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ABSTRACT:  
 
LiDAR is an important data source for disaster prevention and mitigation, its advantages include speediness, penetration, initiative, 
high-density and high-precision, high efficiency, information-richness. In this paper, we address the design and implementation of a 
practical parallel algorithm for Delaunay triangulation that works on massive point cloud data acquired by airborne LiDAR. The 
algorithm is based on the divide and conquer algorithm, Bowyer-Watson algorithm and triangulation-growth and can be easily 
extended to multi-core or cluster environment. It first divides the point cloud data into blocks at the MapReduce’s Map phase; then 
the triangulation network of each block is simultaneously constructed using Bowyer-Watson algorithm on different CPU cores; at the 
reduction phase, the triangular network of each block is merged and optimized using triangulation-growth and Local Optimization 
Procedure (LOP). Experimental results show that the speed of the paralleled triangulation algorithm can be improved significantly 
compared to the sequential algorithm on multi-core desktop computer. The speedup depends on partition of the dataset and the 
number of CPU cores used, and is usually 2-3 times that of sequential algorithms. 
 
 

                                                                 
* Corresponding author 

1. INTRODUCTION 

With the emerging of a variety of new data acquisition and data 
processing methods such as airborne/terrestrial laser scanning 
system, image matching from stereo image pairs, it is now 
possible to create very accurate and detailed 3D surface model 
of ground objects using point cloud data. Point cloud data has 
been widely used in terrain mapping, disaster monitoring and 
emergency rescue work. To process these highly dense discrete 
3D point cloud data, the Delaunay triangulation is widely used, 
e.g., in automatic filtering, airborne strip adjustment, line 
feature and breakline extraction, Digital Elevation Model (DEM) 
generation and terrain visualization, etc. However, with the 
rapidly increased point density and data volume, traditional 
sequential Delaunay triangulation method could no longer meet 
the performance requirement nowadays, especially involving 
current multi-core or clustered computational power. In this 
situation, a real-time paralleled Delaunay triangulation method 
has the potential to efficiently use the multi-core and clustered 
computers to fast construct a large triangulation network. 
 
Traditional Delaunay triangulation algorithm can be divided 
into three classes according to the construction method. The 
divide and conquer algorithm proposed by Shamos and Hoey 
(1975), the triangulation growth algorithm proposed by Green 
and Sibson (1978), and incremental insertion algorithm 
proposed by Lawson (1977). A triangulation algorithm based 
on edge-pointer search and region-division is proposed by 
Zhang (2021), designed to reflect the positional relationship 
between triangles.  A novel hybrid scheme of large scale 
reconstruction was proposed by Xue (2020), fully ensures the 
integrity of the reconstructed scene and is able to reconstruct 
large scale scene in single computer. Liu (2018) research proves 

that Delaunay triangulation maximizes minimal angle due to 
good geometric properties. 
 
The divide and conquer algorithm recursively draws a line to 
split the vertices into two sets until each set includes less than 
three points. The Delaunay triangulation is then applied to each 
set, followed by merging the triangle of each sets along the 
splitting line. Using some tricky technique, the merge operation 
can be done within the time complexity of O(N), resulting in a 
total time complexity of O(NlogN). However, the space 
complexity of the algorithm is relatively high and takes more 
memory than that of other algorithm, especially when the data 
size is large.  
 
The triangulation growth algorithm starts from arbitrary point in 
the points set as an initial point, and searches through all the 
points to find the nearest. An initial edge is built by linking 
these two points. The third point is searched according to the 
in-circle and max-min angle properties of Delaunay 
triangulation. After that, the two edges of the newly created 
triangle are used as the initial edges to build subsequent 
Delaunay triangles. These procedures are recursively repeated 
until all points are inserted into the triangular network. 
 
The incremental insertion algorithm repeatedly adds one vertex 
at a time and retriangulates the affected parts of the graph. 
When a vertex v is added, we split the triangle that contains v 
into three, and then applies the flip algorithm. A typical 
incremental algorithm is Bowyer–Watson algorithm (Bowyer, 
1981; Watson, 1981). It adds points, one at a time, to a valid 
Delaunay triangulation of a subset of the desired points. After 
every insertion, any triangles whose circumcircles contain the 
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new point are deleted, leaving a star-shaped polygonal hole 
which is then re-triangulated using the new point. 
 
