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ABSTRACT:

Every year, millions of people affected and huge property losses by floods were recorded in many parts of the world. Accurately
flood inundated areas extraction is essential for disaster reduction. Existed studies have used multi-spectral (MS) data and synthetic-
aperture radar (SAR) data or the fusion data to extract flood inundated areas. However, most data fusion methods think less about
regional difference and the complementarities between different models. This study explores a new decision-level data fusion method,
which pays more attention to the complementarities between models. First, we construct models trained by diverse bands of Sentinel-
1/2 and water indices. Then, divide the whole study area into three parts, cloud-free & non-water area, cloud-free & flood area and
cloud area, and select the models suitable for the three areas. Third, combine water extents extracted by selected models with
decision tree to obtain water extents before and after disaster. Finally, subtract the water extent before disaster from the water extent
after disaster to get flood inundated areas. The experiments in Peru indicated that our method increases the Intersection over Union
(IoU) of water extraction to 0.69. Moreover, our method successfully reduces the impact of cloud and shadow owing to the fusion of
different features.

⁎ Corresponding author

1. INTRODUCTION

Flood is one of the most common meteorological disasters,
which occurs rapidly, frequently and widely. Every year,
millions of people affected and huge property losses by floods
were recorded in many parts of the world (Aguirre et al., 2019).
Accurate and near-real time flood inundation extraction can
offer flood information and help to flood emergency response
(Muñoz et al., 2021a).

Manual flood inundation extraction is time-consuming and
labor-intensive (Guo and Zhao, 2018). Remote sensing data has
short acquisition period and rich band information, is possible
for extracting flood inundated areas accurately and quickly
(Smith, 1997). With the development of remote sensing
technology, multi-spectral (MS) data has shorter update period,
more bands and higher resolution, become one of the main
resources of flood inundation extraction. However, MS images’
inability to penetrate cloud cover makes it difficult to offer
accurate ground information in the case of high cloud coverage
(Solovey, 2019). Synthetic-aperture radar (SAR) images are not
easily affected by external factors such as cloud coverage.
However, SAR images always fail to distinguish water from
water-like surface (Shen et al., 2019). MS data and SAR data
are from different sensors, such that have different advantages
for flood inundation extraction. Many studies have combined
MS data with SAR data by data fusion methods to obtain more
effective features (Konapala et al., 2021).

The data fusion technologies include pixel-level data fusion,
feature-level data fusion and decision-level data fusion (Muñoz
et al., 2021b). Pixel-level data fusion refers to the direct fusion
of the bands from remote sensing images. Pixel-level data

fusion is a low-level fusion, which has a strong ability to retain
the original information, but it requires higher accuracy on
image registration. Therefore, in flood inundation extraction,
pixel-level data fusion often exists in the calculation of bands
from the same images such as water indices (Benoudjit and
Guida, 2019) and HSV transformation (Konapala et al., 2021).
Feature-level data fusion is the combination of the features from
images. Compared with pixel-level data fusion, feature-level
data fusion can extract features from MS data and SAR data
flexibly (Gasparovic and Klobucar, 2021).

In recent years, most feature-level data fusion methods using
machine learning to combine remote sensing data (Rao et al.,
2019). Machine learning algorithms can support the model
training with high dimension data. Among the machine learning
methods, deep learning with strong learning ability, robustness
to noisy data and fault tolerance is increasingly used for flood
inundation extraction (Jain et al., 2020). With the continuous
improvement of deep learning, the neural networks have
evolved from traditional neural network (NN) (Yang et al., n.d.)
and fully convolutional network (FCN) (Kang et al., 2018) to
UNet and UNet++ (Konapala et al., 2021). Compared with
traditional neural network, UNet and UNet++ replace the fully
connected layer with a convolution layer, which improves the
efficiency of processing for images in large size. Meanwhile,
UNet and UNet++ use upsampling and downsampling to
integrate low-level features and high-level features (Nemni et
al., 2020). The spatial structure helps the networks to extract the
features and retain the spatial information. In this way, the pixel
segmentation is more accurate.

