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Abstract 

 

This article aimed to determine a workflow for more efficient large-scale crop mapping using a time series of images from the 

Sentinel-2 Satellite, statistical methods of attribute selection, and machine learning. The proposed methodology explores the best 

possible combination of spectral variables related to vegetation (16 vegetation indices in the RGB, NIR, SWIR, and Red Edge 

regions) to characterize different spectro-temporal profiles of Land Use and Land Cover (LULC) in spatially heterogeneous 

landscapes. First, we applied a data dimensionality reduction analysis using the PCA (Principal Component Analysis) method. 

Subsequently, the variables that showed the highest statistical correlation between each other were used in the spectro-temporal 

classification process, using the Random Forest, TempCNN, and LightTAE algorithms, following three different strategies: C1 

(ALL), C2 (BE + IV (Red Edge)) and C3 (BE + IV (without Red Edge)), where ALL – All variables; BE – Spectral Bands; IV – Vegetation 

Indices. Given the results found, the C2 classification scenario (with bands B3, B4, B5, B6, B7, B8, and B8A and the NDRE1, RESI, 

and MSR indexes) demonstrated the best LULC classification accuracy at the crop pattern level, compared to the other scenarios, 

with average values of 0.91, 0.88, 0.91, 0.89, and 0.89 (Global Accuracy, Producer Accuracy, User Accuracy, Kappa index, and F1-

Score, respectively, for the TempCNN model), the which emphasized the importance of both qualitative and quantitative variability 

of sampling data and variables based on the Red Edge region for improving LULC classification processes in large-scale 

heterogeneous landscapes. 

 

1. Introduction 

 

Agricultural monitoring is a fundamental step for effective 

decision-making in the field, both concerning production 

management and the reduction of harmful impacts on the 

environment arising from the intensification of agricultural 

practices (Ajadi et al., 2021; Wang et al., 2021; Pott et al., 

2022). However, the efficiency of crop monitoring, especially 

on a large scale, depends on the correct use of strategies for 

extracting, manipulating, and processing sample data. 

 

Among the most common monitoring methods is information 

extraction regarding production cycles, carried out directly in 

the field through occasional and recurring technical visits 

(Talukdar et al., 2020). However, obtaining this sample data is 

still subject to limiting factors such as high operational costs 

and high time consumption to carry out this process (Pott et al., 

2021; Mahlayeye; Darvishzadeh and Nelson, 2022). On the 

other hand, remote sensing data (orbital, suborbital, or 

proximal) makes it possible to obtain multiple relevant 

information from the Earth's surface mapping with a more 

suitable temporal frequency. 

 

Specifically, in studies on the estimation of agricultural 

production, remote sensing can obtain several aspects intrinsic 

to the biophysical characteristics of vegetation present in the 

field, such as level of plant phenology, occurrence of water 

stress, impact of seasonal climate changes on cycles production, 

crop productivity prediction, among others (Mercier et al., 

2020; Debella-Gilo; Gjertsen, 2021). It can result in a 

considerable reduction in operational costs related to carrying 

out large-scale agricultural monitoring (Wang et al., 2023). 

 

Arslan, Topakci & Demir (2022), on the other hand, reinforce 

that mapping and monitoring such spatio-temporal changes 

become a difficult task in tropical countries with large territorial 

extensions, such as Brazil, especially due to the greater presence 

of clouds in these regions. (Prudente et al., 2020). Furthermore, 

the main Brazilian LULC monitoring systems that currently 

exist, such as the TerraClass (Almeida et al., 2016) and 

MapBiomas (Souza et al., 2020) projects, are mainly based on 

orbital sensors of low to medium spatial resolution, which 

makes it possible to extract a variety of accurate information 

about the Earth's surface. However, there is still a difficulty 

related to detecting production at the level of agricultural 

culture and on a large scale, especially in areas that present 

different cultivation patterns in the same harvest, mainly due to 

the similarity of the spectro-temporal profiles of some crops 

(Chen et al., 2018; Picoli et al., 2018). 

