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ABSTRACT: 
 
Point cloud registration is the process of transforming multiple point clouds obtained at different locations of the same scene into a 
common coordinate system, forming an integrated dataset representing the scene surveyed. In addition to the typical target-based 
registration method, there are various registration methods that are based on using only the point cloud data captured (i.e. cloud-to-
cloud methods). Until recently, cloud-to-cloud registration methods have generally adopted a coarse-to-fine optimisation process. 
The challenges and limitations inherent in this process have shaped the development of point cloud registration and the associated 
software tools over the past three decades. Based on the success of applying deep learning approaches to imagery data, numerous 
attempts at applying such approaches to point cloud datasets have received much attention. This study reviews and comment on 
recent developments in point cloud registration without using any targets and explores remaining issues, based on which 
recommendations on potential future studies in this topic are made. 
 
 

1. INTRODUCTION 

Point cloud data is a very basic form of data, a set of points 
representing a group of objects and the space between them. As 
such, it finds utility in a broad range of applications at vastly 
different scales, from the very large, such as geographic survey, 
through to the very small, such as microbiology or particle 
physics. Point cloud registration is a basic step in many point 
cloud processing pipelines. It is the process of aligning two or 
more 3D point clouds collected at different locations of the 
same scene. Registration enables point cloud data to be 
transformed into a common coordinate system, forming an 
integrated dataset representing the scene surveyed. There are 
various registration methods available, such as those reliant on 
targets being placed in the scene before data capture, and others 
based on using only the data captured [Fan et al., 2015].  
 
The motivation behind point cloud registration may be broadly 
split into two categories: the desire to build models based on 
multiple point clouds (Cai, 2021), or the desire to know the 
relative position or the pose of one point cloud with respect to 
another (Fan, 2020). These different motivations place different 
emphasis on the registration process, for example, either 
towards achieving high precision or high speed. 
 
Different applications and data acquisition methods influence 
the importance of key factors in the registration process, such as 
the degree of overlap between point clouds, the type of 
transformation (e.g. rigid or non-rigid) needed to complete the 
registration, the level of error and noise present in the data.  
 
Registration between source and target point clouds is 
commonly a two-step process: (1) establishing 3D-3D point 
correspondences between the source and target, and (2) finding 
the optimal transformation between the source and the target. 
Considering rigid transformations (a combination of rotation 

and translation), the optimal transformation is usually 
considered to be one that minimises the total Euclidean distance 
between all point correspondences.  
 
This study briefly reviews and discusses the recent key 
developments in point cloud registration without using any 
targets. Until recently, point cloud registration methods have 
generally been centred upon the use of a coarse-to-fine 
optimisation strategy, the best-known element of which is 
Iterative Closest Point (ICP). The challenges and limitations 
inherent in this process have shaped the development of point 
cloud registration and the associated software tools over the 
past three decades. Based on recent success for deep learning 
methods applied to 2D image data, attempts at applying these 
approaches to 3D data sets have received much attention. The 
fusion of more recent deep learning methods and conventional 
optimisation approaches is the source of much research and 
progress. We review the state of the art in both approaches and 
highlight various remaining issues in this subject. 
 

2. POINT CLOUD DATA 

2.1 File Formats 

There is a wide range of file formats, including ASCII (XYZ, 
OBJ, PTX and ASC), binary (FLS, PCD and LAS), or those 
(e.g. PLY, FBX and E57) storing data in both binary and 
ASCII. Which specific one is used will depend on both the 
source of the data and the tools used in handling them. Whilst 
the underlying X-Y-Z format is very much canonical, other data 
is often associated with both the individual points and the point 
cloud as a whole. The impact the specific format will have is in 
terms of the data available to guide any processing: additional 
data available for each point (e.g. colour, intensity), and/or meta 
data available to, for example, provide class, time or location 
parameters. Apart from the likely benefits of the additional data, 
they also present a complicating factor if, for example, point 
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clouds derived from more than one data format are to be used 
with each other. 
  
