained through
the MLS (Table 1, Figure 2a), have been used as reference met-
rics to evaluate the accuracy of the detection obtained through
the ”low-cost” device and its different sensors (Figure 1).

LiDAR

Laser units Velodyne VPL-16

Acquisition mode Time of flight

Range 1 m [min] + 100 m [max]

Field of view 360◦ × 30◦

Accuracy ±30 mm

Speed 300000 points/sec

Features Tracker

Resolution 640×360

Frequency 50 Hz

Image colour black and white

Computer

CPU Intel NUC 7i7 Quad Core

Operating system Ubuntu Linux

Memory 1 TeraByte

Ports 2 HDMI, 4 USB, Rj-45 Gigabit Ethernet

Output data .ply, .las

IMU
Type MEMS

Degrees of freedom X,Y,Z, roll, pitch, yaw

Physical characteristics
Dimensions 162mm× 111mm× 141mm

Weight 1.73 Kg

Table 1. The main technical specifications of KAARTA-Stencil 2

3.2 LiDAR iPhone 14 Pro Max integrated with Recon-3D
APP

The low-cost device used is an iPhone 14 Pro Max: a model
released in September 2022. Technological advancement has
introduced inexpensive and miniaturized LiDAR sensors to the
market, such as those implemented by Apple in the mobile
devices since 2020. While primarily designed for augmented
reality applications, these sensors can also be used as measure-
ment tools (Murtiyoso et al., 2021; Spreafico et al., 2021). They
operate in both indoor and outdoor environments, with meas-
urement capabilities up to 4.9 m in distance (Spreafico et al.,
2021). The camera plays a crucial role in this context, contrib-
uting to the coloring of points in the cloud and the creation of
the entire point structure (Murtiyoso et al., 2021; Spreafico et
al., 2021).

The data were acquired using the ”Recon-3D” application (ver-
sion 1.3.2), which provides a raw point cloud of the urban olive
tree with real colors captured by the camera (Figure 2b). Recon-
3D leverages Apple’s LiDAR sensor, combining it with photo-
grammetry to generate 3D point cloud data in the .e57 format.
The Recon-3D iOS app is developed using the EveryPoint en-
gine, created by EveryPoint, a company based in Redmond
(USA). During the scanning process, the application collects
LiDAR data, video at a resolution of 1920 × 1440 pixels, and
the IMU information related to the device’s position and ori-
entation. The distances measured by the LiDAR sensor are
used to generate a depth map, which is then combined with
frames from the recorded video Kottner et al. (2023). Upon
launching, it prompts the user to name the new survey project.
Subsequently, a screen appears with various parameters, among
which the most significant is the “scan density”, adjustable in a
range from 1 mm to 30 mm. This parameter is of fundamental
importance as it determines how many measurement points will
be acquired within a specific area or volume. In other words, the
”scan density” defines how detailed and accurate the representa-
tion of the scanned object or environment will be. A higher scan
density implies the acquisition of a greater number of points,
thereby contributing to obtaining a more precise representation
of the details and features of the surface or scanned object but
increasing the processing time needed. During the data acquis-
ition phase, we opted for a “scan density” configuration of 5
mm. This decision was driven by the goal of striking a bal-
anced compromise between acquisition accuracy and data pro-
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Figure 1. Workflow for validation analysis that compares the MLS results from KAARTA Stencil 2 with those obtained from the
iPhone 14 Pro, both through LiDAR data captured with the Recon-3D app and the frames extracted from the RGB camera video,

initially processed in Agisoft Metashape and then using NeRF models via the Luma.ai app iOS.

cessing speed. Another crucial parameter is “target detection”.
The application itself provides printable targets to be strategic-
ally placed within the scanning scene. Additionally, the scaling
process can be further optimised and expedited by manually
entering the distance between the two targets positioned in the
scanned scene. This distance, between the centres of the targets,
can be entered into the application, enhancing the scaling of the
point cloud and increasing both precision and processing speed.
The process proceeds with exporting the raw point cloud in the
.e57 format, a format easily accessible and viewable in most
commercial software designed for point cloud processing (Fig-
ure 2b). Specifically, the Cloud Compare software was utilised
for executing all the mentioned measurements.

