
A PARALLELED DELAUNAY TRIANGULATION ALGORITHM FOR PROCESSING
LARGE LIDAR POINTS

Yuanlong Song 1, Ming Li 2,3 *, Xiaojia Liu 2

1 Aerial Photogrammetry and Remote Sensing Group Co., LTD, Xi’an, China- SYL_ARSC@outlook.com

2 School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China -lxj@bit.edu.cn
3National Geomatics Center of China, Beijing 100830, China- liming@ngcc.cn

Commission III, ICWG III/IVa

KEY WORDS: Paralleled Delaunay Triangular Network; LiDAR; Point Cloud; MapReduce; Multi-core Computer.

ABSTRACT:

LiDAR is an important data source for disaster prevention and mitigation, its advantages include speediness, penetration, initiative,
high-density and high-precision, high efficiency, information-richness. In this paper, we address the design and implementation of a
practical parallel algorithm for Delaunay triangulation that works on massive point cloud data acquired by airborne LiDAR. The
algorithm is based on the divide and conquer algorithm, Bowyer-Watson algorithm and triangulation-growth and can be easily
extended to multi-core or cluster environment. It first divides the point cloud data into blocks at the MapReduce’s Map phase; then
the triangulation network of each block is simultaneously constructed using Bowyer-Watson algorithm on different CPU cores; at the
reduction phase, the triangular network of each block is merged and optimized using triangulation-growth and Local Optimization
Procedure (LOP). Experimental results show that the speed of the paralleled triangulation algorithm can be improved significantly
compared to the sequential algorithm on multi-core desktop computer. The speedup depends on partition of the dataset and the
number of CPU cores used, and is usually 2-3 times that of sequential algorithms.

* Corresponding author

1. INTRODUCTION

With the emerging of a variety of new data acquisition and data
processing methods such as airborne/terrestrial laser scanning
system, image matching from stereo image pairs, it is now
possible to create very accurate and detailed 3D surface model
of ground objects using point cloud data. Point cloud data has
been widely used in terrain mapping, disaster monitoring and
emergency rescue work. To process these highly dense discrete
3D point cloud data, the Delaunay triangulation is widely used,
e.g., in automatic filtering, airborne strip adjustment, line
feature and breakline extraction, Digital Elevation Model (DEM)
generation and terrain visualization, etc. However, with the
rapidly increased point density and data volume, traditional
sequential Delaunay triangulation method could no longer meet
the performance requirement nowadays, especially involving
current multi-core or clustered computational power. In this
situation, a real-time paralleled Delaunay triangulation method
has the potential to efficiently use the multi-core and clustered
computers to fast construct a large triangulation network.

Traditional Delaunay triangulation algorithm can be divided
into three classes according to the construction method. The
divide and conquer algorithm proposed by Shamos and Hoey
(1975), the triangulation growth algorithm proposed by Green
and Sibson (1978), and incremental insertion algorithm
proposed by Lawson (1977). A triangulation algorithm based
on edge-pointer search and region-division is proposed by
Zhang (2021), designed to reflect the positional relationship
between triangles. A novel hybrid scheme of large scale
reconstruction was proposed by Xue (2020), fully ensures the
integrity of the reconstructed scene and is able to reconstruct
large scale scene in single computer. Liu (2018) research proves

that Delaunay triangulation maximizes minimal angle due to
good geometric properties.

The divide and conquer algorithm recursively draws a line to
split the vertices into two sets until each set includes less than
three points. The Delaunay triangulation is then applied to each
set, followed by merging the triangle of each sets along the
splitting line. Using some tricky technique, the merge operation
can be done within the time complexity of O(N), resulting in a
total time complexity of O(NlogN). However, the space
complexity of the algorithm is relatively high and takes more
memory than that of other algorithm, especially when the data
size is large.

The triangulation growth algorithm starts from arbitrary point in
the points set as an initial point, and searches through all the
points to find the nearest. An initial edge is built by linking
these two points. The third point is searched according to the
in-circle and max-min angle properties of Delaunay
triangulation. After that, the two edges of the newly created
triangle are used as the initial edges to build subsequent
Delaunay triangles. These procedures are recursively repeated
until all points are inserted into the triangular network.