 

Nevertheless, the most recent orbital satellite constellations, 

such as those belonging to the Sentinel series, by presenting 

different types of sensors with high spatial and temporal 

resolution, bring new possibilities for long-term environmental 

monitoring activities, such as the classification of LULC 

through satellite image time series data (Drusch et al., 2012; 

Zhao et al., 2022). Moreover, the Sentinel-2 Satellite presents 

three bands in the Red Edge spectral region, which can help in 

obtaining more pertinent information for differentiating 

agricultural vegetative canopies present in a given area, for 

example (Wei et al., 2023). 

 

Garnot, Landrieu & Chehata (2022) executed an extensive 

review of the possible ways of combined use of time series of 

orbital data and described different strategies for certain types 

of tasks related to LULC classification. These strategies are 

mainly based on the specific use of machine and deep learning 
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techniques (Yuan and Lin, 2020). Among machine learning 

algorithms, Random Forest stands out among the others because 

it generally presents greater versatility in different LULC 

classification processes, even though it is unable to assimilate 

information in the temporal dependence of multitemporal 

sample data (Talukdar et al., 2020; Machichi et al., 2023). 

Furthermore, because many of these multitemporal data 

classification methods are still at the state of the art, it is 

necessary to evaluate their capabilities in more specific tasks 

such as the spectro-temporal characterization of heterogeneous 

landscapes, i.e., areas with high spatial and temporal variability 

in land use and cover. 

 

Therefore, this paper aims to characterize the best combination 

of spectral variables for large-scale mapping of LULC in 

heterogeneous landscapes at the level of agricultural cultivation 

patterns through a temporal series of images from the Sentinel-2 

satellite. 

 

2. Materials and Method 

 

The area evaluated in this study is approximately 11,150 km2. It 

encompasses, almost in its entirety, the municipality of Rio 

Verde, Goiás, which was the largest soybean producer in the 

Southwest Goiás microregion, with a planted area of 

approximately 410,000 ha and a total production of 1,476,000 

tons of this grain in the 2020/2021 harvest (BIGS, 2023). This 

study area is represented between coordinates 17°12’ to 18° S 

and 50°30’ to 51°30’ W in Figure 1. 

 
Figure 1. Spatial location of the study area. 

 

The climate of this region is tropical with dry winter (Aw), 

according to the Köppen-Gieger classification, with an average 

annual temperature variation of 22 to 24°C and precipitation 

varying between 1600 and 1900 mm/year (Alvares et al., 2013). 

The soils in this region are mostly classified as Red Oxisols 

(Acriferric, Ferric, and Dystrophic), with flat and gently 

undulating relief (Santos et al., 2018; BIGS, 2019). The main 

crops produced in this region are sugar cane (Saccharum 

officinarum), soybeans (Glycine max L.), and corn (Zea mays), 

with their agricultural calendars extending from September to 

July, depending on the type of soil, the topography of the land, 

cultivation pattern and the variation of the dry and rainy 

climatic seasons (Santos et al., 2021a). 

 

Given this, the methodology of this study consisted of the 

following steps: Collection of reference sample data and orbital 

data from the digital platforms of the TerraClass (Almeida et al., 

2016), MapBiomas (Souza et al., 2020) projects, SATVeg 

(Esquerdo et al., 2020) and Brazil Data Cube - BDC (Ferreira et 

al., 2020); spectral variables calculation (vegetation indexes 

linked to the RBG, NIR, SWIR and Red Edge regions); analysis 

of dimensionality reduction of variables and LULC 

Classification at crop pattern level in R software (R 

Development Team, 2024). 

 

Firstly, we created a sample database referring to the 

characteristics of the main LULC classes present in the study 

area using the TerraClass product (the year 2020), information 

taken from the SATVeg platform, and the agricultural calendar 

made publicly available by CONAB (CONAB, 2021). Once we 

identified such classes, because the TerraClass product only 

presents biannual data, we need to use the MapBiomas product 

(the year 2021) to obtain the classes and production cycles that 

remained for the 2021/2022 harvest (i.e., the type of crops 

planted, agricultural management system, start and end dates of 

production harvests). Such specific information is summarized 

in Table 1 and served as a reference for Sentinel-2 satellite 

image time series elaboration and the classification process. 