Currently a few paralleled Delaunay triangulation algorithms 
have been proposed. Most of them are based on the incremental 
algorithm or divide and conquer algorithm (Chow, 1981; 
Aggarwal et al., 1988; Cole et al., 1990; Teng et al., 1993; 
Chew et al., 1997). Blelloch et al. (1999) proposed a parallel 
algorithm for constructing Delaunay triangular network by 
developing a variant of the Edelsbrunner and Shi 3D convex 
hull algorithm, Christos et al. (2005) proposed multi-granularity 
parallel algorithm, Chernikov and Chrisochoides (2004, 2006) 
proposed a parallel two-dimensional constraint Delaunay 
network building method based on Bowyer-Watson algorithm. 
Isenburg et al. (2006) proposed a streaming computation of 
Delaunay triangulation for massive points. These algorithms 
provide feasible approach for paralleled Delaunay Triangulation 
construction from general point sets. However, few paralleled 
Delaunay Triangulation method optimized by considering the 
massive near uniformly distributed LiDAR point cloud data has 
yet been addressed and could be easily extend to cluster or 
cloud computing environment. 
 
In this paper, a paralleled 2D Delaunay Triangulation method is 
proposed for processing massive point cloud data using a 
MapReduce paralleled computing model. The model is firstly 
introduced by Google as its enterprise cloud computing 
infrastructure and search engine (Dean and Ghemawat, 2004). 
Nowadays, it is becoming more and more popular to use this 
technique to process high throughout and massive data tasks on 
the internet. 
 
The rest of the paper is organized as follows. In Section 2, we 
briefly describe the general idea of the proposed algorithms; we 
then introduce the detailed steps to implement the method, 
which is followed with the pseudo code of the algorithm. In 
Section 3, we present the experimental result by evaluating our 
algorithm and comparing with traditional sequential algorithm 
on a multi-core desktop computer. Section 4 concludes the 
paper. 
 

METHOD 

1.1 General Idea 

The paralleled Delaunay triangulation method presented in this 
paper is based on the divide and conquer algorithm in 
combination with Bowyer-Watson algorithm and triangulation-
growth. The basic idea of the method is to firstly divide the 
point cloud data into blocks at the MapReduce’s Map phase; 
then the triangulation network of each block is simultaneously 
constructed via using Bowyer-Watson algorithm by different 
CPU cores or computer clusters; at the Reduce phase, the 
triangular network of each block is merged by using Local 
Optimization Procedure proposed by Lawson (1977). In this 
way, the paralleled computing of massive point cloud data is 
distributed to many processors, or computer clusters. Since the 
computing, memory, I/O, and other resources are in distributed 
environment, the process of massive data could be effective and 
highly scalable. 
 
1.2 Procedure 

The general procedure of the algorithm is shown in Figure 1, 
which is described in detail as following. 
 

1.2.1  The point cloud partitioning 
 
A paralleled algorithm should firstly consider how to divide a 
task into a set of concurrently executable tasks. In our algorithm, 
a task partitioning procedure is firstly applied at the Map phase 
to separate the point cloud data set into different blocks with 
roughly equivalent data volume according to its geographic 
coverage. 
 

Point cloud partitioningLiDAR point cloud data

…
…

…
…

Sub-triangular 
network construction

Triangular network merging 
using triangulation growth

Optimization of the triangles 
in the boundary area

LiDAR grid after treatment

 
Figure 1. The overall procedure of the paralleled Delaunay 
triangulation algorithm 
 
Currently there are three different point cloud data partition 
methods. Partition into strips, partition into blocks with equal 
area, and partition based on quad-tree, as shown in Figure 2. If 
the grid partitioning or quad-tree partitioning method is applied, 
at least two border lines will be created for each generated 
blocks, as shown in Figure 2b, and Figure 2c. This will cause 
additional overhead in the procedure of triangular network 
merging and thus reduce the performance. Considering that 
most point cloud data collected by airborne LiDAR or mobile 
laser scanning system are stored sequentially as scan line by 
scan line for a flight or moving path, the point cloud block data 
created by grid partitioning or quad-tree partitioning method 
will also result in a lower sequential Delaunay triangulation 
performance since it will need much more time to find the 
neighbourhood vertexes. In this paper, we prefer to partition the 
point cloud data into equal space vertical or horizontal strips, 
most probably along with the flight path direction. In this way, 
at most two adjacent strips need to be considered when merging 
triangular networks, which simplifies the merging process and 
improves performance. 
 