The incremental insertion algorithm repeatedly adds one vertex
at a time and retriangulates the affected parts of the graph.
When a vertex v is added, we split the triangle that contains v
into three, and then applies the flip algorithm. A typical
incremental algorithm is Bowyer–Watson algorithm (Bowyer,
1981; Watson, 1981). It adds points, one at a time, to a valid
Delaunay triangulation of a subset of the desired points. After
every insertion, any triangles whose circumcircles contain the

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3/W1-2022
14th GeoInformation for Disaster Management (Gi4DM 2022), 1–4 November 2022, Beijing, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-3-W1-2022-141-2022 | © Author(s) 2022. CC BY 4.0 License.

141

new point are deleted, leaving a star-shaped polygonal hole
which is then re-triangulated using the new point.

Currently a few paralleled Delaunay triangulation algorithms
have been proposed. Most of them are based on the incremental
algorithm or divide and conquer algorithm (Chow, 1981;
Aggarwal et al., 1988; Cole et al., 1990; Teng et al., 1993;
Chew et al., 1997). Blelloch et al. (1999) proposed a parallel
algorithm for constructing Delaunay triangular network by
developing a variant of the Edelsbrunner and Shi 3D convex
hull algorithm, Christos et al. (2005) proposed multi-granularity
parallel algorithm, Chernikov and Chrisochoides (2004, 2006)
proposed a parallel two-dimensional constraint Delaunay
network building method based on Bowyer-Watson algorithm.
Isenburg et al. (2006) proposed a streaming computation of
Delaunay triangulation for massive points. These algorithms
provide feasible approach for paralleled Delaunay Triangulation
construction from general point sets. However, few paralleled
Delaunay Triangulation method optimized by considering the
massive near uniformly distributed LiDAR point cloud data has
yet been addressed and could be easily extend to cluster or
cloud computing environment.

In this paper, a paralleled 2D Delaunay Triangulation method is
proposed for processing massive point cloud data using a
MapReduce paralleled computing model. The model is firstly
introduced by Google as its enterprise cloud computing
infrastructure and search engine (Dean and Ghemawat, 2004).
Nowadays, it is becoming more and more popular to use this
technique to process high throughout and massive data tasks on
the internet.

The rest of the paper is organized as follows. In Section 2, we
briefly describe the general idea of the proposed algorithms; we
then introduce the detailed steps to implement the method,
which is followed with the pseudo code of the algorithm. In
Section 3, we present the experimental result by evaluating our
algorithm and comparing with traditional sequential algorithm
on a multi-core desktop computer. Section 4 concludes the
paper.

METHOD

1.1 General Idea

The paralleled Delaunay triangulation method presented in this
paper is based on the divide and conquer algorithm in
combination with Bowyer-Watson algorithm and triangulation-
growth. The basic idea of the method is to firstly divide the
point cloud data into blocks at the MapReduce’s Map phase;
then the triangulation network of each block is simultaneously
constructed via using Bowyer-Watson algorithm by different
CPU cores or computer clusters; at the Reduce phase, the
triangular network of each block is merged by using Local
Optimization Procedure proposed by Lawson (1977). In this
way, the paralleled computing of massive point cloud data is
distributed to many processors, or computer clusters. Since the
computing, memory, I/O, and other resources are in distributed
environment, the process of massive data could be effective and
highly scalable.

1.2 Procedure

The general procedure of the algorithm is shown in Figure 1,
which is described in detail as following.

1.2.1 The point cloud partitioning

A paralleled algorithm should firstly consider how to divide a
task into a set of concurrently executable tasks. In our algorithm,
a task partitioning procedure is firstly applied at the Map phase
to separate the point cloud data set into different blocks with
roughly equivalent data volume according to its geographic
coverage.

Point cloud partitioningLiDAR point cloud data

…
…

…
…

Sub-triangular
network construction

Triangular network merging
using triangulation growth

Optimization of the triangles
in the boundary area

LiDAR grid after treatment

Figure 1. The overall procedure of the paralleled Delaunay
triangulation algorithm

Currently there are three different point cloud data partition
methods. Partition into strips, partition into blocks with equal
area, and partition based on quad-tree, as shown in Figure 2. If
the grid partitioning or quad-tree partitioning method is applied,
at least two border lines will be created for each generated
blocks, as shown in Figure 2b, and Figure 2c. This will cause
additional overhead in the procedure of triangular network
merging and thus reduce the performance. Considering that
most point cloud data collected by airborne LiDAR or mobile
laser scanning system are stored sequentially as scan line by
scan line for a flight or moving path, the point cloud block data
created by grid partitioning or quad-tree partitioning method
will also result in a lower sequential Delaunay triangulation
performance since it will need much more time to find the
neighbourhood vertexes. In this paper, we prefer to partition the
point cloud data into equal space vertical or horizontal strips,
most probably along with the flight path direction. In this way,
at most two adjacent strips need to be considered when merging
triangular networks, which simplifies the merging process and
improves performance.