In feature-level data fusion methods, deep learning models tend
to discard some features to optimize the overall accuracy. In
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order to retain the useful features as much as possible, several
studies have tried to explore decision-level data fusion methods.
Decision-level data fusion is a high level fusion with good fault
tolerance and openness (Jia et al., 2000). Traditional decision-
level fusion methods include fuzzy logic method (Wendl et al.,
2018) and Bayesian method (Bioresita et al., 2019). In recent
years, in order to improve the efficiency of data fusion, studies
have proposed the concept of master classifier. This method of
master classifier firstly uses the most accurate models to
classify the images (Lee et al., 2021), and then remains the
classification result for the pixels with high confidence, replace
the result by the result of joint decision-making with multiple
models for the pixels with low confidence. However, most
decision-level data fusion methods think less about regional
difference and they are difficult to adapt to a large area with
complex condition. In order to extract flood inundated areas
exactly, this study proposes a data fusion method based on
decision tree that can fuse the best results from different models.

2. MATERIALS AND METHODS

2.1 Study area

This study selects flood in Peru, on February 27, 2017 as a case
(Figure 1). Piura River is the main source of fresh water, which
is essential to the local people. In 2017, heavy rainfall was
widespread in Peru due to the Coastal El Niño phenomenon,
and it caused major flood in the Piura River basin. Extracting
flood inundated areas rapidly and accurately helps emergency
response for flood in Peru by offering disaster information in
time. Flood inundated areas in Peru from February 2017 to
April 2017 are offered by Copernicus EMS. By comparing the
flood inundated areas extracted by the decision-level data fusion
method with the result from Copernicus EMS, the strengths and
weaknesses of the decision-level data fusion method can be
analyzed.

Figure 1. Study area in Peru.

2.2 Data Source

2.2.1 Data Acquisition: This study obtains flood inundated
areas from the change of pre-disaster and post-disaster water
extent. In order to extract pre-disaster water extent and post-
disaster water extent, in this study, Sentinel-2 image on
February 16, 2017 and Sentinel-1 image on February 3,2017 are
used as pre-disaster data. Sentinel-2 image on February 26,
2017 and Sentinel-1 image on February 27, 2017 are used as
post-disaster data (Table 1). After acquire the images, SNAP,
a software of remote sensing image processing, is used to pre-
process the Sentinel-1 images and the Sentinel-2 images. In
order to improve the flood inundation extraction, all the images
are 512× 512 pixels in size.

Table 1. Pre-disaster and post-disaster data for flood in Peru,
2017.

2.2.2 Training Data: In this study, Sen1Floods11 (Bonafilia
et al., 2020), which includes 446 sets from 11 flood events
around the world, is chosen to train UNet++ models. Every set
from Sen1Floods11 contains Sentinel-1 image, Sentinel-2
image and label at 512×512 dimensions. The Sentinel-1 image
includes 2 bands, VV band and VH band. The Sentinel-2 image
includes 13 bands from Band1 to Band12. The label contains
three types of pixels: water, non-water and no data. All the
images are projected to WGS 84 at 10 m ground resolution.

2.3 Methods

In this study, UNet++ models are trained by Sen1Floods11 , and
the models suitable for cloud-free & non-water area, cloud-free
& flood area and cloud area will be selected. The selected
models and the pre-processed data in study area are uesed to
extract water extents. Then the result from different models is
combined by a decision-level data fusion method to obtain the
pre-disaster water extent and post-disaster water extent. Finally,
the flood inundated areas in study area are obtained by
subtracting pre-disaster water extent from post-disaster water
extent.

Date Type Bands
2/3/2017 Sentinel-1 VV,VH
2/16/2017 Sentinel-2 Band1-Band12
2/27/2017 Sentinel-1 VV,VH
2/26/2017 Sentinel-2 Band1-Band12
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Figure 2. Method of flood inundation extraction.