Another importance factor should be considered is the data 
volume of each block. Since the overall time complexity of the 
sequential Delaunay triangulation algorithm used is O(Nlog(N)), 
the performance of the triangulation on a small number of 
points will be higher than that on a large number of points. On 
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the contrary, small point set size for each block will create more 
blocks thus taking more time to merge the triangle network 
created by the blocks. Therefore, a trade-off of the point sets 
size should be considered. In our experiment, a size of 
1,000,000 points for each block seems to be an optimal choice. 
 

 
(a)                            (b)                           (c) 

Figure 2. Possible point cloud partition strategies:  
(a) Partition into equal space vertical or horizontal strips; 
(b) Partition into blocks with equal area;  
(c) Partition based on quad-tree. 
 
1.2.2 Sub-triangular network construction with Bowyer-
Watson Delaunay triangulation algorithm 
 
After the point cloud has been partitioned into a variety of 
blocks with approximately equal number of points, the 
triangulation network of each block is simultaneously 
constructed using Bowyer-Watson Delaunay triangulation 
algorithm in each task at the Map phase. After the Delaunay 
triangular network of all blocks have been constructed, the 
results are returned to the Reduce function for merging. 
 
1.2.3 Merge the triangular network of each block using 
triangulation growth algorithm  
 
At the Reduce phase, the triangular network of each block is 
merged using the triangulation-growth algorithm after every 
task of Step 2 has finished. This step can be described as 
following.  
 
(1) Extract boundary of two adjacent blocks 
In order to merge the two Delaunay triangular networks of the 
adjacent blocks, we firstly need to extract the boundaries of 
these two triangular networks. Since the edge on the boundary 
has only one adjacent triangle, we can find out all edges which 
have only one adjacent triangle by traversing the triangular 
networks, and then save each edge as directional edge counter 
clock-wisely. In this way, the endpoints of these edges are 
extracted as the boundary points of the underlying triangular 
network (see Figure 3a and 3b). 
 
(2) Generate the new triangles on the boundary of two adjacent 
blocks 
To merging two adjacent triangular networks, the triangulation-
growth algorithm is employed to generate the new triangles on 
the boundary with the boundary point set obtained in step (1). It 
starts from choosing an arbitrary boundary edge as an 
extensible edge and finding out the optimal point in its adjacent 
boundary point sets to form a Delaunay triangle. The newly 
created directional edges of the Delaunay triangle are added 
into the extensible edges for further processing. This procedure 
can be illustrated as Figure 3c, 3d, and 3e. 
 
To choose the optimal point, four rules are applied: i) The point 
is on the right side of an extensible edge; ii) The new triangle 
created by this point and the two endpoints of an extensible 

edge fulfills the in-circle property; According to the law of 
cosines (see Eq.1), the point which has minimum Cos(C) is the 
point that meets Delaunay rule; iii) The newly built extensible 
edge is not oriented in the opposite direction; iv) The newly 
built extensible edge is not intersected with any boundary edge 
(except tangency). 
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According to the above-mentioned rule, we can find out the 
optimal points from the boundary point set until all the 
extensible edges complete finding their optimal points, as 
shown in Figure 3. 
 

 

(a)                                          (b) 

C

A

B

 

(c)                                          (d) 

 

 (e) 

Figure 3. The general procedure of creating the new triangles 
on the boundary of two adjacent blocks:  
(a) Original Delaunay triangular network of two adjacent blocks;  
(b) Boundary extraction;  
(c) Choose an arbitrary boundary edge as an extensible edge 
and search the optimal point in its adjacent boundary point sets 
to form a Delaunay triangle;  
(d) Add the newly created directional edges of the Delaunay 
triangle into the extensible edges list;  
(e) The newly created boundary triangles of two adjacent blocks. 
 
