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ABSTRACT:

Accurate and effective extraction of water body information is an important prerequisite for hydrological studies of the Yellow River.
However, there is a scattered and frequently swing water flow in the middle and lower reaches of the Yellow River. Traditional
water body extraction methods mainly rely on handcrafted statistical features, which cannot fully extract river body in
real-world conditions. To deal with these problems and achieve more accurate results, an AU-Net network is proposed to expand
the receptive field of the convolutional kernel and incorporate the detailed information of multi-scale features, which improves the
ability to extract the middle and lower reaches of the Yellow River from remote sensing images. The experimental results illustrate
that compared to the other methods, the AU-NET model has higher recognition accuracy (MPA= 0.97and MIoU=0.99) on the water
body dataset in the middle and lower reaches of the Yellow River. And the network has high robustness and good fitting, which can
better extract the middle and lower reaches of the Yellow River.

1. INTRODUCTION

As the second-longest river in China, the Yellow River has been
regarded as the cradle of the Chinese civilization and its
development has an important impact on the country's economy,
agriculture, and water resources(Baoping & Yuanbo, 2021).
However, soil erosion, water shortage and flooding in the
middle and lower reaches of the Yellow River have harmed the
region's natural landscape, hindered the production and
livelihood of the people in the middle and lower reaches, and
negatively impacted China's social and economic development.
These issues of the middle and lower reaches of the Yellow
River must be urgently addressed. Thus, the accurate and
effective water body information extraction is crucially
significant for the Yellow River protection, management, and
flood prevention & mitigation.(HU & Zhang, 2018; Ting,
Huaibao, Yuanjian, Kunpeng, & Weimin, 2019; Zhong et al.,
2021). However, the Yellow River's middle and lower reaches
are siltation-prone due to their high sediment content. The river
and its branches are very volatile and changeable, leading to a
wide and shallow river with a braided distribution and sandbars
in the river(Zhang, Shang, Cui, Luo, & Zhang, 2022; Zhong et
al., 2021). Due to this complex river characteristics, it remains
challenging to accurately and effectively extract water bodies in
the middle and lower reaches of the Yellow River from remote
sensing images.

Water body extraction has received a lot of attention, with
classical approaches and deep learning-based methods
accounting for the majority of these efforts. There are two
categories for classical water body extraction methods, i.e.,
unsupervised and supervised classification. Among the
unsupervised classification methods, water body index is one of
the most popular algorithms, by examining the spectrum
characteristics of water bodies in each wave band, and
thresholding to distinguish water bodies from non-water. Xu
et.al discovered that water bodies are more prominent based on
mid-infrared, and the MNDWI index has been suggested and
widely used (Han-qiu, 2005); Feyisa et al. constructed an
automatic water body extraction index, which allows the

simultaneous extraction of multiple water bodies.(Feyisa,
Meilby, Fensholt, & Proud, 2014) On the other hand, the
supervised classification approach finds picture elements with
similar features in the image by different algorithms based on
spectral similarity and categorizes the similar elements. Chen et
al. consider the spectral and spatial characteristics of features
and construct a knowledge decision tree to specifically extract
urban water bodies (Jing-bo, xi, Cheng-yi, cheng, & Zhong-wu,
2013); Elmieta et al. precisely tracked three different
hydrological features of the Niger and Congo rivers using
Markov random field methods (Elmi, Tourian, & Sneeuw,
2016). Although above methods have achieved fair water body
extraction performance from remotely sensed images with
simple & straight river, they greatly rely on manually selected
samples and fine-tuned thresholds. When dealing with the
complicated background of the Yellow River's middle and
lower reaches, these methods may fail in accurate river body
extraction, suffering from unclear river boundaries, omission or
misclassification, etc..

With recent advents in deep learning technology, it becomes
popular to extract water bodies from remote sensing images
with DL-based methods. Yuan et al. suggested a deep
convolutional encoder-decoder architecture for extracting water
bodies using very high-resolution images (Yuan et al., 2021); Li
et al. developed a DeepUnet model for automated sea-land
segmentation, which is free from the human influence in
traditional methods, and capable of improving the accuracy of
water body extraction in complex backgrounds. (Li et al., 2018)
As one of the most common encoder-decoder structure, the U-
net network, suggested by Ronneberger et al(Ronneberger,
Fischer, & Brox, 2015), uses the cascade operations between
encoder and decoder to fuse high-level information with
shallow-level information. The advantage lies in avoiding the
loss of high-level semantic information as well as preserving
image features as much as possible. Nevertheless, the U-Net
network is bound to lose much feature information during
multiple sampling and result in limited performance in narrow
rivers recognition.
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In order to address the above issues, this study proposes a
new network model, namely AU-Net, to better extract river
features at different scales, by introducing the Atrous Spatial
Pyramid Pooling model to the original U-Net network model.
This algorithm expands its convolutional kernel receptive field,
and obtains image feature of river information of different
scales through parallel four-layer convolution and then fuses it
to alleviate the difficulty of accurate extraction water body in
the middle and lower reaches of the Yellow River.