3.3 iPhone 14 Pro Max: terrestrial photogrammetry ap-
plication and NeRF

During this research, in addition to leveraging the capabilities
of the LiDAR sensor on the iPhone 14 Pro Max, we also util-
ized the device’s camera system. Specifically, videos (1920 x
1440 pixels) of each olive tree were recorded at 60 fps dur-

ing the use of Recon-3D. These low-resolution frames served
as the basis for creating 3D models of the olive trees through
both a photogrammetry process using Agisoft Metashape soft-
ware and the NeRF application (Figure 1). The extraction of
frames from the video was carried out using Metashape soft-
ware, which, starting from version 1.3, supports this function-
ality. A relevant parameter is the “frame step”, which allows
defining the sampling intervals during the frame extraction. To
strike a balance between data quality and process manageabil-
ity, a “frame step” of 15 was chosen, with the number of frames
varying based on the duration of the video, typically between
3-5 minutes maximum for each tree. Before proceeding with
the alignment, an additional assessment of the frame quality
was conducted using the “Estimate quality image” function,
which assigns a value ranging from 0 to 1 to estimate the im-
age quality. During the alignment phase, Metashape identifies
and matches homologous points in each frame, automatically
obtaining the camera calibration parameters and the shooting
position for each frame, generating the point cloud (Figure 2c).
At the end of this phase, the model is scaled by manually enter-
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ing the measurement of the distance between the targets, using
the settings data collected in the Recon-3D app during the sur-
vey of each individual olive tree. Nowadays there are several
tools that use NeRF models (Mildenhall et al., 2021), including
the Instant NGP application, developed by Müller et al. (2022)
for NVIDIA. This application has a codebase built on CUDA
and Python 3.9, while camera pose estimation is performed via
COLMAP. Another interesting option is NeRFstudio (Tancik
et al., 2023), a more recent Python framework that allows the
creation, training, and end-to-end testing of NeRFs. However,
for our case study, we chose to use the cloud-based software
by LumaLabs (Luma.ai, accessed on 1 March 2024), named
“Luma.AI”. Neural rendering and mesh generation of the ob-
ject are obtained using either a folder containing the images ex-
tracted from the video or directly uploading the video of the ob-
ject detected, both at high resolution. The total time for neural
rendering and mesh generation depends on the duration of the
video or the number of frames uploaded. At the end of the pro-
cess, it is possible to export the point cloud in .ply or .obj format
and scale it using the distances between the targets.(Figure 2d).

3.4 Visualisation and measurement of point

After acquiring the point clouds using the various surveying
tools, the subsequent phase entailed extracting metric data per-
taining to the dendrometric parameters of each olive tree. To
perform the measurements, we utilized the free software Cloud-
Compare (Girardeau-Montaut, 2021). CloudCompare is a free
and open-source software platform specialized in the analysis
and manipulation of three-dimensional point clouds. The “Box
Thickness” tool facilitates the creation of a virtual box for pre-
cise measurement of dimensions along the x, y, and z axes. The
dendrometric parameters measured include total height (H),
canopy base height (CBH), and canopy diameter (CD). CBH
is calculated from the difference between the total height and
the distance from the first branch of the canopy to the ground;
CD is derived as the average of two diameters measured in
the North-South and East-West directions. The volume of the
olive canopy (CV , in m3) was calculated using the parabol-
oid model, based on the canopy diameter (CD, in meters) and
canopy base height (CBH , in meters), as described in equa-
tion 1 (Chiappini et al., 2022a; Estornell et al., 2017; Velázquez-
Martı́ et al., 2012).

CV =
1

2

πCD2CBH

4
(1)

3.5 Data analysis

Following the completion of all required measurements and the
analysis of the obtained results, a comparative analysis of the
detection approaches was undertaken to assess the accuracy of
the measurements. For this purpose, both absolute (equation 2)
and percentage (equation 4) RMSE (Root Mean Square Error)
and bias (equation 3) statistics were employed, referring to the
dendrometric parameters of total height (H), canopy base height
(CBH), and parabolic canopy volume (CV ). The calculation
of these metrics provides an objective and quantitative method
to assess the degree of discrepancy between the values obtained
from the different detection instruments (iPhone-SfM, iPhone-
LiDAR and iPhone-NeRF) and the reference values, represen-
ted by measurements made with the KAARTA Stencil 2.

RMSE =

√√√√ 1

n

n∑
i=1

(xi − x̂i)2 (2)

bias =
1

n

n∑
i=1

(xi − x̂i) (3)

RMSE% =
RMSE

ȳ
× 100 (4)

The parameter xi represents the values measured by iPhone-
SfM/LiDAR/NeRF, x̂i represents the value observed with the
KAARTA Stencil 2, n is the total number of analyzed trees,
and ȳ represents the mean of the reference values detected via
KAARTA-Stencil 2.

