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Abstract 

Dry mass is an important parameter to optimise grassland management. Traditionally, dry mass values are estimated manually by 

cutting, drying, and weighing vegetation samples. In large areas of cultivation, this becomes a time-consuming and costly activity. In 

recent years, many researchers have studied different sensors embedded in Unmanned Aerial Vehicles (UAV) to collect spatial data 

and estimate biomass using machine learning algorithms for forest and agricultural applications. However, there needs to be more 

research dealing with estimating production indices for pasture, especially in Brazil, as stated. This study evaluates the feasibility of 

using the GoPro wide-angle RGB camera on UAVs (Unmanned Aerial Vehicles) to estimate the dry mass of pastures. Different data 

analysis methods were compared, including the combination of vegetation indices (VIs) values and three-dimensional metrics (3D) 

extracted from the Canopy Height Model (CHM): all metrics (ALL), three VIs plus four 3D metrics (VI3 + CHM4) and only 3D 

metrics. Random Forest (RF) machine learning algorithm was used to estimate dry mass. The best results were obtained when merging 

all the variables from the two flight campaigns, with a coefficient of determination (R²) of 0.80 for the model and a Pearson Correlation 

Coefficient (PCC) of 0.85 for validation, with a Root Mean Square Error (RMSE%) of 20.5%. In summary, using RGB sensors 

embedded in UAVs is a promising technique for estimating farm grazing parameters. 

1. Introduction

Brazil is the world's leading beef exporter, occupying first place 

in the global ranking with more than 1.98 million tons (FAO 

2022). Statistical data from ABIEC (2023) show that a large part 

of the herd, totalling 202 million head of cattle, was raised on the 

154.5 million hectares used for pasture in the country 

(MAPBIOMAS, 2021), providing an average of 1.3 head per 

hectare. These figures suggest a concentration of a significant 

number of animals in a relatively restricted area, intending to 

optimize productivity. 

Dry mass (DM), or dry matter, production refers to the amount 

of forage that remains after the removal of water through drying 

(Cardoso, 1996). Monitoring pasture DM production and spatial 

distribution plays a crucial role in pasture management, 

providing essential information for successful animal production, 

forage availability, nutritional quality, and effective management 

of natural resources (Mannetje, 2000; Silva and Cunha, 2003). 

Traditionally, DM values are estimated manually by cutting, 

drying, and weighing samples of the vegetation (Hopkins, 2000). 

In large areas of cultivation, this becomes a time-consuming and 

costly activity. 

In recent years, the use of RGB, spectral and LiDAR sensors to 

collect spatial data and quantify relevant variables for 

agricultural, forestry and grassland monitoring applications has 

been widely studied  (Moeckel et al., 2018; Lussem et al., 2022; 

Martins Neto et al., 2023). For farm applications, low-cost, 

lightweight RGB cameras coupled to Unmanned Aerial Vehicles 

(UAVs) have been used to acquire high spatial resolution data, 

although they have lower spectral resolution compared to 

multispectral cameras. Despite the RGB spectral limitations, 

these images can be used to calculate vegetation indices, improve 

the vegetation to background separation and minimise 

interference from light and target conditions (Zhang et al., 2022; 

Bazzo et al., 2023).  

Photogrammetric image processing using Structure from Motion 

(SfM) techniques enables the generation of photogrammetric 

products and three-dimensional terrain models, making it 

possible to extract height metrics from these models that are 

correlated with biomass (Viljanen et al., 2018). In addition, the 

extraction of different three-dimensional (3D) and spectral 

metrics supports the estimation of dependent variables using 

Machine Learning (ML) models (Bendig et al., 2015, Viljanen et 

al., 2018, Morais et al., 2021).  

In this context, the use of low-cost action cameras, such as the 

GoPro camera (GoPro, 2024), can be an alternative to expensive 

multi- and hyperspectral sensors. This action camera can be 

advantageous due to its affordable cost, ease of use, ultrawide 

field of view, lightweight, high image resolution, and portability 

in mobile mapping systems and UAVs. 