The rest of the article is structured as follows: Section 2
describes the proposed network model’s structure. The results
of the experiment have been shown and assessed in Section 3.
Section 4 presents the convergence of the network model and a
comparative study the NDWI method. Finally,, we conclude
this article in Section 5.

2. AU-NET MODEL DESIGN

2.1 Overview of the AU-Net

The AU-net network is developed based on the classic U-net
network structure, which could be divided into two main parts,
i.e., the encoding network, and the decoding network. In Fig. 1,
the architecture is displayed.

Fig. 1. Overview of the AU-Net network architecture

Each downsampling stage of the encoder uses two identical
convolutional layers of size 3 3 for feature extraction, each
followed by activation using the ReLU function, and the feature
map is then downsampled using a maximum pooling operation
of size 2  2. The ASPP model is introduced before
upsampling the feature maps. Each downsampling stage of the
encoder uses two identical convolutional layers of size 3  3
for feature extraction, each followed by activation using the
ReLU function, and the feature map is then downsampled using
a maximum pooling operation of size 2  2. The ASPP model
is introduced before upsampling the feature maps.

The feature maps after this convolutional layer contain rich
spatial semantic information, and the ASPP can fuse deeper
image detail information to ensure that the network model
extracts highly correlated river detail features in the coding
structure, and transports the relevant feature information to the
decoding structure to improve the extraction accuracy of river
water body information. The decoder's deconvolution layer
performs upsampling operations on the image feature
information, stacks two convolutional layers in each upsampling
stage, and fuses features from different levels of the feature map
using a jump connection to gradually recover the feature map,
making the input image and the output image constant in size.
The network parameter settings and feature map variations of
each layer in the network model in this paper are shown in
Table 1.

Module types Dimension
of images

Convolution
kernel size Channels

Input [512,512] -- 3

Encoder

Convolution [512,512] [3,3]×2 64
Maxpooling [256,256] [2,2] 64
Convolution [256,256] [3,3]×2 128
Maxpooling [128,128] [2,2] 128
Convolution [128,128] [3,3]×2 256
Maxpooling [64,64] [2,2] 256
Convolution [64,64] [3,3]×2 512
Maxpooling [32,32] [2,2] 512
Convolution [32,32] [3,3]×2 1024

ASPP
Convolution [32,32] [1,1] 256
Convolution [32,32] [3,3]×3 256
Convolution [32,32] [1,1] 1024

Encoder

Convolution [32,32] [3,3]×2 1024
Upsampling [64,64] [2,2] 512
Convolution [64,64] [3,3]×2 512
Upsampling [128,128] [2,2] 256
Convolution [128,128] [3,3]×2 256
Upsampling [256,256] [2,2] 128
Convolution [256,256] [3,3]×2 128
Upsampling [512,512] [2,2] 64
Convolution [512,512] [3,3]×2 64
Convolution [512,512] [1,1] 2

Table 1 Settings of each layer of the network

2.2 Parameter setting for the U-net section

The U-net is a semantic segmentation network with a classical
encoding-decoding structure, which is flexible, migratory, and
generalizable because of its fully symmetrical structure, and is
compatible with a wide range of optimization strategies. It has
both a systolic path that captures contextual information and a
symmetric extension path that allows precise localization, which
allows the network to propagate contextual information to a
higher level of resolution. The skip connection is a key module
of the U-net network architecture, which enables the transfer of
feature mappings from the encoder to the sibling decoder. By
fusing the shallow detailed semantic features with the deeper
abstract semantic features through skip connections, the
network is able to balance semantic features of different sizes
and depths.

The structure of the U-net network is shown in Fig. 2. The
encoder part is a downsampling operation consisting of a
maximum pooling layer with a convolution kernel, which
extracts feature information from the image. The decoder part
performs deconvolution on the upsampling and then goes
through a jump join to restore the image to the input size.

The Yellow River Zhengzhou section of the river is complex
and variable, i.e. there are a large number of river core sandbars
and small branching streams or seasonal rivers, so the direct use
of the U-net network for extraction will lead to poor extraction
of river edges and branching streams and the phenomenon of
unextracted water bodies.