4. Experimental results

The accuracy performance of the iPhone 14 Pro Max LiDAR
(Table 2) reveals a tendency to underestimate the measurements
related to the H of the olive tree, with a bias of -0.26 m. Fur-
thermore, the LiDAR exhibits a RMSE of 0.46 m and a rel-
ative RMSE% of 9.05%. However, concerning measurements
of the CBH , the statistical metrics demonstrate excellent ac-
curacy performance, with a bias of 0.04 m, an RMSE of 0.12
m, and a relative RMSE% of 11.06%. Particularly interest-
ing is the analysis of the CV , as it encompasses multiple sub-
measurements and is therefore particularly representative. In
this context, the iPhone 14 Pro Max LiDAR has shown a con-
sistent tendency to underestimate the CV , with a bias of -9.65
m3, an RMSE of 15.66 m3, and a relative RMSE% of 40.23%.
Regarding the accuracy observed in the measurements of the
ground-based photogrammetry application of the iPhone 14 Pro
Max (Table 3), slightly better measurements were found regard-
ing the CBH , with a relative bias of 0 m, an RMSE of 0.19,
and an RMSE% of 16.67%. However, regarding the measure-
ments of this method concerning total height and volume, worse
performances were observed compared to LiDAR. Specifically,
concerning CV measurements, the bias is higher (-17.23 m3),
with an RMSE of 25.85 (RMSE% 66.4%), showing an even
worse tendency to underestimate the reference measurements.
The same applies to H measurements, where the bias stands at
-0.73 and the RMSE at 0.95 (RMSE% 18.56%). Regarding the
accuracy of the iPhone-NeRF method (Table 4), we achieved
the worst measurements regarding the CBH , with a relative
bias of -0.12 m, an RMSE of 0.31, and an RMSE% of 28.48%.
However, regarding the measurements of this method concern-
ing H and CV , worse performances were observed compared
to iPhone-LiDAR. Concerning CV measurements, the bias is
higher (-21.15 m3), with an RMSE of 33.79 (RMSE% 84.87%),
showing an even worse tendency to underestimate the refer-
ence measurements. The same applies to H measurements,
where the bias stands at -0.94 and the RMSE at 1.26 (RMSE%
24.68%). As it is possible to read in table 5 and as it is possible
to observe in figure 3 and 4, the measurements errors of both
CV and H increase as the size of the canopy and the height of
the tree increase.

5. Discussions and conclusions

The purpose of this study is to provide accurate and truthful data
that can serve as a solid basis for comparing ”low-cost” sur-

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3-2024 
ISPRS TC III Mid-term Symposium “Beyond the canopy: technologies and applications of remote sensing”, 4–8 November 2024, Belém, Brazil

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-3-2024-61-2024 | © Author(s) 2024. CC BY 4.0 License.

 
65



Figure 2. 3D model results of one olive tree from: (a) KAARTA Stencil 2; (b) Recon-3D app on iPhone 14; (c) Agisoft Software; (d)
NeRF model obtained using the Luma.AI platform

KAARTA vs iPhone LiDAR
H (m) CBH (m) CV (m3)

bias -0.26 0.04 -9.65
RMSE 0.46 0.12 15.66
RMSE% 9.05 11.06 40.23

Table 2. Comparison of accuracy between KAARTA Stencil 2
and iPhone 14 Pro Max LiDAR

KAARTA vs iPhone-SfM
H (m) CBH (m) CV (m3)

bias -0.73 0 -17.23
RMSE 0.95 0.19 25.85
RMSE% 18.56 16.67 66.40

Table 3. Comparison of accuracy between KAARTA Stencil 2
and iPhone 14 Pro Max-SfM

Figure 3. Volume error (m3) related to the absolute crown size

veying techniques to professional sensors used to create point
clouds of olive trees located in urban contexts. During this re-
search, we conducted a detailed analysis of the main dendro-
metric parameters, including H , CBH , and CV . These para-
meters were evaluated on a total of 54 point clouds, belonging
to 18 Ascolana Tenera olive trees. The instrumentation used in-
cludes both professional-grade sensors, such as the KAARTA
Stencil 2, and more cost-effective solutions, such as the iPhone
14 Pro Max equipped with a LiDAR camera. In the case of the
iPhone, dual sensing was adopted during acquisition, utilizing

KAARTA vs iPhone-NeRF
H (m) CBH (m) CV (m3)

bias -0.94 -0.12 -21.15
RMSE 1.26 0.31 33.79
RMSE% 24.68 28.48 84.87

Table 4. Comparison of accuracy between KAARTA Stencil 2
and iPhone 14 Pro Max-NeRF

Tree-ID iPhone LiDAR iPhone-SfM iPhone-NeRF
Error (m3) (%) Error (m3) (%) Error (m3) (%)