Another importance factor should be considered is the data
volume of each block. Since the overall time complexity of the
sequential Delaunay triangulation algorithm used is O(Nlog(N)),
the performance of the triangulation on a small number of
points will be higher than that on a large number of points. On

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3/W1-2022
14th GeoInformation for Disaster Management (Gi4DM 2022), 1–4 November 2022, Beijing, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-3-W1-2022-141-2022 | © Author(s) 2022. CC BY 4.0 License.

142

the contrary, small point set size for each block will create more
blocks thus taking more time to merge the triangle network
created by the blocks. Therefore, a trade-off of the point sets
size should be considered. In our experiment, a size of
1,000,000 points for each block seems to be an optimal choice.

(a) (b) (c)

Figure 2. Possible point cloud partition strategies:
(a) Partition into equal space vertical or horizontal strips;
(b) Partition into blocks with equal area;
(c) Partition based on quad-tree.

1.2.2 Sub-triangular network construction with Bowyer-
Watson Delaunay triangulation algorithm

After the point cloud has been partitioned into a variety of
blocks with approximately equal number of points, the
triangulation network of each block is simultaneously
constructed using Bowyer-Watson Delaunay triangulation
algorithm in each task at the Map phase. After the Delaunay
triangular network of all blocks have been constructed, the
results are returned to the Reduce function for merging.

1.2.3 Merge the triangular network of each block using
triangulation growth algorithm

At the Reduce phase, the triangular network of each block is
merged using the triangulation-growth algorithm after every
task of Step 2 has finished. This step can be described as
following.

(1) Extract boundary of two adjacent blocks
In order to merge the two Delaunay triangular networks of the
adjacent blocks, we firstly need to extract the boundaries of
these two triangular networks. Since the edge on the boundary
has only one adjacent triangle, we can find out all edges which
have only one adjacent triangle by traversing the triangular
networks, and then save each edge as directional edge counter
clock-wisely. In this way, the endpoints of these edges are
extracted as the boundary points of the underlying triangular
network (see Figure 3a and 3b).

(2) Generate the new triangles on the boundary of two adjacent
blocks
To merging two adjacent triangular networks, the triangulation-
growth algorithm is employed to generate the new triangles on
the boundary with the boundary point set obtained in step (1). It
starts from choosing an arbitrary boundary edge as an
extensible edge and finding out the optimal point in its adjacent
boundary point sets to form a Delaunay triangle. The newly
created directional edges of the Delaunay triangle are added
into the extensible edges for further processing. This procedure
can be illustrated as Figure 3c, 3d, and 3e.

To choose the optimal point, four rules are applied: i) The point
is on the right side of an extensible edge; ii) The new triangle
created by this point and the two endpoints of an extensible

edge fulfills the in-circle property; According to the law of
cosines (see Eq.1), the point which has minimum Cos(C) is the
point that meets Delaunay rule; iii) The newly built extensible
edge is not oriented in the opposite direction; iv) The newly
built extensible edge is not intersected with any boundary edge
(except tangency).

BA

CBA
CCos





2

)(
)(

222 (1)

According to the above-mentioned rule, we can find out the
optimal points from the boundary point set until all the
extensible edges complete finding their optimal points, as
shown in Figure 3.

(a) (b)

C

A

B

(c) (d)

 (e)

Figure 3. The general procedure of creating the new triangles
on the boundary of two adjacent blocks:
(a) Original Delaunay triangular network of two adjacent blocks;
(b) Boundary extraction;
(c) Choose an arbitrary boundary edge as an extensible edge
and search the optimal point in its adjacent boundary point sets
to form a Delaunay triangle;
(d) Add the newly created directional edges of the Delaunay
triangle into the extensible edges list;
(e) The newly created boundary triangles of two adjacent blocks.