 

ID Class 
Quantity of 

samples 

Percentage of the 

total database 

(%) 

DC 
Double 

Cropping 
277 28.58 

OC One Cropping 112 11.56 

PNV 

Primary 

Natural 

Vegetation 

126 13.0 

Pt Pasture 114 11.76 

Sc Silviculture 85 8.77 

SNV 

Secundary 

Natural 

Vegetation 

72 7.43 

Su Sugarcane 67 6.91 

Ur Urban area 60 6.19 

WB Water body 56 5.78 

 

Table 1. Tipos de LULC considerados neste estudo. 

 

Next, we created a time series of Sentinel-2 images, spanning 

the months of September 2021 to August 2022, which were 

extracted from the orbital database of the BDC project's digital 

platform (Ferreira et al., 2020). This platform publicly makes 

time series from several satellites (TERRA and AQUA/MODIS, 

Landsat 8/OLI, CBERS/AWFI, and Sentinel-2/MSI, among 

others) available in the ARD – Analysis Ready Data format, 

which provides the most agile execution of tasks linked to 

remote sensing and geoprocessing, such as LULC classification. 

Therefore, there is no need to carry out previous digital pre-

processing steps of these orbital data, such as radiometric and 

atmospheric correction processes (Adrian, Sagan and 

Maimaitijiang, 2021).  

 

We obtained Sentinel-2 images in 10 spectral bands related to 

the bands of RGB (490 to 665 nm), Red Edge 1 to 3 (705 to 783 

nm), NIR (842 nm), Red Edge 4 (865 nm), SWIR 1 (1,610 nm) 

and SWIR 2 (2,190 nm), in addition to two other vegetation 
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indices: the EVI (Enhanced Vegetation Index) and the NDVI 

(Normalized Difference Vegetation Index). 

 

In addition, 14 vegetation indices (CIre, GNDVI, LSWI, MSR, 

MTCI, NDRE1, NDRE2, NDRE3, NDSVI, NDTI, RESI, 

S2REP, SAVI and VARI) were calculated and used in this 

study, as they were developed to capture the different 

relationships that exist between vegetation and other types of 

targets on the Earth's surface; due to non-linear relationships 

between certain bands of the electromagnetic spectrum of solar 

radiation. For this reason, they serve as important auxiliary data 

in the classification of satellite image time series, for example 

(Jensen, 2011; Pelletier; Webb and Petitjean, 2019). 

 

We chose NDVI, EVI, and SAVI because they are commonly 

used as essential indices in studies related to the classification of 

LULC (Rouse et al., 1974; Huete, 1988; Huete et al., 1997; 

Jensen, 2011; Ienco et al., 2019; Pelletier, Webb and Petitjean, 

2019). The LSWI, NDTI and NDSVI are capable of detecting 

changes in vegetation and soil moisture, being good indicators 

of changes in the water content of the leaf canopy, such as the 

presence of water stress or variation in the phenological 

development of plants (Qi et al., 2002; Xiao et al., 2004; Zhong, 

Gong and Biging, 2014). The GNDVI, VARI and indices from 

Red Edge (MSR, MTCI, NDRE, CIre and RESI) were used to 

detect the different types of vegetative canopies present in the 

study area through variations in chlorophyll percentages, 

relating them also at the level of development of plants in the 

field (Chen, 1996; Gitelson and Merzlyak, 1998; Gitelson et al., 

2002; Gitelson et al., 2003; Dash and Curran, 2004; Clevers and 

Gitelson, 2013; Xiao et al., 2020; Matvienko et al., 2022). 

S2REP is an adaptation of the REP (Red Edge Position 

Determination) index for Sentinel-2. It is also an indicator of the 

chlorophyll content present in the leaf and the stress on the 

vegetation, depending on the maximum slope between the red 

and near-infrared spectral bands (Jensen, 2011; Pasternak and 

Pawluszek-Filipiak, 2022). 