Nowadays, there is a lack of research addressing the estimation 

of production indices for grazing, especially in Brazil, as stated 

by Bazzo et al. (2023). In this context, the aim of this study is to 

assess the performance of an action camera, like GoPro, to 

estimate dry mass in grass areas, considering only normalized 

vegetation indices and canopy height metrics (CHM) generated 

from RGB images. The research aims to assess the feasibility of 

using affordable and widely available equipment to measure dry 

mass and optimize grassland management practices on a farm 

scale. 
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2. Study area and data acquisition 

The study area is located on an experimental farm, in the Nova 

Pátria district, municipality of Presidente Bernardes,  São Paulo 

state, Brazil (22°17'4.85"S, 51°40'46.31"W) (Figure 1). The 

flight campaigns were carried out on January 18 and March 27, 

2021, with a flight height of 80 m above the ground. The RGB 

images were acquired with a GoPro Hero4 Black super-wide-

angle action camera (Table 1) onboard a Quadcopter UAV, 

model UX4 (Nuvem UAV). The bundle block adjustment of the 

images was performed with a set of eight Ground Control Points 

(GCPs), whose planialtimetric coordinates were measured with a 

double frequency GNSS receiver. 

 

 

Figure 1. Location of the grass plots at Unoeste Experimental 

Farm, Presidente Bernardes, SP, Brazil. 

 

Camara details Specifications 

Model GoPro HERO4 Black 

Focal length 3 mm 

Pixel size 1.73 × 1.73 μm 

Image size 4000 × 3000 pixels 

Sensor 6.17 × 4.55mm CMOS 

Dimensions 41 mm × 59 mm × 30 mm 

Weight 152 g 

Image format JPEG 

Table 1. GoPro Camera specifications.  

The ground reference samples were acquired and provided by 

researchers from the University of Western São Paulo (Unoeste). 

The experiment was conducted in an area with 40 plots 

(dimensions of 3.5 × 5.0 m each) of grass, composed of the 

species Urochloa Brizantha (syn. Brachiaria brizantha), with 

chemical treatments at nitrogen (0, 150, 300, 450, 600 kg/ha) 

with and without sulfur with four repeats per treatment. An area 

of 0.5 m² (dimensions of 1.0 × 0.5 m) of grass per plot was cut 

using a metal rectangle as a field reference sample. The samples 

were then dried and weighed to calculate the dry mass in kg/ha 

units, on two separate dates. Table 2 shows the mean weight and 

standard deviation of the grass samples. 

Sampling date Mean (kg/ha) Std (kg/ha) 

11/01/2021 2601.35 513.21 

29/03/2021 4740.53 1276.07 

Table 2. First cut (11/01/2021) and second cut (29/03/2021) 

data mean, standard deviation (Std). 

 

3. Methodology 

3.1 Geometric processing  

The image datasets for each date were processed individually 

using bundle block adjustment in the Agisoft software, version 

1.8.4 (Agisoft LLC 2022). The settings for each project were 

defined with a fixed standard deviation of 10 m for the camera 

stations coordinates components (E, N, h) and 30° for the attitude 

angles, since no accurate geotagging system was available; the 

GCPs (two checkpoints and six control points) were set with a 

standard deviation of 5 mm. The photogrammetric projects for 

the two dates were set for the WGS84 reference system and UTM 

projection, zone 22, with an average flight height of 80 m, with a 

measurement error of 1 px, and a fisheye camera model. 

 

Image processing followed the general phototriangulation 

workflow: (1) started with image matching and initial alignment, 

resulting in a sparse point cloud; (2) insertion of the six ground 

control points and two check points for bundle adjustment and 

estimation of the camera's interior and exterior orientation 

parameters based on the control points; (3) manual filtering of the 

point cloud to remove outliers; (4) refinement of the bundle 

adjustment; and (5) generation of the dense point cloud with mild 

filtering, using estimated exterior and interior orientation. The 

digital surface model (DSM) is then created from the dense point 

cloud, including terrain and above-ground object information. 