2.2 Benchmark Datasets 

In any development work aimed at improving point cloud data 
processes, there is a need to have access to substantial amounts 
of point cloud data. When datasets have been specifically 
collected for a particular set of experiments or real-world 
application, sometimes these are shared with the rest of the 
community. For example, if any comparison is to be made 
between tools and techniques, access to such common datasets 
is very valuable. When used in this way, these datasets are often 
referred to as “benchmarks”. A number of valuable attempts 
have been made to provide publicly shared evaluation 
benchmarks. Typically, these cover a specific use case of point 
clouds and have been collected using a specific sensor. 
Preparing data for point cloud related experiments is a 
substantial task. Some of the benchmark datasets acknowledge 
this by providing some welcome assistance, perhaps either in 
the form of documentation or specific software to aid with data 
preparation. There are a range of available datasets, some of 
which are more applicable than others to particular problem 
types, such as cloud-to-cloud registration. 
 
Since deep learning requires large volumes of data to facilitate 
training of the learning models, simulated data is also of 
particular value. In general terms, the objective is to closely 
simulate the characteristics of data collected using real sensor 
devices. Some key attributes of simulated point clouds to be 
considered include: level of random errors, interaction with 
reflective surface (e.g. glass, water), variable atmospheric 
conditions (e.g. rain, fog), point density. The broad aim is to 
facilitate an analysis of the performance of registration methods 
based on using simulated point cloud datasets. Therefore, for 
completeness, corresponding real-world point cloud data should 
then be used to evaluate the applicability of the models trained 
on the simulated data sets. 
 
Several sources of point cloud data that may be considered 
include real-world single-sensor data (e.g. 3DMatch (Zeng et 
al., 2017), KITTI (Geiger et al., 2012), ETHdata (Pomerleau et 
al., 2012)), real-word multi-sensor data (e.g. 3DCSR (Huang et 
al., 2021), and synthetic (often simulated) point clouds. The 
synthetic point clouds may come from model-based such as 
ModelNet40 (Wu et al., 2015), or simulated sensors such as 
BLAINDER (Reitmann et al., 2021), SynthCity (Griffiths and 
Boehm, 2019), CARLA simulator (CARLA, 2021), LGSVL 
Simulator (LGSVL, 2021). 
 

3. REGISTRATION METHODS 

3.1 Typical Registration Strategy 

Some key factors that may be considered for developing 
registration methods include: point clouds from different sensor 
types where different noise patterns may exist, degrees of 
overlap, amount of misalignment, combination of both rotation 
and translation errors, categories of point cloud registration 
problems, global and/or local, indoor structured scenes, outdoor 
unstructured/structured, with and without moving objects, scale 
of problems etc. 
 
Most point cloud registration methods employ a coarse-to-fine 
strategy. In this approach, a coarse registration is first applied to 
find an approximate rigid transformation (a combination of 

rotation and translation) for a pair of point clouds. Once a 
coarse transformation is available, a fine registration algorithm, 
such as ICP, Normal Distribution Transform (NDT), or one of 
the more efficient variants of ICP&NDT is used to refine the 
final transformation.  
 
A global registration problem is one where the aim is to align 
point clouds without additional information on their relative 
‘poses’. Most global algorithms do not lend themselves to 
providing precise results. In contrast, local registration 
algorithms perform better in this respect. As might be expected, 
algorithms focused on local registration are usually less 
effective for global problems. One issue is that they make use of 
local optimisation techniques that may get stuck within local 
minima when used against specific datasets. As a result, many 
registration pipelines use a global algorithm to provide an initial 
estimate that sets up a subsequent local process. Global 
registration is typically achieved using geometric features. Such 
feature-based registration is usually a slow process as the 
extraction of features can be computationally expensive. 
Generally, local registration approaches, do not usually employ 
any feature extraction.  
 
ICP is the most studied and remains the de facto technique for 
local registration. Generally, ICP assumes that the point clouds 
are roughly aligned and aims to calculate the rigid 
transformation that achieves the alignment. Rather than 
comparing features, ICP approximates potential 
correspondences by looking for the closest point to each point, 
which is often an expensive computation process. A large 
number of variants of ICP have been developed, typically 
focusing on speeding or quality of the results. There are also 
local registration algorithms that do not employ such nearest-
point approximation. NDT, for example, treats the point clouds 
as a set of Gaussians, trying to align them by finding the most 
probable alignment. 
 