1.2.4 Optimizing triangles at the boundaries

In step 3, a merged triangular network from two adjacent blocks
is established by creating the boundary triangles between two
adjacent boundaries. Since only the boundary points of the two
triangle networks are used during iteration, the newly created
boundary triangles are sometimes long and narrow triangles,
which do not satisfy the Delaunay triangulation rule considering
the adjacent interior points within two adjacent blocks.
Therefore, the LOP algorithm is applied to optimize the newly
built triangles and the interior triangles inside the boundaries
according to the in-circle property of Delaunay triangulation
(Figure 4). The newly created triangles and its adjacent triangles

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3/W1-2022
14th GeoInformation for Disaster Management (Gi4DM 2022), 1–4 November 2022, Beijing, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-3-W1-2022-141-2022 | © Author(s) 2022. CC BY 4.0 License.

143

are recursively optimized, and eventually the merged Delaunay
triangular network of the two adjacent blocks is created.

Figure 4. Illustration of the optimization procedure of the
boundary triangles using LOP algorithm.

1.2.5 Construction of the global Delaunay triangular
network

Repeat step 3 and 4 until the triangular networks of all blocks
are merged so that a whole seamless Delaunay triangular
network is built.

1.3 Implementation

The main procedure of the algorithm can be expressed as the
pseudo code as follows.

BEGIN
Step1: Divide the point cloud data into multiple blocks and add
to the data list (better if it is a multiple of the CPU cores)
Step2: WHILE (the data list is not empty) DO
 Distribute a block of the data to a free computing unit
(thread) to complete sub-triangular network construction. This
is called the Map phase.
 ENDWHILE
 Get ordered set of sub-triangular networks. This is called
the Reduce phase.
Step3: Put the sub-triangular networks into stack, and merge the
sub-triangular networks
 WHILE (stack is not empty) DO
 Counter++
 IF counter equals 2
 THEN merge sub-triangular networks (as shown below)
 Add the merged sub-triangular networks into stack
 Reset counter
 ENDWHILE
END

The sub-triangular networks merging algorithm can be
expressed as following.

BEGIN
Step1: Get boundary edge and point set from the two sub-
triangular networks’ boundary points and edges
Step2: WHILE (edge set is not empty) DO
 IF one of the optimal point in the point set meets the
condition
 THEN save the triangle, add the two newly built edges
into the edge set
 ELSE return
 ENDWHILE
Step3: Optimize the newly built triangle by LOP algorithm

END

EXPERIMENTAL RESULT

In order to verify the correctness and validity of the algorithm,
the algorithm is implemented using C++ programming language
on Windows Vista operating system. A desktop computer with
8 CPU cores and 4 gigabyte memory is used for testing. Each
core speed is 2.1GHz. The experimental data is located in
Huanghua county, HeBei province of China, collected by
Chinese Academy of Surveying and Mapping in 2011, using
ALS60 airborne laser scanner from Leica Geosystems. The
relative flight height is about 900m, the average point density is
about 0.67m.

Figure 5 shows the Delaunay triangulation construction of a
small size of point cloud in the experimental area. The point
cloud contains 2,135,953 points. It is firstly partitioned into two
vertical strips. Figure 5a shows the triangular network after an
initial merging of the two strips. Figure 4b is a zoomed-in of the
area A in Figure 5a. From figure 5b we can clearly see that the
initial merge of the triangular network is not a truly Delaunay
triangular network since it does not meet the in-circle and max-
min angle properties. Figure 5c shows the optimized triangular
network using LOP algorithm. Figure 5d is a zoomed-in of the
area A in Figure 5c. From figure 5d we can see that the
optimized triangular network is now a true Delaunay triangular
network and meet the in-circle and max-min angle properties.

A

(a) (b)

A

(c) (d)

Figure 5. Delaunay triangulation construction of a small size of
point cloud in the experimental area:
(a) The two initially merged triangular networks;
(b) Zoomed-in of the area A in (a);
(c) The final optimized Delaunay triangular network from (a);
(d) Zoomed-in of the area A in (c).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3/W1-2022
14th GeoInformation for Disaster Management (Gi4DM 2022), 1–4 November 2022, Beijing, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-3-W1-2022-141-2022 | © Author(s) 2022. CC BY 4.0 License.

144

Figure 6 shows the Delaunay triangulation construction of a
relatively large size of point cloud in the experimental area. The
point cloud contains 9,986,520 points. It is firstly partitioned
into four vertical strips. Figure 6a shows the triangular network
after an initial merging of the four strips. Figure 6b shows the
optimized triangular network using LOP algorithm.

(a) (b)

Figure 6. Delaunay triangulation construction of a relatively
large size of point cloud in the experimental area:
(a) The four initially merged triangular networks;
(b) The final optimized Delaunay triangular network from (a).