2.3.1 Feature selection: In order to enable the deep learning
model to gain more effective information, besides original
bands of Sentinel-1 images and Sentinel-2 images, this study
additionally selects a variety of water indices to train models.
The selection of water indices is mainly considered about the
ground condition of the study area and the image quality of
flood in Peru.

First, the study area is located in the western part of South
America with an arid climate and a large number of urban areas.
It is essential to think about the influence of vegetation and
urban buildings when extracting water extent by remote sensing
data. Therefore, Normalized Difference Water Index (NDWI)
(McFEETERS, 1996), which is sensitive to vegetation is chosen.
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Second, flood is often accompanied by severe weather, and the
acquired MS images are prone to the problem of high cloud
coverage. Therefore, this study selects the Normalized
Difference Multi-band Water Index (NDMBWI) (Deng and Ren,
2021), which can reduce the influence of cloud and shadows on
flood inundation extraction.
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2.3.2 UNet++ Architecture: UNet++ architecture consists of
three parts, upsampling, downsamping and skip connection
(Zhou et al., 2018). Upsamping is used to extract high-level
features. Downsampling is used to extracted Low-level features.
Skip connection combines high-level features and low-level
features. Compared with UNet, UNet++ has more skip
connection processes which make UNet++ architecture more
flexible and facilitate the extraction of more features. And
because of the nested skip connection, UNet++ can realize deep
supervision, which enables model pruning and improves the
result.

Figure 3. UNet++ architecture(Zhou et al., 2018).

2.3.3 Decision-level data fusion: The decision-level data
fusion method in this study improves the overall accuracy of the
study area by combining the advantages of different models.
Based on the images of the study area, this study divides the
whole study area into three parts, cloud-free & non-water area,
cloud-free & flood area and cloud area. By evaluating the recall
scores (Harman, 2011) of the models in cloud-free & non-water
area, cloud-free & flood area and cloud area, this study select
the locally optimal models for every area.

Model

Cloud-free
&

Non-water
Area

Cloud-free
& Flood
Area

Cloud
Area

S1 0.96 0.72 0.81
S1+Band6 0.99 0.47 0.31
S1+Band11 0.98 0.82 0.50
S1+Band12 0.99 0.75 0.39

S1+S2+NDMBWI
+NDWI 0.98 0.88 0.58

Table 2. Recall scores of different models.

The result shows that in cloud area, S1 model performs best. In
cloud-free area, S1+S2+NDMBWI+NDWI model has the
highest accuracy of water extraction. S1+Band6 model and
S1+Band12 model are good at distinguishing non-water pixels.
Considering the poor performance of S1+Band6 model in
cloud-free & flood area and cloud area, S1+Band12 model is
selected to combining with S1 model and
S1+S2+NDMBWI+NDWI model.

After selecting the models suitable for cloud-free & non-water
area, cloud-free & flood area and cloud area, this study tents to
combine the results of models. The specific data fusion process
is as follows:

(1) Use S1+Band12 model which is suitable for cloud-free &
non-water area to remove most non-water area. The probability
of each pixel classified as water is calculated and the pixels with
probability lower than k1 are defined as non-water and the
pixels with probability higher than k1 are defined as unknown.

(2) Use S1+S2+NDMBWI+NDWI model which is suitable for
cloud-free & non-water area to extract the water extent in the
unknown region from the first step. The pixels with probability
higher than k2 are defined as the water and the pixels with
probability lower than k2 are defined as unknown.

(3) Use S1 model which is suitable for cloud area to extract the
water extent in the unknown region from the second step.