1.2.4 Optimizing triangles at the boundaries 
 
In step 3, a merged triangular network from two adjacent blocks 
is established by creating the boundary triangles between two 
adjacent boundaries. Since only the boundary points of the two 
triangle networks are used during iteration, the newly created 
boundary triangles are sometimes long and narrow triangles, 
which do not satisfy the Delaunay triangulation rule considering 
the adjacent interior points within two adjacent blocks. 
Therefore, the LOP algorithm is applied to optimize the newly 
built triangles and the interior triangles inside the boundaries 
according to the in-circle property of Delaunay triangulation 
(Figure 4). The newly created triangles and its adjacent triangles 
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are recursively optimized, and eventually the merged Delaunay 
triangular network of the two adjacent blocks is created. 
 

 

Figure 4. Illustration of the optimization procedure of the 
boundary triangles using LOP algorithm. 
 
1.2.5 Construction of the global Delaunay triangular 
network 
 
Repeat step 3 and 4 until the triangular networks of all blocks 
are merged so that a whole seamless Delaunay triangular 
network is built. 
 
1.3 Implementation 

The main procedure of the algorithm can be expressed as the 
pseudo code as follows. 
 
BEGIN 
Step1: Divide the point cloud data into multiple blocks and add 
to the data list (better if it is a multiple of the CPU cores) 
Step2: WHILE (the data list is not empty) DO 
      Distribute a block of the data to a free computing unit 
(thread) to complete sub-triangular network construction. This 
is called the Map phase. 
      ENDWHILE 
      Get ordered set of sub-triangular networks. This is called 
the Reduce phase. 
Step3: Put the sub-triangular networks into stack, and merge the 
sub-triangular networks 
    WHILE (stack is not empty) DO 
         Counter++ 
         IF counter equals 2 
         THEN merge sub-triangular networks (as shown below) 
         Add the merged sub-triangular networks into stack 
         Reset counter 
    ENDWHILE 
END 
 
The sub-triangular networks merging algorithm can be 
expressed as following. 
 
BEGIN 
Step1: Get boundary edge and point set from the two sub-
triangular networks’ boundary points and edges 
Step2: WHILE (edge set is not empty) DO 
         IF one of the optimal point in the point set meets the 
condition 
         THEN save the triangle, add the two newly built edges 
into the edge set 
         ELSE return 
      ENDWHILE 
Step3: Optimize the newly built triangle by LOP algorithm 

END 
 

EXPERIMENTAL RESULT 

In order to verify the correctness and validity of the algorithm, 
the algorithm is implemented using C++ programming language 
on Windows Vista operating system. A desktop computer with 
8 CPU cores and 4 gigabyte memory is used for testing. Each 
core speed is 2.1GHz. The experimental data is located in 
Huanghua county, HeBei province of China, collected by 
Chinese Academy of Surveying and Mapping in 2011, using 
ALS60 airborne laser scanner from Leica Geosystems. The 
relative flight height is about 900m, the average point density is 
about 0.67m. 
 
Figure 5 shows the Delaunay triangulation construction of a 
small size of point cloud in the experimental area. The point 
cloud contains 2,135,953 points. It is firstly partitioned into two 
vertical strips. Figure 5a shows the triangular network after an 
initial merging of the two strips. Figure 4b is a zoomed-in of the 
area A in Figure 5a. From figure 5b we can clearly see that the 
initial merge of the triangular network is not a truly Delaunay 
triangular network since it does not meet the in-circle and max-
min angle properties. Figure 5c shows the optimized triangular 
network using LOP algorithm. Figure 5d is a zoomed-in of the 
area A in Figure 5c. From figure 5d we can see that the 
optimized triangular network is now a true Delaunay triangular 
network and meet the in-circle and max-min angle properties. 
 

A

 
(a)                                                  (b) 

A

 

(c)                                                  (d) 

Figure 5. Delaunay triangulation construction of a small size of 
point cloud in the experimental area:  
(a) The two initially merged triangular networks;  
(b) Zoomed-in of the area A in (a);  
(c) The final optimized Delaunay triangular network from (a); 
(d) Zoomed-in of the area A in (c). 
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Figure 6 shows the Delaunay triangulation construction of a 
relatively large size of point cloud in the experimental area. The 
point cloud contains 9,986,520 points. It is firstly partitioned 
into four vertical strips. Figure 6a shows the triangular network 
after an initial merging of the four strips. Figure 6b shows the 
optimized triangular network using LOP algorithm. 
 

 
(a)                                          (b) 

Figure 6. Delaunay triangulation construction of a relatively 
large size of point cloud in the experimental area:  
(a) The four initially merged triangular networks;  
(b) The final optimized Delaunay triangular network from (a). 
 