2.3 ASPP model setup

The ASPP (Atrous Spatial Pyramid Pooling) module is a
combination of atrous convolution and spatial pyramidal
pooling structure, which is can capture multi-scale semantic
information by atrous convolution with different atrous
rates(Chen, Papandreou, Kokkinos, Murphy, & Yuille, 2018).
The study introduces ASPP into the U-net network model.
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Firstly, it can augment the receptive field of the convolution
kernel, which is less damaging to the spatial resolution
compared to the augmentation effect brought about by pooling
operations, while not altering the relative positions of pixels;
secondly, to capture multi-scale contextual information, ASPP
superimposes different atrous rate modules simultaneously,
bringing different overall and local multi-scale information due
to different receptive fields; thirdly, ASPP can reduce the
computational effort, as it does not require additional
parameters compared to ordinary convolution, and the non-zero
part is not computed during the convolution operation.

Fig. 2. U-Net network architecture

Fig.3. ASPP module architecture

The structure of the ASPP model is shown in Fig. 3. The
ASPP model mainly consists of a 1×1 convolution layer and
three 3×3 atrous convolutions with expansion rates of 6,12,18
respectively. The atrous convolution extracts the multi-scale
information of the image by paralleling multiple atrous
convolutions with different expansion rates, and finally
introduces global average pooling to obtain the global
information of the image.

2.4 Activation functions

In a multilayer neural network, there is a functional relationship
between the output of the neurons in the upper layer and the
input of the neurons in the lower layer, and that function is the
activation function. In this paper, the ReLU activation function
(Rectified Linear Unit), which is a commonly used activation
function in neural networks, is used, and its expression form is
as follows:

�(�) = ��� 0, � (1)

There are several reasons for using the ReLU function, one is
that the ReLU function does not have a saturation zone, there is
no problem of gradient disappearance, preventing gradient

dispersion; two is that the ReLU function will be a part of the
neuron output to 0, reducing the parameter interdependence,
causing network sparsity and alleviating the occurrence of
overfitting problems; three is that the ReLU function does not
have complex exponential operations, the calculation is simple
and efficient.

2.5 Loss functions

The loss function is a non-negative real-valued function that
measures the degree of difference between the predicted and
true values of a model. The smaller the loss function, the better
the robustness of the model. The softmax function is used to
convert the output values of a multiclassification model into a
probability distribution in the range [0, 1], and is often used to
solve feature separation problems in multiclassification and
image labeling.

The specific expressions are as follows:

������� �� =
���

�=1
� ���� (2)

where zi is the output value of the ith node and C is the number
of output nodes, i.e. the number of categories in the
classification.

The Softmax loss function has inter-class separability and
optimizes the effect of inter-class distances very well. The
exponential function included in the Softmax function is easier
to derive when solving gradients for parameter updates in deep
learning back-propagation, and also pulls the numerical distance
with a large gap to a larger distance.

3. EXPERIMENTAL RESULTS AND ANALYSIS

3.1 Experimental design

3.1.1 Study area and data set
With the rapid development in deep learning, various datasets
were developed for different features, but there is merely
specific dataset for water bodies. This paper selects the
Zhengzhou section of the Yellow River (34° 49'-34° 59'N, 112°
42'-114° 17'E) as the study area, with a total length of about 185
km. The scope of the study area is shown in Fig.4. This reach
has a wide, shallow channel its macrochannel width is
commonly 1.5 to 10 km, including sandbars, forks and
tributaries. The Yellow River in Zhengzhou, Henan Province,
China, contains all the characteristics of the middle and lower
reaches, and is a representative wandering segment of those
regions. A total of 30 remote sensing images had been chosen to
create the data set. The data source is Landsat7 and Landsat 8
remote sensing images, and the data comes from the United
States Geological Survey (USGS).
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The study uses artificial visual interpretation to select
different samples. Accuracy is essential while labelling the
samples since convolutional neural networks learn pixel by
pixel and the final results obtained are reliant on the pixel scale.
The study uses a combination of NDWI and manual delineation
to make a label map of data labels [0,1].

900 pairs of remote sensing images, each with a resolution of
30m and a size of 512  512, make up the data set for the
Yellow River's middle and lower reaches. In our experiments,
the ratio of samples utilized for the training, verification and test
sets is set to 8:1:1. This data set provides a variety of
characteristic types of rivers in the middle as well as lower
reaches of the Yellow River.