3.2 Local Registration 

3.2.1 ICP and Variants:  
It is widely accepted that the ICP algorithm is the most widely 
adopted method for pairwise fine registration. Requiring a good 
initial transformation to bring it close to registration, ICP 
converges to a more optimal registration by repeatedly applying 
a search for point-to-point correspondences followed by a 
transformation calculation. LiDAR point clouds are often huge 
and corrupted by variations in the point density, noise, outliers 
(unintended points), occlusions (missing points) and partial 
overlaps. ICP is challenged by such LiDAR point clouds due to 
limited one-to-one correspondences between two point clouds. 
A significant body of research has been applied to variants of 
ICP, aiming at dealing with these challenges. Representative 
ones include point-to-plane (Chen and Medioni, 1992), point-
to-projection (Campbell and Flynn, 2001), plane-to-plane 
(Segal et al., 2009). Chetverikov et al. (2002) proposed a 
trimmed ICP (TrICP) algorithm. At each iteration step, TrICP 
considers the outliers, shape defects and partial overlaps, 
making it more tolerant of incomplete and noisy data. Yang et 
al. (2013) introduced the global optimal ICP method (Go-ICP) 
to integrate ICP with a branch-and-bound scheme, so coarse 
registration is not needed. However, Go-ICP is much more time 
consuming than ICP and sensitive to outliers. Another focus on 
improving ICP is the efficiency of correspondence search, for 
example, a GPU accelerated way to deal with K-D Tree 
structures (Qiu et al., 2009). 
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3.2.2 NDT and Variants:  
The NDT algorithm is one alternative fine registration method, 
initially developed for 2D robotics and then 3D (Takeuchi and 
Tsubouchi, 2006; Nüchter, 2008). NDT handles the registration 
process as one of matching probability density functions 
(PDFs). Registration problem is transformed into a nonlinear 
optimisation problem where the optimal transformation is based 
on maximizing the similarity between the PDFs. Whereas ICP 
and its variants require a relatively high point density (to obtain 
accurate correspondences), NDT is better able to tolerate 
lower/variable density in point clouds. Similar to ICP, NDT has 
been refined and continues to be incorporated in new research 
and developments, for example Zhou et al. (2021). 
 
3.3 Classic, Non-learning-based Global Registration 

In conventional global registration approaches, geometric 
features are extracted using manually defined rules to form the 
handcrafted feature descriptors. For the handcrafted feature-
based, a deeper review can be found in Han et al. (2018). Fast 
Point Feature Histogram (FPFH) (Rusu et al., 2009) appears to 
be the basis of a lot of research and being used in various works 
claiming state-of-the-art results. It is observed that the FPFH 
descriptor has been utilised in a number of places and it 
continues to provide state-of-the-art results with the TEASER 
(Yang and Carlone, 2019; Yang et al., 2020). One related 
approach is Fast Global Registration (FGR) (Zhou et al., 2016). 
FGR is commonly used as a benchmark for being a state-of-the-
art global registration method. Four-points congruent set 
(4PCS) based registration also continues to drive a number of 
research efforts; one which is the basis of the current state-of-
the-art results is K-4PCS (Theiler et al., 2014).  
 
Probabilistic registration methods model the distribution of the 
point clouds as a density function. One key method, that adopts 
probability density estimation, is Coherent Point Drift (CPD). 
CPD-based methods use Gaussian Mixture Models (GMM) to 
describe a point cloud and then fit the GMM to a second point 
cloud by maximising the likelihood of the objective function. 
CPD sees applications for non-rigid transformations (i.e. 
deformation) in, for example, medical applications (Leong-Hoï 
et al., 2020). More generally, CPD provides generality, 
accuracy, and good robustness to noise and outliers. It 
continues to be improved by a number of works, including 
Golyanik et al. (2016) and Wang et al. (2019a). 
 
3.4 Deep Learning-based Global Registration 

Using handcrafted features to distinguish correspondences is 
highly dependent on the experience of their designers (Dong et 
al., 2020). As a result, their generalizability and robustness may 
be sub-optimal for many applications. The aim of using deep 
learning-based methods is to learn feature representations to 
achieve good performance. These methods can automatically 
learn more robust feature representations, and have great 
potentials for registering scenes with repetitive and symmetrical 
features and limited overlaps. 
 