In both cases, the optimized Delaunay triangular networks are
successfully constructed finally using the paralleled algorithm.
The performance of the algorithm is compared with the
sequential Delaunay triangulation algorithm developed by
Isenburg (2011). It has been considered as one of the fastest
Delaunay triangulation algorithm of the world. 5 point cloud
data sets with different level of point numbers are used to
evaluate the performance. 2-8 threads are used to the test the
efficiency.

The performance comparison result between the paralleled
Delaunay algorithm (PA) and the sequential algorithm (SA) is
shown in Table 1.

Number of
Points

Speedup (seconds)

SA*
PA (2

threads)
PA (4

threads)
PA (8

threads)

2,135,953 5.335 3.369 2.534 2.028

4,360,160 13.977 8.112 5.272 4.602

6,010,527 17.005 11.281 7.0849 5.676

9,986,520 40.123 35.256 19.516 23.79

21,214,412 failed 286.321 263.131 241.301

Table 1. Performance comparison between the Paralleled
Delaunay Algorithm (PA) and the Sequential Algorithm (SA)

From Table 1, we can see that the paralleled algorithm can
improve the speed of Delaunay triangulation of LiDAR point
cloud significantly. For example, for a data set with 2,135,953
points, the sequential algorithm takes 5.335 seconds while the
paralleled algorithm with 4 threads takes only 2.534 seconds.
For a data set with 9,986,520 points, the sequential algorithm
takes 40.123 seconds while the paralleled algorithm with 4
threads takesonly 19.516 seconds.

The memory mapping technique is used to process massive
point cloud data when the data volume exceeds the computer
memory. In this case, the traditional sequential algorithm
cannot complete network building due to the failure of memory
allocation when building and merging the triangular networks.
With memory mapping, the built sub-triangular networks are
stored as disk buffers, and the merging of triangular network is
directly operated on disk buffers. This is very fast for medium
size of point sets compared to hard disk file I/O. However, with
the increased size of point sets, the segment error of the
operating system becomes more and more frequent when doing
the triangulation network merging and optimization. This
significantly reduces the triangulation performance, which can
be observed in a data set with 21,214,412.

Further analysis of the experimental results shows that the point
number of each partitioned blocks and the merging method of
sub-triangular network are two critical factors that affect the
algorithm efficiency. The optimal speed comes out when about
1,000,000 points are contained in each block. At present, the
speed in sub-triangular networks construction phase is almost
linear. However, since we use a sequential method in sub-
triangular networks merger phase, resulting in a non-linear
decrease of the overall speed of the algorithm. The merging
time will increase if the number of sub-triangular networks is
too large for a data set, resulting in decreased overall
performance of the algorithm. This situation can be observed
for a data set with 9,986,520, where the paralleled algorithm
with 4 threads cost 19.516 seconds while the paralleled
algorithm with 8 threads cost 23.79 seconds.

CONCLUSIONS

In this paper, a simple and scalable paralleled Delaunay
Triangulation method is proposed for processing massive point
cloud data using a MapReduce paralleled computing model.
The paralleled Delaunay triangulation algorithm is based on the
divide and conquer algorithm, in combination with Bowyer-
Watson algorithm and triangulation-growth algorithm. It first
divides the point cloud data into blocks at the MapReduce’s
Map phase; then the triangulation network of each block is
simultaneously constructed via using Bowyer-Watson algorithm
by different CPU core; At the Reduce phase, the triangular
network of each block is merged and optimized using
triangulation-growth and LOP algorithm. The application of
this algorithm can effectively improve the speed of terrain
construction and provide more efficient data services for
emergency relief.

Experimental results show that the speed of the paralleled
triangulation algorithm can be improved significantly compared
to the sequential algorithm on multi-core desktop computer.
The speedup depends on partition of the data set and the CPU
cores used, usually from 2-3 times compare to the sequential
algorithm.

Further study will focus on paralleling the merging and
optimization procedure and migrating the algorithm to
computer clusters environment.

ACKNOWLEDGEMENTS

The work is funded by National Natural Science Fund of China
(62076027).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3/W1-2022
14th GeoInformation for Disaster Management (Gi4DM 2022), 1–4 November 2022, Beijing, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-3-W1-2022-141-2022 | © Author(s) 2022. CC BY 4.0 License.

145

REFERENCES

Aggarwal, A., Chazelle, B., Guibas, L.,ÓDúnlaing C. C, and
Yap C., 1988. Parallel computational geometry. Algorithmica,
3(3), pp. 293–327.