Orthomosaics were generated from the image projections and 

their orientation and DSM parameters and exported at 5 cm GSD 

(Ground Sample Distance) for both datasets. 

 

To generate the digital canopy height models (CHMs) of the 

grass, the procedure of Oliveira et al.(2020) was adopted, which 

involves the automatic classification of ground points using 

specific input parameters. Due to the variation in grass height, 

manual adjustments were necessary to correct regions that were 

not correctly identified. After classification, digital terrain 

models (DTMs) were generated with standard interpolation and 

exported in TIFF format with a GSD of 10 cm. CHMs were 

created using QGIS software, version 3.34.35 (QGIS 

Development Team, 2023), applying the difference between the 

DSM and the DTM.  

 

 

Figure 2. Canopy Height Models (CHM) of the grass on 

January 18 (a) and March 27, 2021 (b). 
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Figure 2 shows the CHM from the two epochs, with a different 

color symbol used to represent the variations in vegetation height 

in the 0-1 m range. It can be observed that the spatial distribution 

of the grass is not homogeneous within each plot. The CHM for 

March 27, 2021 showed larger height values. 

 

Finally, the statistics of the control and check points were 

analyzed, such as standard deviation (σ) and RMSE (Root Mean 

Square Error), to verify and evaluate the quality of the results. 

 

3.2 RGB vegetation indexes and 3D metrics 

Only RGB-based vegetation index (VIs) values were used as 

input data,  (Table 3) based on the three bands of the visible 

spectrum, like the Grassland Index (GrassI), Green Leaf Index 

(GLI), Normalized Green Red Difference Index (NGRDI), Plant 

Pigment Ratio Index (PPRI) and Red Green Blue Vegetation 

Index Excess (RGBVI). These indices have already been tested 

in priveous studies to estimate biomass with UAV images 

(Bendig et al., 2015; Bareth et al., 2015; Viljanen et al., 2018; 

Lussem et al., 2019, 2022). All indices were calculated using the 

raster calculator in QGIS software, version 3.34.35 (QGIS 

Development Team 2023). 

 

Equation Reference 

𝐺𝑟𝑎𝑠𝑠𝐼 = 𝑅𝐺𝐵𝑉𝐼 + 𝐶𝐻𝑀 (Bareth et al., 2015) 

𝐺𝐿𝐼 =
2𝐺 − 𝑅 − 𝐵

2𝐺 + 𝑅 + 𝐵
 (Gobron et al., 2000) 

NGRDI =  
G − R

G + R
 (Tucker, 1979) 

PPRI =  
G − B

G + B
 (Metternicht, 2003) 

𝑅𝐺𝐵𝑉𝐼 =  
𝐺2 − (𝑅 ∗ 𝐵)

𝐺2 + (𝑅 ∗ 𝐵)
 (Bendig et al., 2015) 

Table 3 – Vegetation Indices for RGB images. 

 

Furthermore, eight three-dimensional (3D) metrics were 

calculated for the CHMs (Table 4). The 3D metrics were 

computed using a script implementation in R, version 4.3.2 (R 

Core Team, 2023). 

 

CHM metrics Equation 

Maximum height 𝐶𝐻𝑀𝑚𝑎𝑥 = 𝑚𝑎𝑥(ℎ𝑖) 

Minimum height 𝐶𝐻𝑀𝑚𝑖𝑛 = 𝑚𝑖𝑛(ℎ𝑖) 

Mean height 𝐶𝐻𝑀𝑚𝑒𝑎𝑛 =
1

𝑁
∑ℎ𝑖

𝑁

𝑖=1

 

Median height 𝐶𝐻𝑀𝑚𝑒𝑑𝑖𝑎𝑛 =

{
 
 

 
 

𝑖𝑓 𝑢𝑛𝑝𝑎𝑖𝑟𝑒𝑑: ℎ
(
𝑁+1
2
)

𝑖𝑓 𝑝𝑎𝑖𝑟:

(ℎ
(
𝑁+1
2
)
+ ℎ

(
𝑁
2
)
)

2

 

Standard 

deviation heigh 𝐶𝐻𝑀𝑠𝑡𝑑 =
√∑ (ℎ𝑖 − ℎ̅)

2𝑁
𝑖=1

𝑁 − 1
 

(30, 60, 90)th 

percentile 𝐶𝐻𝑀𝑝30,60,90 =
((

𝑝
100

) ∗ (𝑁 + 1))

100
 

Table 4 – 3D metrics derived from the CHM. 