Based on the taxonomy in Dong et al. (2020), deep learning-
based registration methods can be divided into three categories 
according to their data representations: voxels, multiviews and 
points. The voxelization-based and the multiview-based 
registration methods have been the subject of a number of 
research efforts but, due to issues around computational 
inefficiency have been largely restricted to good results with 
small-scale indoor datasets. However, a number of the results 

from these efforts have been utilised in developments focussed 
on point-based representations.  
 
Applying deep learning on 3D point cloud data introduces a 
number of challenges. Some of these challenges include the 
general point cloud data characteristics such as occlusions and 
noises/outliers. However, more specific issues with the 
application of deep learning on point clouds are: (1) irregularity 
(i.e. the points are not evenly distributed spatially across the 
different regions of the scene so that some regions will be dense 
points and others sparse), (2) unstructured (i.e. not organised in 
a known pattern as would be the case for image data), and (3) 
unordered (i.e. point cloud of a scene is the set of points, 
usually stored as a list in a file. Being a set, a change in the 
order in which the points are stored does not reflect a change in 
the scene represented.). 
 
These issues make the direct application of convolutional neural 
networks (CNN) difficult as they assume ordered, regular 
structures. Early approaches attempted to overcome these issues 
by converting the point cloud into a structured grid format. 
Providing an approach to this was the key step that PointNet 
(Qi et al., 2017a) represented. PointNet and PointNet++ (Qi et 
al., 2017b) are the pioneering methods for directly processing 
unordered point sets (invariance to transformations), which are 
the foundation for much of the recent developments, used as 
feature extractor in a number of works. For example, PPFNet 
(Deng et al., 2018) is based on and extends PointNet to provide 
some learning of the local geometry.  
 
PointNetLK (Aoki et al., 2019) introduces the Lucas-Kanade 
algorithm into 3D point cloud registration and solves the 
problem iteratively with PointNet. PointNetLK represents a 
significant milestone in the development of a category of deep 
learning methods that do not directly seek to identify 
correspondences across the input point cloud data before 
proceeding. PointNetLK builds upon PointNet, using its 
learnable structured representation for point clouds, applying it 
to the task of point cloud registration. To achieve this, it utilizes 
a classical stereo vision technique, i.e. the Lucas & Kanade 
(LK) algorithm (Lucas et al., 1981). This connection was 
motivated by Wang et al. (2018a) that demonstrated 2D object 
tracking performance by treating the LK algorithm as a 
recurrent neural network, effectively extending a successful 
approach from 2 to 3 dimensions. It has provided an important 
stepping stone in some promising developments (Huang et al., 
2020; Li et al., 2020). 
 
PCRNet (Sarode et al., 2019), in a similar way to PointNetLK, 
utilizes PointNet to extract global features. In contrast to 
PointNetLK, for the feature alignment module, a data-driven 
technique is used. Two global features are concatenated, before 
five, fully connected layers are applied before an output layer 
provides the registration transformation. Compared to 
PointNetLK, PCRNet exhibits better generalizability, but is not 
robust to noises.  
 
Like PointNet, although not specifically a registration method, 
dynamic graph convolutional neural network (DGCNN) (Wang 
et al., 2018b) is used as a component in a number of related 
registration pipelines, including Deep Closest Point (DCP) 
(Wang and Solomon, 2019b) and PRNet (Wang and Solomon, 
2019c). In DGCNN, a graph is constructed in the feature space 
and dynamically updated after each layer of the network. A 
multilayer perceptron (MLP) is used as the feature learning 
function for each edge, and channel-wise symmetric aggregation 
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is applied onto the edge features associated with the neighbours 
of each point.  
 
DCP employs a DGCNN for feature extraction and a singular 
value decomposition (SVD) module (Papadopoulo and 
Lourakis, 2000) to calculate rotation and translation. 
Incorporating techniques from both computer vision and natural 
language processing, it is broadly based on the classic ICP 
pipeline whilst aiming to avoid the associated issue of 
converging to local solutions. As a limitation, there is an 
assumption of a high-degree of correspondence between the 
point clouds.  
 
DCP has three stages. In the first stage, data are embedded (by a 
point cloud embedding network) into high-dimensional space 
using DGCNN to extract features. It is claimed that this 
improves the feature effectiveness of the matching by making 
the features task specific. In the second stage, an attention-based 
module (Vaswani et al., 2017) combined with a pointer 
generation layer (Vinyals et al., 2015) is used to approximate 
combinatorial matching, which provides a dependency term 
between the feature sets, i.e., one set is modified in a way that is 
based on the structure of the other. In the third stage, a 
differentiable SVD layer is used to extract the final rigid 
transformation. It is shown that SVD provides better results 
than using an MLP. 
 