Olive 1 -2.36 -14.20 -4.44 -26.76 -4.14 -24.92
Olive 2 -7.47 -40.81 -7.43 -40.57 -9.91 -54.10
Olive 3 -5.96 -18.53 -3.22 -10.01 NA NA
Olive 4 -11.06 -23.00 -21.21 -44.11 -15.10 -31.40
Olive 5 3.10 18.12 -3.37 -19.73 -0.19 -1.12
Olive 6 11.48 36.30 -14.07 -44.51 NA NA
Olive 7 -28.89 -37.87 -31.78 -41.66 -45.88 -60.14
Olive 8 -9.71 -31.86 -15.17 -49.77 -11.78 -38.65
Olive 9 -10.49 -31.79 -22.32 -67.68 -21.06 -63.84
Olive 10 -1.23 -29.55 -1.05 -25.16 -1.81 -43.42
Olive 11 -5.58 -17.44 -2.55 -7.95 -15.88 -49.61
Olive 12 -0.65 -8.76 -0.71 -9.55 1.69 22.70
Olive 13 -7.57 -28.91 -6.09 -23.27 -2.59 -9.87
Olive 14 -19.26 -30.04 -42.49 -66.27 -46.62 -72.70
Olive 15 -40.56 -34.48 -72.98 -62.04 -96.35 -81.91
Olive 16 -9.80 -26.58 -20.18 -54.72 1.99 5.39
Olive 17 0.77 2.65 3.17 10.86 -13.01 -44.58
Olive 18 -28.48 -35.86 -44.16 -55.60 -57.78 -72.75
Average -9.65 -19.59 -17.23 -35.47 -21.15 -38.81
Dev. std 12.33 19.89 19.27 21.98 26.35 29.46

Table 5. Volume error with respect to the MLS method

both the LiDAR actived throught the Recon-3D application and
the photographic component for video acquisition as a basis for
the photogrammetric process conducted with Metashape soft-
ware and the NeRF model on the Luma.ai platform. Once the
point clouds were obtained, the extraction of the parameters of
interest was carried out within CloudCompare. From the res-
ults reported in Figures 3 and 4, concerning the calculated stat-
istical metrics, a tendency towards satisfactory results only in
measurements related to the CBH emerges in both acquisition
methodologies. However, regarding the measurements of the
other two parameters (H and CV ), a tendency towards under-
estimation compared to the reference measurements obtained
through the MLS is observed in both acquisition methodolo-
gies, indicating limitations especially in CV acquisition. It is
important to emphasize how the larger dimensions of the olive
tree to be acquired tend to significantly influence the measure-
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Figure 4. Total height error (m) related to the absolute tree
height size

ments taken by the iPhone. In detail, the analysis of the graph
relating to volume measurements highlights not only the previ-
ously mentioned tendency but also provides further significant
details. Indeed, a linear relationship of increasing acquisition
error with increasing canopy size of the olive tree is observed,
with a more pronounced negative slope in the iPhone-SfM and
iPhone-NeRF methodology. The point clouds obtained from in-
dividual trees using the iPhone, both LiDAR, SfM and NeRF,
have a significant number of noisy points that require manual
filtering, which could cause an incorrect interpretation by the
user. Similar problems, in the field of forest inventory, have also
been addressed by Huang et al. (2024), who obtained, unlike the
case presented in the research, better results from NeRF as the
ground data were integrated with drone images, allowing the
tree to be detected in its whole entirety. A similar situation oc-
curs in height measurements, as highlighted in Figure 4. Once
again, the iPhone LiDAR shows a trend line with a lower slope
compared to the iPhone-SfM and iPhone-NeRF models, indic-
ating a relative ability to contain error as the height of the olive
tree increases. Given the iPhone’s tendency to show an increase
in error with increasing canopy size, we suggest improving data
acquisition by using a telescopic pole. This pole can extend the
iPhone’s reach to the most apical points of the canopy, provid-
ing more detailed information. The use of an extendable pole is
particularly advantageous in urban settings, where drone flights
can be limited by nearby buildings and the complexity of the
spatial configuration, as well as by flight restrictions imposed
by the national civil aviation authority.

We will further explore the full potential of this process by ap-
plying it to olive trees of different varieties and managed with
various pruning techniques. Our aim is not only to understand
the strengths and limitations of the iPhone’s RGB camera and
LiDAR but also to reduce noise in the generated point clouds
and improve the final accuracy of the required metric data. Fu-
ture studies will involve recording videos in higher resolution
so that the frames applied by the NeRF can recreate a smoother
scene and ensure greater efficiency. In doing so, we hope to
contribute to the continuous development and improvement of
this low-cost approach.
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