Figure 4. Decision-level data fusion method.
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Before implementing the decision-level data fusion method,
three probability thresholds need to be determined. Firstly, the
recall scores of S1+Band12 model when extracting non-water
area with different probability threshold (k1) are calculated.
When k1 is 0.4, S1 model has higher recall and less
classification error. Secondly, after removing non-water areas
by S1+Band12 model, the recall scores of
S1+S2+NDMBWI+NDWI model when extracting water extent
with different probability thresholds (k2) are calculated. When
k2 is 0.95, S1+S2+NDMBWI+NDWI model has the best result.
Finally, the loUs of the S1 model are calculated in the
remaining area. When the probability threshold (k3) is 0.5, S1
model gets the highest IoU.

2.3.4 Precision evaluation criteria: By the deep learning
model, the image can be divided into two parts: water and non-

water, from which true positive (TP), true negative (TN), false
positive (FP) and false negative (FN) can be calculated. By
calculating the above metrics, precision and recall can be
obtained to evaluate the effectiveness of the model. However,
the precision only reflects the accuracy of the water region
extracted by the model while the recall only reflects the
difference between the water classified by the model and the
real water region. Both of them can reflect the extraction effect
of models but each has limitations, so this study uses
Intersection over Union (IoU) (Cai and Vasconcelos, 2018) as
the criterion to evaluate models. IoU considers the influence of
the water that is misclassified and the water that fails to be
extracted. The specific formula is as follows:

)/( FPTNTPTPIOU  , (3)

Figure 5. Results of data fusion in cloud-free area.

Figure 6. Results of data fusion in cloud area.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3/W1-2022 
14th GeoInformation for Disaster Management (Gi4DM 2022), 1–4 November 2022, Beijing, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-3-W1-2022-133-2022 | © Author(s) 2022. CC BY 4.0 License.

 
136



3. RESULTS

3.1 Decision-level data fusion

In order to analyze the effect of the decision-level data fusion
method, this study use IoU to compares the decision-level data
fusion method with the sub models. Table 3 presents the IoUs.
The results show that the IoU increases after decision-level data
fusion, which means the decision-level data fusion method
improves the water extraction in the whole study area.

Model IoU

S1 0.56

S1+Band12 0.57
S1+S2+NDMBWI+NDWI 0.68

Fusion 0.69
Table 3. IoUs before and after decision-level data fusion.

Besides accuracy assessment, the maps of water extraction are
also important to evaluating the decision-level data fusion
method. In order to present more characteristics of the
decision-level data fusion method, the maps of water extraction
should be compared in cloud-free area and cloudarea. Figure 5

presents the extraction in cloud-free area and Figure 6 presents
the extraction in cloud area. According to the results, the water
extent extracted by S1 model is generally consistent with the
real water extent in cloud area, while it includes many water-
like surfaces. S1+Band12 model has a better performance in
removing non-water area, but it can’t extract water extent
accurately. S1+S2+NDMBWI+NDWI model is good at water
extraction in cloud-free area, but it failed to extract water extent
completely in cloud area.

Compared with the results of the sub models, the decision-level
data fusion method effectively reduces the influence of shadow
on water extraction. Meanwhile, in cloud area, the decision-
level data fusion method can produce a more complete map of
water.

3.2 Flood inundation extraction in study area

In this study, we use the method of subtracting the pre-disaster
water extent from the post-disaster water extent to obtain the
flood inundated areas. Based on the method, this study collects
pre-disaster and post-disaster remote sensing images for flood
in Peru and extracts the pre-disaster water extent and post-
disaster water extent using a decision-level data fusion method.
The flood inundated area in study area on February 27, 2017 is
about 12809591 m2.

Figure 7. Flood inundated areas in study area on February 27, 2017 extracted by decision-level data fusion method.

Figure 8. Flood inundated areas in study area on February 27,2017 from Copernicus EMS.
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To analyze the actual effect of the decision-level data fusion
method deeply, we refer to the result of the flood in Peru, 2017
from Copernicus EMS and compare the result with the flood
inundated areas extracted by our decision-level data fusion
method.