 

3.3 Feature extraction process  

As the field reference values for the grass are not georeferenced, 

it was essential to analyze the spatial distribution of the grass and 

identify the areas with the highest plant density in order to extract 

the Vegetation Index (VI) values and 3D metrics for each plot. 

To achieve this, a stack file was generated in which the pixels 

refer to the regions with the highest VIs and CHM values in each 

plot, following the procedure described below and accomplished 

in QGIS: 

 

 

Figure 3. (a) Reclassified parcels’ image and (b) SHPclass edited 

for March 27, 2021. 

 

(1) Creation of a shapefile delimiting the 40 plots, each 

with dimensions of 3 × 4.5 m. A buffer of 

approximately 25 cm was excluded to avoid edge 

effects around the plots; 

(2) Clipping the GrassI index images (GrassIrec) with the 

plot delimitation shape using the “clipping raster by 

extension tool”; 

(3) Evaluation of the data distribution and definition of the 

number of classes. In that instance, the Sturges (1926) 

method was applied to the field reference values for the 

dry mass of the grass from the two dates together, 

resulting in approximately seven classes. However, we 

opted for eight class intervals based on the 

classification of the GrassIrec image from March 27, 

using the equal interval interpolation method, in order 

to better capture the data values distributions; 

(4) Slicing the GrassIrec index image, for each date, 

considering the eight equal class intervals with the 

GRASS plugin's "r.recode" reclassification tool 

(Figure 3.a); 

(5) Creation of the polygon shapes (SHPclass) based on the 

reclassified images using the "raster to vector" tool in 

the GDAL plugin; 

(6) Editing the SHPclass by removing the polygons with the 

lowest class values from each plot. During this stage, 

each plot was visually inspected, retaining only two or 

three polygons with the highest class values (Figure 

3.b); 

(7) Merging the remaining adjacent SHPclass polygons with 

the "dissolve" tool. Thus, the polygons of each plot 

refer to the boundaries of the regions with the highest 

grass growth, even for the sparsest plot; 

(a) 

(b) 
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(8) Creating a raster with the IDs of each plot; 

(9) Stacking the rasters with the plot IDs, the five VIs and 

the CHM in a single file for each date. The CHM was 

resampled to 5 cm to make it compatible with the VI 

images; 

(10) Clipping the stack files with the SHPclass for each date. 

As a result, a stack is obtained with the VIs and CHM 

images delimited to the highest class values. 

 

With this final stack for each date, the means of the VIs values 

for the highest class values were calculated per plot, totalling 200 

samples of VI values. In addition, the CHM metrics were 

calculated using the heights corresponding to the highest class 

values, specified by the equations shown in Table 4, a total of 320 

3D values. The 3D and VIs features were obtained using a script 

implemented in R. 

 

3.4 Regression model and quality assessment 

The statistical analysis and modelling steps were carried out 

using R, with the Caret (Kuhn, 2008) and Random Forest 

(Breiman, 2001) packages. Given the small size of the data set, 

with only 40 samples, the data was randomly divided into 70 % 

of the samples for training and 30 % of the samples for 

validation. 

 

The modelling was performed using the Random Forest 

algorithm, calibrated using the repeated cross-validation method 

(repeatedcv). Random Forest, developed by Breiman (2001), is a 

machine learning technique for classification and regression 

analysis which combines several independent decision trees. This 

approach reduces the correlation between trees and minimizes 

overfitting problems. 