 

The next step consisted of reducing the possibility of 

insignificance or redundancy of information coming from both 

the spectral bands of the Sentinel-2 satellite and the vegetation 

indices used in this article (mainly because some of these 

indices present, for the most part, information from spectral 

bands of the red and near-infrared regions). Therefore, it was 

necessary to apply a statistical analysis to the spectro-temporal 

sample database created from the time series of orbital data to 

assess the degree of importance of the variables, aiming to 

optimize the results obtained by the classifier algorithm (Paul 

and Kumar, 2019; Pasternak and Pawluszek-Filipiak, 2022; 

Zhang et al., 2022).  

 

For this task, we used the Principal Component Analysis (PCA) 

technique, one of the most used methods for statistical analysis 

related to dimensionality reduction of multivariate data due to 

its simplicity and operation efficiency. (Gilbertson and Van 

Niekerk, 2017; Paul and Kumar, 2019; Pasternak and 

Pawluszek-Filipiak, 2022; Zhang et al., 2022). The PCA 

technique reduces the number of variables in a database by 

performing multiple linear combinations. The objective is to 

keep only the most important variables (i.e., with a high rate of 

variability between them) in the database and thus avoid 

redundancy of sample information (Ringnér, 2008; Pasternak 

and Pawluszek-Filipiak, 2022). These combinations are called 

Principal Components and can normally describe the behavior 

of the database variance, about 95%, based on the variables 

retained in the first three Principal Components (Zhang et al., 

2022). This analysis was carried out using the “factoMineR” 

and “factoextra” packages, both present in the R software. 

“factoMineR” was used to compute the calculations referring to 

the PCA analysis, and “factoextra” was used to visualize the 

results (Lê et al., 2008; Kassambara and Mundt, 2020). 

 

Subsequently, we applied the SOM method (Self-Organizing 

Maps) to the sample database (Santos et al., 2021b). This 

procedure was used to avoid the occurrence of errors related to 

the presence of noisy or incorrectly classified sample points. 

This technique consists of an unsupervised neural network 

algorithm that reduces the dimensionality of large databases 

(such as time series of satellite images), through the topological 

preservation of the sample data. In this process, this method 

evaluates the variability of information occurring between 

samples – both from the same class and from different classes – 

through a Bayesian inference process (Santos et al., 2021b). 

 

Finally, we performed the classification in three different 

scenarios: C1 (Spectral bands + all vegetation indices), C2 

(Spectral bands + indices based on the Red Edge region only), 

and C3 (Spectral bands + indices calculated without the Red 

Edge region), where all scenarios present the variables with 

quality of representation (cos2) of linear correlation > 0.85, 

extracted from PCA analysis. The entire classification process 

was carried out in the R software, using the “SITS” package 

(Simoes et al., 2021). 

 

The “SITS” package provides the user with a computational 

interface for manipulating, visualizing, processing, and 

classifying satellite image time series data (Simoes et al., 2021). 

This tool features both machine learning and deep learning 

algorithms, which makes it possible to evaluate different 

classification strategies. Among all the algorithms in this 

package, we chose the Random Forest (RF), TempCNN (TC), 

and LightTAE (LT) algorithms. Random Forest consists of a 

classifier that employs several decision trees aggregated in joint 

initialization or bootstrap to reduce the variance of these trees 

and obtain the final result through an unweighted average 

majority vote of all trees created. (Breiman, 2001). TempCNN 

uses a three-layer architecture of sequential 1D convolutional 

networks in the temporal domain, followed by batch 

normalizations, a ReLU (Rectified Linear Unit) activation 

function, and Dropout (Pelletier, Webb and Petitjean, 2019). 

LightTAE is a temporal attention-based encoding algorithm that 

is part of a larger architecture that involves the union of a pixel-

based spatial encoder with a temporal attention encoder and was 

developed by Garnot et al. (2020). In this study, 100 trees were 

used to implement the Random Forest algorithm (Talukdar et 

al., 2020), while for the TempCNN and LightTAE algorithms, 

we used the optimization parameters proposed by Camara et al. 

(2023). 

 

To analyze the performance of the proposed classification 

scenarios, regarding the spectro-temporal classification 

accuracy of the study area, we divided the sample data set into 

two parts (70% - training samples and 30% - test samples), and 

statistical parameters from the calculation of confusion matrices 

were used, namely: Global Accuracy (OA), Producer Accuracy 

(PA), User Accuracy (UA), Kappa index (K) and F1-Score 

(Yuan and Lin, 2020; Pasternak and Pawluszek -Filipiak, 2022). 