3.1.2 Network parameter settings
The following experimental parameters were established during
training: The experiments in this paper used an SGD optimizer
with a momentum of 0.9, the learning rate was set to 0.0001,
and if the loss function did not decline after 100000 rounds of
training, the learning rate decreased to 0.1 times the original,
and the minimum value of the learning rate was 0.00001. The
weight decay is 0.0005. The number of training iterations was
200,000. The data normalization was done with a 0.5 mean and
standard deviation.

3.1.3 Design of evaluation indicators
Extracting water body from remote sensing images could be
regarded as an application of semantic segmentation, in which
water body pixels are positive samples and other pixels are
negative samples. Therefore, the classification of all prediction
results into four groups: True Positive (TP) indicates how many
water body pixels were accurately identified. True Negative
(TN) indicates how many other pixels were correctly identified.
False Positive (FP) represents the number of other pixels
misclassified as water body pixels. False Negative (FN)
represents the number of water body pixels misclassified as
other pixels.

To evaluate the performance of the proposed method, we use
two typical metrics: The Mean Pixel Accuracy (MPA) and the
Mean Intersection over Union (MIoU). MPA calculates the
proportion of pixels correctly classified for each category, that
is, the accuracy of the method; MIoU indicates the proportion
between the intersection of the outcomes for each category
predicted by the network model and the real values and the
combined set, i.e. the predicted and true results for the water
body overlap rate. Both are the higher the value, the higher the
accuracy. The formulae are as follows.

��� =
1

� + 1
�=0

�
���

�=0
� ����

� (3)

���� =

��
�� + �� + ��

+
��

�� + �� + ��
2

(4)

where pij is the number of FNs, k+1 is the number of categories,
and pii is the number of total pixels.

3.2 AU-net network experimental results and analysis

3.2.1 Experimental results
When the network model is trained, the size of the input image
is 512  512 when using the test set for prediction,. In the
experiment, U-net and AU-net are compared under the same
operating environment and identical parameter settings. The
NDWI water index method has been used as the representative
of the traditional extraction method, the results of 0.04
threshold and 0.05 threshold were selected for comparison.

Fig.5. The results of river extraction

The quantitative results for the MPA and MIoU of all
methods are summarized in Table 2. As Table 2 shows, the
model proposed in this research paper is substantially better
than the other three ways in both MPA and MIOU, with values
of 0.992 and 0.972 respectively. It is easy to see that the MPA
and MIoU of the network in this paper are enhanced by about
0.7 compared with the conventional extraction method;
compared with the U-net value, it is increased by 0.093 and
0.091 respectively.

Fig.5. provides a visual representation of each method’s
performance on the middle and lower reaches of the Yellow
River datasets, with a, b, c, d, and e determining five river
reaches of different hydrological characteristics:

(a)This is a simple section with a smooth river, no sandbars
or forks, but a narrow river and a relatively small area.

(b) This complex morphological section, with its numerous
dense river cores, unmistakable braided flows, and dispersed
and continuous branching flows. It is typical of rivers in the
middle and lower sections of the Yellow River.

(c) The map is shown for a region where nearby water bodies
may be seen in the background.
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(d) The diagrams have been selected for the presence of two
rivers in the background, both of which are the Yellow River
being extracted in this study, the Yiluo River may be seen in the
lower right corner of the image, a tributary of the Yellow River.

(e) This is a thorough background of the river reach, meaning
that the river background obtains the above four backgrounds.

When applied to the five river segments mentioned above, the
NDWI method's extraction results achieve similar performance .
At a threshold of 0.04, the river is complete and coherent, with
tributaries, narrow rivers, and branching streams extracted well,
but other non-water features have also been extracted
incorrectly, which resulted in a high FP; the mixed
characteristics are significantly diminished and the river can be
seen at a threshold of 0.05, but the main river is discontinuous,
tributaries, narrow rivers, as well as branching streams are not
extracted, Additionally, the overall river information is lacking,
leading to the low FN. Therefore, These problems lead to a low
MPA and MIoU for the NDWI method.

The U-net network model was able to identify the larger,
wider mainstem portion of the middle and lower reaches of the
Yellow River(Column a and d of Fig.4.) and accurately
distinguish the feature of water bodies from non-water bodies.
Therefore, the MPA and MIoU values of the u-net network
model reach 0.896 and 0.880 respectively, which are higher
than those of the NDWI method. However, as the u-net network
model cannot capture multi-scale feature information, the
extraction of branching streams, river cores or fine tributaries of
the Yellow River rivers is moderate(Column b of Fig.4.). In
addition, the U-Net network cannot distinguish between river
and non-river water features(Column c of Fig.4.). The AU-Net
network can not only extract the main rivers clearly and
continuously, but also identify the forks and tiny rivers, which
reduces the values of FP and FN, and makes the values of MPA
and MIoU increase by 0.09 compared with U-Net. This suggests
that the addition of the ASPP module can help capture multi-
scale water body information and improve the accuracy of
semantic segmentation.