 

Repeated cross-validation with Random Forest involves 

performing cross-validation with 10 iterations, each with 5 

repetitions. This means that the model is tested on different 

subsets of the dataset, in different combinations, and repeated to 

ensure more robust and reliable results. The average of the 

performance metrics across all repetitions provides a more 

accurate estimate of the model’s performance. 

 

When using RF, there is no need to make a selection of 

characteristics, as the calculations include measures of the order 

of importance of these characteristics (Näsi et al., 2018). 

However, to assess the correlation and contribution of the 

variables to predicting dry mass, Pearson's correlation matrix and 

principal component analysis (PCA) were calculated for the 

dataset. Regression models were then tested in three different 

contexts: using the data set from each date separately and 

combining the two merged sets. These models were developed 

using the variables identified in the cross-validation, the 3D 

metrics, and the combination of three vegetation indices with four 

3D metrics (VI3 + CHM4). 

 

The models were evaluated based on the following parameters: 

coefficient of determination (R²), root mean square error 

(RMSE), and percentage root mean square error (RMSE%). The 

Pearson correlation, RMSE, and RMSE% metrics were used to 

analyze the models' validation. 

 

4. Results 

4.1 Geometric processing analysis  

The RMSE values for each component of the check points after 

bundle adjustment (Table 5) indicate that the photogrammetric 

processing obtained satisfactory results, with errors with a 

magnitude of centimetres. The RMSE for the planimetric 

coordinates (X, Y) ranged from 0.19 to 1.65 cm, while the 

maximum error for the altimetric component (Z) was 0.88 cm. 

The total RMSE of the points in the images was 0.04 pixels on 

both dates. 

 

Date X(cm) Y(cm) Z(cm) 3D(cm) Image(px) 

03/27/2021 0.19 0.68 0.88 0.42 0.04 

01/18/2021 0.22 1.65 0.02 0.53 0.04 

Table 5. RMSE of the check points. 

 

In terms of processing, the March 27 campaign used 147 images, 

while the January 18 campaign used 157 images, and the 

reprojection error was 1.15 pixels in March and 1.1 pixels in 

January. At the end of the geometric processing, the dense point 

clouds were used to reconstruct the DSMs, with a point density 

of 130 points/m² for January 18, 2021, and 123 points/m² for 

March 27, 2021. 

 

4.2 Correlation analysis and variables contribution 

The relationships between the variables are depicted in the 

bivariate linear correlation graph (Figure 4), in which the 

correlation values between the variables are indicated by colours: 

negative correlations (red) and positive correlations (blue). The 

correlation coefficient is proportional to the intensity and size of 

the circle. As expected, dry mass showed a strong correlation 

with the 3D metrics and with the GrassI index, also calculated 

with the CHM. Only the NGRDI index showed a weaker 

correlation compared to the independent variables, with a 

moderate but negative correlation value. The other VIs showed a 

moderate and positive correlation with dry mass. 

 

Figure 5 shows the results of the principal component analysis 

expressed as a vector graph, in which the contribution of each 

component (dimension) is represented by the direction and length 

of the vectors. The length of the vector indicates the magnitude 

of each variable's contribution, while the direction of the vector 

indicates the influence of each variable on the respective 

component. The first component explained 68.7% of the total 

variance present in the data with the greatest contribution from 

the GrassI index and the following 3D metrics: CHMp90, 

CHMmax, CHMp60, CHMmean, CHMmedian and CHMp30. The 

second component explained 20.8% of the total variance. 

 

 

Figure 4. Correlation matrix calculated using the Pearson 

correlation coefficient. 
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Figure 5. Projection of features for the first and fourth principal 

components and their contributions. 

4.3 Regression model 

The results of the training (Table 6) and validation (Table 7) 

models for estimating dry mass showed different levels of 

performance based on the variables used in each data set. Models 

were tested that included all the variables (ALL), models that 

used only the 3D metrics (CHMall), and models that considered 

the correlation of the variables together with empirical tests (VI3 

+ CHM4). In the VI3 + CHM4 sample set, the GrassI, PPRI and 

RGBVI indices were adopted, with the 3D metrics CHMmin, 

CHMmean, CHMp30 and CHMp60. 