Equations 1, 2, 3, 4 and 5 describe the calculation for each 

parameter mentioned above, respectively: 

 

𝑂𝐴 =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) 
    

   (1) 
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𝑃𝐴 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
    

    (2) 

𝑈𝐴 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
   

    (3) 

     (4) 

   (5) 

 

Where: 

 

TP – Number of sample points of the true class correctly 

classified; 

TN – Number of sample points truly classified in another class; 

FN – Number of sample points from the true class that the 

algorithm misclassified into another class; 

FP – Number of sample points that the algorithm incorrectly 

classified into the true class; 

Po – Probability observed by classification; 

Pe – Expected probability for classification. 

 

The OA consists of the set of sample points correctly classified 

as the total number of sample points. The PA and UA represent 

the correctly classified sampling points considering the errors of 

omission and commission for each land use and cover class. 

The Kappa index was developed by Cohen (1960) and is used in 

remote sensing as a metric for evaluating the general accuracy 

of a classification. F1-Score is a harmonic average between the 

PA and UA, aiming to obtain a single evaluation parameter with 

better statistical performance compared to the previous ones 

(Yuan and Lin, 2020; Nasiri et al., 2022). 

 

3. Results and Discussion 

 

After performing the dimensionality reduction analysis of the 

spectral variables, we observed that approximately 86.7% of the 

variance in the sample data was found in the first three main 

components or PCA dimensions (Figure 2A). 

 

Regarding the percentage of contribution of the variables, the 

spectral bands B03, B04, B05, B06, B07, B08, and B8A and the 

vegetation indices SAVI, NDRE1, MSR, RESI, and NDVI 

presented the highest values among the others, being 

approximately variable between 4.4% and 5% (Figure 2B). 

 

It indicated that, in general, the indices based on simple 

algebraic normalization relationships between the red (B04) and 

near-infrared (B05, B06, B07, and B08) regions were sufficient 

to explain much of the correlation between these indices and 

variability of the spectral behavior of the sample data. 

Furthermore, the presence of three indices based on the Red 

Edge region (NDRE1, MSR, and RESI) initially revealed the 

greater influence of this spectral region on this correlation 

between the sample data. Zhang et al. (2020), Zhang et al. 

(2021), and Chaves & Sanches (2023) found similar results in 

their respective studies, which also emphasized the relevance of 

Red Edge bands in the classification process at the crop level. 

 

On the other hand, the first two dimensions expressed around 

77% of the variability in the behavior of the sample data (Figure 

3), indicating that these variables above were also the most 

important among the others evaluated.  

 

 
 

 
 

Figure 2. Percentages of variance (A) and contribution of 

variables (B) regarding the behavior of the sample data, 

depending on the dimensions originated by the PCA method. 

 

 
 

Figure 3. Ordering diagram of variables at the cos2 > 0.85, 

correlating the first two PCA dimensions. 

 

These variables presented a quality of representation (cos2) 

greater than 0.85 in the ordination diagram composed of the 

first two PCA dimensions and, therefore, presented the highest 

linear correlation values between the other variables analyzed. 

Therefore, these variables were chosen for the LULC 

classification process in the three scenarios already mentioned 

(C1, C2, and C3). 

A. 

B. 
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When applying the SOM method to the sample database 

composed of the variables with the highest linear correlation 

between each other (according to PCA analysis), we noticed 

that there was a reduction of approximately 17.2%, 19% and 

17.8% for scenarios C1, C2 and C3, respectively (Table 2). 

 

 Number of samples per scenario 

ID Class 
Original 

Base  
C1 C2 C3 

DC 
Double 

Cropping 
277 250 242 250 

OC 
One 

Cropping 
112 69 59 69 

PNV 

Primary 

Natural 

Vegetation 

126 118 117 112 

Pt Pasture 114 91 97 96 

Sc Silviculture 85 55 56 58 

SNV 

Secundary 

Natural 

vegetation 

72 65 60 57 

Su Sugarcane 67 45 42 46 

Ur Urban area 60 53 57 53 

WB 
Water 

body 
56 56 56 56 

TOTAL 969 802 786 797 

Sample reduction 

percentage (%) 
- 17,2 19 17,8 

 

Table 2. Comparison of the sampling base before and after 

applying the SOM method for each classification scenario. 