In summary, the AU-net network structure can improve the
incomplete prediction and misclassification phenomenon for the
small rivers in the middle and lower reaches of the Yellow
River, and can segment a relatively high-quality predicted water
body map; the interruptions in the relatively large rivers are
improved, and the predicted water body targets are more
complete, more accurate, with clearer boundaries, and can
obtain considerable results.

Methods MPA MIoU
NDWI (0.04) 0.23985914 0.20249817
NDWI (0.05) 0.33455115 0.31054287

U-net 0.89820513 0.88065411
AU-net 0.99105166 0.97213871

Table 2 Evaluation accuracy of the network model

4. DISCUSSION

4.1 Network model convergence

Network convergence means that the model is stable, that is,
when a certain weight parameter of the model changes slightly,
the output result of the model will not change strongly, and the
result obtained is more stable.

Figure 6 displays the LOSS plots for the AU-net and U-net
network models. Smaller loss values indicate a better fit of the
model; smoother loss curves emphasize more robustness of the
model. As per the curve changes compared to the U-net network,
the AU-net network is smoother and has smaller, more

consistent loss values. As can be observed from the graph,
during the training process, the U-net network primarily
fluctuates up and down in the interval [0, 0.04] and it still has
not converged after 200,000 iterations; the AU-net network
fluctuates up and down at 0.01 at 25,000 iterations, so the
network converges at 125,000 iterations. It can be noted that the
AU-net network converges quicker than the U-net network. To
sum up, the loss curve of the AU-net network model climbs a
stable value earlier than the U-net and the loss curve is
smoother, i.e., the AU-net network converges more quickly than
the U-net network, and has a better fit and higher robustness.

Fig. 6. Loss of network training stage

4.2 Threshold selection of the NDWI method

NDWI method is a widely-used traditional water body
extraction methods. Its water body extraction performance
greatly relies on the selection of segmentation thresholds. In this
part, we further verify the NDWI performance by varying
threshold value from 0- 0.05 in steps of 0.01. According to
results in Fig. 7. At a threshold of 0.05, the MPA and MIoU
values were highest, 0.298 and 0.280 above the threshold of
0.03, and 0.095 and 0.108 above the threshold of 0.04. However,
at a threshold of 0.05, the river was discontinuous and no
branch and tributary streams were extracted. When the
threshold is less than 0.05, the river is intact, but the non-water
features are mixed and the river cannot be clearly identified. In
summary, the traditional water body extraction method for the
extraction of the middle and lower reaches of the Yellow River
requires a very precise selection of the threshold value, which
needs to be determined through repeated experiments. The
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results obtained by the traditional water body extraction method
do not meet the needs of the study due to the complexity of the
features and the influence of the spectrum.

Fig.7. The results of different thresholds by NDWI method

5. CONCLUSIONS AND FUTURE WORK

In order to obtain more accurate segmentation results of the
complex rivers of the Yellow River, this paper proposed an AU-
NET network for automatic river extraction in the middle and
lower reaches of the Yellow River. The proposed AU-net is
designed based on the U-net network, and the ASPP module is
introduced to solve the issue of lacking multi-scale features of
the U-net network, and to improve the accuracy of semantic
segmentation. Given the dataset of the middle and lower reaches
of the Yellow River, the AU-Net network model provides
accurate and complete identification of water bodies, and
compare with the NDWI method and the U-net network model.
The experimental results show that the rivers extracted by the
AU-Net network are completer and more accurate, with clear
boundaries. The results show that the ASPP model can
effectively capture multi-scale semantic information, thereby
improving the accuracy of semantic segmentation.

It should be noted that only the water bodies in the middle
and lower reaches of the Yellow River are included in this data
set, which means it may not fully represent the characteristics of
water bodies located in other part of the Yellow River. In
addition, the AU-Net network model has a good performance on
the extraction of braided rivers, but it requires further
verifications in extracting other water bodies such as lakes and
oceans. In the future, our work aims to effectively expand the
training data and explore the acquisition of remote sensing
image information for multiple types of water bodies, so that the
AU-net model can accurately extract information about various
types of water bodies in different scenarios.
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