 

For the training models for the January 18, 2021 dataset, the 

model fitted/produced with the VI3 + CHM4 combination 

obtained an R² of 0.65, indicating better performance than the 

other combinations, although with an RMSE of 516.48 kg/ha. For 

the March 27, 2021 dataset, there was a significant improvement 

in the overall performance of the models. The model with VI3 + 

CHM4 variables had the best performance, with an R² of 0.77 and 

an RMSE of 965.74 kg/ha. In both tests, the models incorporating 

all variables (ALL) exhibited the lowest RMSE. 

 

For the merged data set, the results indicated that the VI3 + CHM4 

combination also achieved the best performance, with an R² of 

0.80 and an RMSE of 747.24 kg/ha. The model ALL obtained a 

similar R² of 0.80, but with an RMSE of 798.12 kg/ha, while the 

model with only CHMall variables performed worse, with an R² 

of 0.66 and the highest RMSE of 1009.31 kg/ha. 

 

Date Variable R² RMSE (kg/ha) 

01/18 

ALL 0.5437 492.10 

CHMall 0.5157 526.75 

VI3 + CHM4 0.6531 516.48 

03/27 

ALL 0.6889 935.17 

CHMall 0.6853 993.66 

VI3 + CHM4 0.7771 965.74 

Fusion 

ALL 0.8033 798.12 

CHMall 0.6552 1009.31 

VI3 + CHM4 0.8046 747.24 

Table 6. Coefficient of determination (R²) and RMSE for dry 

mass (DM) training model. 

 

For the model validation of the January 18, 2021 dataset, the VI3 

+ CHM4 combination obtained a PCC of 0.7445, RMSE of 

467.31 kg/ha and percentage RMSE of 19.16%, indicating a 

better performance than the other isolated variables. However, 

CHMall model had the lowest RMSE. For the March 27, 2021 

dataset, the same combination also showed the best performance, 

with a PCC of 0.7531, RMSE of 872.76 kg/ha and RMSE% of 

18.25%. 

 

For the merged data set, the results indicate that the ALL 

combination performed best, with a PCC of 0.85, RMSE of 

773.74 kg/ha and percentage RMSE of 20.53%. The model with 

CHMall variables showed the worst performance with an 

RMSE% of 28.17%. 

 

The models with the merged data obtained the best results. Figure 

6 shows the normalized relative importance values from 0 to 100 

for the variables in the different training models for the merged 

data set. In this case, the GrassI and PPRI variables were more 

relevant in the ALL and VI3 + CHM4 models, while the CHMmedia 

and CHMmean variables were more relevant in the model with the 

CHMall metrics. 

 

 

Figure 6. Importance of the variables in the training model for 

the fused dataset. 

 

In general, the models with the combination of VI and 3D metrics 

had the best performance, with the highest PCC and the lowest 

RMSE and percentage RMSE, especially for the merged data set. 

This suggests that the combination of these variables is more 

effective in estimating dry mass than using the single variables. 

 

Date Variable PCC 
RMSE 

(kg/ha) 
RMSE% 

01/18 

ALL 0.6213 439.68 16.77 

CHMall 0.5968 521.66 22.19 

VI3 + CHM4 0.7745 467.31 19.16 

03/27 

ALL 0.7579 1076.26 21.67 

CHMall 0.6536 1106.34 22.75 

VI3 + CHM4 0.7531 872.76 18.25 

Fusion 

ALL 0.8460 773.74 20.53 

CHM 0.6413 977.99 28.17 

VI3 + CHM4 0.8492 822.29 23.63 

Table 7. Pearson Correlation Coefficients (PCC), Root mean 

squared error (RMSE) and RMSE% for dry mass (DM) 

validation model. 
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5. Discussion 

In the experiment, the combination of spectral and non-spectral 

data extracted from RGB images was used to estimate dry mass. 

To minimize for illumination variations between the images and 

enhance the contrast between vegetation areas and other surfaces, 

RGB indices based on normalized differences were considered. 