Blelloch, G., Hardwick, J., Miller, G., Talmor, D., 1999. Design
and implementation of a practical parallel Delaunay algorithm.
Algorithmica, 24, pp. 243–269.

Bowyer, A., 1981. Computing Dirichlet tessellations. The
Computer Journal, 24(2), pp. 162-166.

Chernikov, A. N. and Chrisochoides, N. P., 2004. Parallel
guaranteed quality planar Delaunay mesh generation by
concurrent point insertion. In 14th Annual Fall Workshop on
Computa-tional Geometry. MIT, pp. 55–56.

Zhang, J. and Tian, H. M., 2021.A triangulation algorithm
based on edge-pointer search and region-division. Acta
Automatica Sinica, 47(1),pp.100−107

Xue, J. S. and Yi, H., 2020.A hybrid multi-View 3D
reconstruction method based on scene graph partition. Acta
Automatica Sinica, 46(4),pp.782−795.

Liu, H. Q. and Yu, J. B., 2018. A bidimensional local mean

 de composition algorithm. Journal of Computer-Aided Design
& Computer Graphics,30(10),pp.1859−1869.

Chernikov, A. N., and Chrisochoides N. P., 2006. Generalized
Delaunay Mesh Refinement: From Scalar to Parallel. In:
Proceedings of the 15th International Meshing Roundtable,
September 2006, Springer-Verlag, pp.563-579.

Chew, L. P., Chrisochoides, N., Sukup, F., 1997. Parallel
Constrained Delaunay Meshing. In: Proceedings of 1997 Joint
ASME/ASCE/SES Summer Meeting, Special Symposium on
Trends in Unstructured Mesh Generation, Northwestern
University, Evanston, IL, 29 June–2 July 1997, pp. 89-96.

Chow A., 1981. Parallel Algorithms for Geometric Problems.
Ph.D. thesis, Department of Computer Science, University of
Illinois, Urbana-Champaign, IL.

Christos, D. A., Ding, X. N., Andrey, N. C., 2005. Multigrain
parallel Delaunay mesh generation: challenges and
opportunities for multithreaded architectures. In: Proceedings
of 19th ACM International Conference on Supercomputing.
ACM , New York, pp. 367-376.

Cole, R., Goodrich, M. T., andÓDúnlaing C.C., 1990. Merging
free trees in parallel for efficient Voronoi diagram construction.
In: Proceedings of the 17th International Colloquium on
Automata, Languages and Programming, July 1990, pp. 32–45.

Dean, J. and Ghemawat, S., 2004. MapReduce: Simplified Data
Processing on Large Clusters. In: Proceedings of the 6th
conference on Symposium on Opearting Systems Design &
Implementation (OSDI’04). USENIX Association, Berkeley,
CA, pp. 137–150.

Green, P. J., Sibson, R., 1978. Computing Dirichlet
tessellations in the plane. The Computer Journal, 21(2), pp.
168-173.

Isenburg, M., 2011. LAStools: converting, filtering, viewing,
gridding, and compressing LIDAR data.
http://www.cs.unc.edu/~isenburg/lastools/
Isenburg, M., Liu, Y., Shewchuk, J., Snoeyink, J., 2006.
Streaming Computation of Delaunay Triangulations,
Proceedings of SIGGRAPH'06, pp. 1049-1056.

Lawson, C. L., 1977. Software for C1surface interpolation. Rice
J., 1977. Mathematical Software III. Pasadena. California
Institute of Technology, California, pp. 161-194.

Shamos, M. I., Hoey, D., 1975. Closest-point problems. In:
Proceeding of the 16th Annual IEEE Symposium on
Foundation of Computer Science. Los Angeles. IEEE,
California, pp. 151-162.

Teng, Y. A., Sullivan, F., Beichl, I., and Puppo, E., 1993. A
data-parallel algorithm for three-dimensional Delaunay
triangulation and its implementation. In: Supercomputing 1993.
ACM: Providence, RI, pp. 112–121.

Watson, D. F., 1981. Computing the n-dimension Delaunay
tessellation with application to Voronoi polytopes. The
Computer Journal, 24(2), pp. 167-172.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3/W1-2022
14th GeoInformation for Disaster Management (Gi4DM 2022), 1–4 November 2022, Beijing, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-3-W1-2022-141-2022 | © Author(s) 2022. CC BY 4.0 License.

146