To be more convenient, the manually labeled flood inundated
areas in study area on February 27, 2017 is used as the true
value. The result of decision-level data fusion method and the
result from Copernicus EMS are compared by the IoU of flood
inundation extraction. The result shows that the IoU of the
flood inundated areas from Copernicus EMS is 0.44 and the
IoU of the decision level data fusion method is 0.50. In terms
of details, the decision-level data fusion method incorporates
features such as NDMBWI, and thus has advantages in
distinguishing water from shadows. Meanwhile, the decision-
level data fusion method combines the advantages of multiple
models, so, it has better extraction at flooding edge areas and
the areas with more fragmented flooding distribution.

Figure 9. Flood inundated areas in study area (partial) on
February 27, 2017.

4. DISCUSSIONS

In this study, we propose a decision-level data fusion method
based on decision tree. Before constructing the decision-level
data fusion method, different models are needed.

In the process of constructing models, we try to combine
multiple features. Among the features, bands of Sentinel-1
offer the texture information, bands of Sentinel-2 offer
spectral information, NDWI helps to distinguish water from
vegetation, NDMBWI reduces the influence of cloud and
shadows on water extraction. All the features contribute to
water extraction. However, the model with highest accuracy
which combine all the features we selected, is still difficult to
distinguish water from bare soil. Through the analysis of the
water in study area, we find that there is much sediment in the
water. It makes the water during flood more similar to bare soil
than normal water. In this study, the features we selected lack
of the ability to distinguish flood water from bare soil, which
may be one of the reasons why our model fails to extract water
extent effectively.

Besides the selection of features, the training set has a great
impact on model training. In the result, the IoU of the models
in training set are always higher than the IoU in study area. It
means the models are more suitable for the training set. In this
study, we select Sen1Flood11 as training set, which lacks data
with high cloud coverage. It leads to the models being more
applicable to the area with less cloud.

After model training, this study construct data fusion method
by decision tree. The result shows that our decision-level data
fusion method improve the IoU of water extraction. However,
the improvement is not significant. There are two main reasons

lead to the phenomenon. First, the input variables of data fusion
method and S1+S2+NDWI+NDMBWI model are the same,
which means our decision-level data fusion method does not
learn more features. Second, this study pays more attention to
the extraction effect in cloud area. In order to avoid the cloud
area being classified as non-water in the first step of the
decision tree, we think more about the extraction in cloud area
than the accuracy in cloud-free area during the selection of
threshold, which may influence the water extraction in cloud-
free area.

Of course, in addition to some problems in model training and
construction of data fusion method, the study area data itself
has a large impact on the water extraction in study area. In this
study, the Sentinel-1 and Sentinel-2 images of study area are
not at the same time such as the post-disaster Sentinel-1 image
imaged on February 27, 2017 and the post-disaster Sentinel-2
image imaged on February 26, 2017. During the period of
flooding, the extent of water changes rapidly and there are
more obvious differences between the water extent on February
26, 2017 and February 27, 2017 in some sections of the river.

5. CONCLUSIONS

In this study we combine different models to construct a
decision-level data fusion method. By comparing the results
before and after fusion, we found that the decision-level data
fusion method successfully reduces the influence of clouds and
shadows on water extraction by utilizing the features from
NDWI, NDMBWI and Sentinel-1/2 original bands effectively.
Then we use the decision-level data fusion method to extract
pre-disaster water extent and post-disaster water extent, which
can be used to obtain the flood inundated areas in Peru on
February 27, 2017. By comparing the flood inundated areas we
extracted with the result offered by Copernicus EMS, it proves
that the decision-level data fusion method has advantage in
study area. Although the decision-level data fusion method has
obtained excellent result, there is still plenty of room to
optimize the selection of water indices and the construction of
decision-level data fusion methods. First, this study does not
take the difference between flood and general water into
account, so it is expected to choose more suitable indices for
the model in the next stage of exploration. Second, in the
process of constructing the decision-level data fusion method,
the selection of thresholds is too subjective and we can try to
use an efficient and explanatory way to select the thresholds
automatically.
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