In addition, canopy height model metrics were derived directly 

from the image sets themselves. 

 

Due to the lack of georeferencing of the field samples and to 

avoid bias in the data, it was decided to use the highest values of 

the vegetation index to calculate the average vegetation indices 

(VIs) and 3D metrics. This made it impossible to automatically 

extract point attributes, as observed in other studies. In addition, 

grass growth was not uniform across all the plots. In the CHM 

generated with images collected on January 18th, it is possible to 

notice the low growth of the grass, reaching a maximum height 

of 0.64 m. This was expected, as the grass had been cut prior to 

January. However, for the CHM generated with images collected 

on March 27th, the grass showed significant growth, reaching a 

maximum height of 0.96 m. This increase is natural and expected 

during the rainy season from January to March. 

 

Comparing the regression results with other pasture dry mass 

estimation studies using RF, it was observed that Viljanen et al. 

(2018) reported a PCC of 0.77, which was obtained with RGB 

channel attributes alone and a PCC of 0.96 when combining RGB 

+ 3D values, sampled from 96 plots. Näsi et al. (2018) achieved 

a PCC of 0.10  using only 3D metrics and a PCC of 0.63 for VI 

and 3D values, when estimating dry mass from a set of 8 field 

reference samples. Morais et al. (2021)  evaluated the use of 

different machine learning algorithms to estimate pasture 

biomass; they concluded that  Multiple Regression Analysis 

(MLR) had the highest median R² of 0.76, followed by partial 

least squared regression (PLSR) with R² of 0.75 and RF with R² 

of 0.69. Therefore, the accuracy of the analysis may depend more 

on the quantity and quality of the field samples rather than on the 

regression algorithm (Morais et al., 2021, Bazzo et al., 2023). 

 

Among the indices used, GrassI, based on RGBVI, and PPRI 

stood out as relevant variables for predicting grass dry mass. To 

the best of our knowledge, PPRI was only tested in Lussem 

(2022), where it was considered the most important variable for 

predicting N content in grass. The RGBVI uses RGB data to 

highlight areas of vegetation, while the Grassland Index 

incorporates 3D metrics from the CHM. Unlike the results of 

Bendig et al. (2015), the RGBVI index was one of the most 

relevant variables for the model. Such a combination provides a 

more robust estimate by offering greater sensitivity to changes in 

vegetation in the early stages of growth as shown by Bareth et al. 

(2015). 

 

6. Conclusions 

The study assessed the effectiveness of using RGB images 

acquired by an action camera mounted on a UAV to estimate dry 

mass in a grass area using machine learning techniques. 3D data 

was extracted from photogrammetric canopy height models 

generated from photogrammetric point clouds, while normalized 

vegetation index images were derived from RGB information. 

 

Data from individual campaigns was not sufficient to accurately 

estimate dry mass from images only. However, combining RGB 

data and 3D metrics from two separate campaigns resulted in 

improved performance. Other studies integrating RGB and 3D 

data, combining different acquisition dates, have shown similar 

or superior results using multi- and hyperspectral cameras 

(Viljanen et al., 2018; Lussem et al., 2022; Bazzo et al., 2023). 

Regression models generated from images acquired on different 

dates allow for a more comprehensive and robust evaluation 

compared to using data from a single date. This approach can 

enhance the precision and reliability of estimates when the 

models are applied for inference on other dates. 

 

It is important to put these results in perspective, since RGB 

cameras have advantages for small-scale agriculture, offering a 

cost-effective solution for farm monitoring. To the best of our 

knowledge, this study is the first to use a wide-angle action 

camera for this application, contributing to the advancement in 

the use of RGB photogrammetry techniques in agricultural areas. 

The sampling method, which involved using the highest values 

from the largest classes of the vegetation index in each plot, can 

be compared in the future with other techniques, such as pixel-

by-pixel or area sampling, to evaluate their contribution to the 

model. It is also suggested to compare this methodology with 

other sensors, like multispectral and hyperspectral lightweight 

cameras.  
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