 

This fact demonstrated that scenario C2 suffered the greatest 

reduction in samples compared to the other scenarios, which 

would initially lead to the assumption that there was a decrease 

in accuracy in the classification process. However, how this 

scenario only uses indices based on the Red Edge region and 

that most of the chosen spectral bands also belong to this 

spectral region, what caused better differentiation of the 

spectro-temporal profiles of the different types of uses and 

existing land cover in the study area (Mahlayeye et al., 2022). 

 

This assumption was proven when we evaluated the statistical 

metrics originating from the classification process. We achieved 

the best results precisely when we prioritized vegetation indices 

based on the Red Edge region in the learning process of the 

classifier algorithms. Furthermore, the TempCNN algorithm 

presented the best overall result with OA, K, and F values equal 

to 0.91, 0.89, and 0.89, respectively (Table 3). 

 

Machine Learning Models 

RF TC LT 

C
la

ss
if

ic
a

ti
o
n

 

S
ce

n
a

ri
o

s 

C1 

OA 0.89 0.83 0.71 

K 0.86 0.80 0.66 

F 0.86 0.79 0.70 

C2 

OA 0.90 0.91 0.86 

K 0.88 0.89 0.84 

F 0.88 0.89 0.86 

C3 

OA 0.85 0.82 0.82 

K 0.82 0.79 0.79 

F 0.82 0.80 0.81 

 

Table 3. Acurácia global (OA), Kappa Index (K) e F1-score (F) 

médios para todos os cenários e algoritmos de classificação. 

 

However, except for this best result achieved by the TC model, 

the RF model achieved the best accuracy for all classification 

scenarios (Table 3). Furthermore, the RF model finished the 

classification process for the C2 scenario in minor time (1 hour 

and 5 minutes), compared to the TC model (20 hours and 35 

minutes). These observations highlight the greater efficiency of 

the Random Forest algorithm, compared to the TempCNN and 

LightTAE models, in extracting relevant information from 

scarce sample databases with high similarity of spectro-

temporal patterns of different types of land use and cover, as 

also described by Moskolai et al. (2021) in their study, where 

they cited the need for bigger database for deep learning 

algorithms to function correctly. 

 

This consideration could be proven when we evaluated the 

producer and user accuracies, class by class, for these two 

algorithms in question, RF and TC models (Figure 4). Where 

we realize that the RF model, even though the producer's 

accuracy is slightly lower than the TC model (specifically, due 

to the values achieved for the Pasture, Sugarcane, and 

Silviculture classes), the latter still achieved better efficiency in 

the differentiation of the multiple types of vegetative canopies 

present in the study area, since, the Random Forest algorithm 

obtained higher user accuracy values for the One Cropping, 

Silviculture, and Sugarcane classes (Figure 4B). 

 

 
 

 
 

Figure 4. Comparison of Producer Accuracy (PA) and User 

Accuracy (UA) for the RF and TC models, considering the C2 

classification scenario and all LULC classes used in the study. 

 

However, these observations only reinforced that both classifier 

algorithms achieved excellent results from the multi-temporal 

spectral band data and vegetation indices combination based on 

the Red Edge spectral region. 

 

4. Conclusions 

 

The variables (B03, B04, B05, B06, B07, B08, B8A, NDRE1, 

RESI, and MSR) related to the TempCNN algorithm performed 

the most suitable strategy for classifying changes in land use 

and cover at the level of cultivation pattern and on a large scale, 

considering the conditions of this experiment. However, we also 

B. 

A. 
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advise Random Forest as an alternative option, due to its 

excellent performance given the limiting settings of this study: a 

scarce database with high interclass similarity of spectro-

temporal patterns. Therefore, we emphasize that such 

considerations are mainly due to the efficient previous steps of 

sampling manipulation, making such findings very relevant and 

can directly impact the processing time and operational costs in 

tasks linked to agricultural monitoring using remote sensing 

today. 
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