In both cases, the optimized Delaunay triangular networks are 
successfully constructed finally using the paralleled algorithm. 
The performance of the algorithm is compared with the 
sequential Delaunay triangulation algorithm developed by 
Isenburg (2011). It has been considered as one of the fastest 
Delaunay triangulation algorithm of the world. 5 point cloud 
data sets with different level of point numbers are used to 
evaluate the performance. 2-8 threads are used to the test the 
efficiency. 
 
The performance comparison result between the paralleled 
Delaunay algorithm (PA) and the sequential algorithm (SA) is 
shown in Table 1. 
 

Number of 
Points 

Speedup (seconds) 

SA* 
PA (2 

threads) 
PA (4 

threads) 
PA (8 

threads) 

2,135,953 5.335 3.369 2.534 2.028 

4,360,160 13.977 8.112 5.272 4.602 

6,010,527 17.005 11.281 7.0849 5.676 

9,986,520 40.123 35.256 19.516 23.79 

21,214,412 failed 286.321 263.131 241.301 

Table 1. Performance comparison between the Paralleled 
Delaunay Algorithm (PA) and the Sequential Algorithm (SA) 
 
From Table 1, we can see that the paralleled algorithm can 
improve the speed of Delaunay triangulation of LiDAR point 
cloud significantly. For example, for a data set with 2,135,953 
points, the sequential algorithm takes 5.335 seconds while the 
paralleled algorithm with 4 threads takes only 2.534 seconds. 
For a data set with 9,986,520 points, the sequential algorithm 
takes 40.123 seconds while the paralleled algorithm with 4 
threads takesonly 19.516 seconds. 
 

The memory mapping technique is used to process massive 
point cloud data when the data volume exceeds the computer 
memory. In this case, the traditional sequential algorithm 
cannot complete network building due to the failure of memory 
allocation when building and merging the triangular networks. 
With memory mapping, the built sub-triangular networks are 
stored as disk buffers, and the merging of triangular network is 
directly operated on disk buffers. This is very fast for medium 
size of point sets compared to hard disk file I/O. However, with 
the increased size of point sets, the segment error of the 
operating system becomes more and more frequent when doing 
the triangulation network merging and optimization. This 
significantly reduces the triangulation performance, which can 
be observed in a data set with 21,214,412. 
 
Further analysis of the experimental results shows that the point 
number of each partitioned blocks and the merging method of 
sub-triangular network are two critical factors that affect the 
algorithm efficiency. The optimal speed comes out when about 
1,000,000 points are contained in each block. At present, the 
speed in sub-triangular networks construction phase is almost 
linear. However, since we use a sequential method in sub-
triangular networks merger phase, resulting in a non-linear 
decrease of the overall speed of the algorithm. The merging 
time will increase if the number of sub-triangular networks is 
too large for a data set, resulting in decreased overall 
performance of the algorithm. This situation can be observed 
for a data set with 9,986,520, where the paralleled algorithm 
with 4 threads cost 19.516 seconds while the paralleled 
algorithm with 8 threads cost 23.79 seconds. 
 

CONCLUSIONS 

In this paper, a simple and scalable paralleled Delaunay 
Triangulation method is proposed for processing massive point 
cloud data using a MapReduce paralleled computing model. 
The paralleled Delaunay triangulation algorithm is based on the 
divide and conquer algorithm, in combination with Bowyer-
Watson algorithm and triangulation-growth algorithm. It first 
divides the point cloud data into blocks at the MapReduce’s 
Map phase; then the triangulation network of each block is 
simultaneously constructed via using Bowyer-Watson algorithm 
by different CPU core; At the Reduce phase, the triangular 
network of each block is merged and optimized using 
triangulation-growth and LOP algorithm. The application of 
this algorithm can effectively improve the speed of terrain 
construction and provide more efficient data services for 
emergency relief. 
 
Experimental results show that the speed of the paralleled 
triangulation algorithm can be improved significantly compared 
to the sequential algorithm on multi-core desktop computer. 
The speedup depends on partition of the data set and the CPU 
cores used, usually from 2-3 times compare to the sequential 
algorithm.  
 
Further study will focus on paralleling the merging and 
optimization procedure and migrating the algorithm to 
computer clusters environment. 
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