PRNet uses the network architecture DCP iteratively. Use of 
DCP in this way was suggested by the authors of DCP as a 
possible extension of their work to better handle partial overlap 
scenarios. Point cloud registration between clouds with only 
partial overlap is a much more challenging case to handle. 
Under such cases, the end-to-end, correspondence-free methods 
such as PointNetLK can perform poorly. PRNet is aimed at this 
problem. In PRNet a search for the key points is made by 
comparing the norms of the learned features, and then 
estimating the correspondences iteratively in a coarse-to-fine 
manner.  
 
RPM-Net (Yew and Lee, 2020) illustrates a common theme in 
deep learning approaches. It adopts and builds upon a classical 
method Robust Point Matching (RPM) (Gold et al., 1998). 
RPM aims to avoid some of the issues with ICP by a soft 
assignment scheme combined with ‘deterministic annealing’ to 
gradually ‘harden’ the assignment. RPM-Net uses this soft 
assignment approach combined with a Sinkhorn layer 
(Sinkhorn, 1964). Sinkhorn is a mechanism that finds utility in 
a number of recent deep learning works, including PRNet. 
RPM-Net is, in many ways, similar to DCP. The authors 
claimed that their use of Sinkhorn normalization, enabled RPM-
Net to better handle outliers and partial visibility. It also uses an 
iterative pipeline to achieve high precision, one of the ways that 
the DCP authors highlighted for further study. It also makes use 
of a FPFH (Rusu et al., 2009) based local feature descriptor that 
is referenced in many works, including PPFNet (Deng et al., 
2018), which in turn can be utilised in PointNetLK. RPM-Net 
provides a useful comparison against DCP since it uses a 
similar testing methodology and datasets along with using many 
of the same benchmark methods, including FGR and 
PointNetLK. 
 
For a more in-depth review of deep learning methods, see 
Zhang et al. (2020) and Huang et al. (2021). So far, the deep 
learning methods have proved effective for the registration of 
indoor and relatively small-scale outdoor point clouds (Dong et 
al., 2020). However, limitations on the amount of data and 

complexity mean that scaling to large-scale outdoor point 
clouds is still a barrier. 
 
3.5 Issues  

There is a wide range of ways to store point clouds in files. In 
practice, there are far more file extensions than there are 
fundamental differences between the file types. Some formats 
are versions tailored to proprietary file systems, optimised in 
one way or another for a particular software tool. These may 
bring inconveniences when data are shared. In some file types, 
additional information (other than coordinates) is also available. 
While such additional information may aid in data visualisation 
and processing, they could also present a complicating factor if, 
for example, point clouds derived from more than one data 
format are to be used with each other. 
 
As point cloud data are a canonical form of 3D representation, it 
finds applications in a very wide range of applications with 
differing requirements and types of sensor collecting data. 
Therefore, point cloud registration is not one, clearly defined 
task. Factors such as the level of overlap, occlusion and degree 
of noise, rigid or non-rigid transformation can change the nature 
of the problem. Compounding this variability, as we have noted, 
across the different disciplines, the motivation for registration is 
either high precision to accurately capture reality or high-speed 
(with sufficient precision) to allow navigation. When attempting 
to compare the effectiveness of different processes and results 
from different sets of research, it is very difficult to 
accommodate the wide range of differences between application 
type (e.g. robotics, BIM, navigation, etc), data sets and sensor 
type used (e.g. RGB-D, Lidar, etc).   
 
Based on our study of recently developed methods, there is not 
any substantial evidence that there are significant improvements 
in the effectiveness of the registration being achieved (i.e. 
precision). There is still a substantial reliance on well-
established methods (e.g. ICP and variants, NDT and variants) 
for precision registration. It is often the case that these classic 
techniques are utilised to refine the registration efforts of other 
methods. However, there are clear signs that efficiency (i.e. 
speed) has benefited from recent developments. This possibly 
reflects where most of the emphasis in the research is being 
placed, broadly directed towards SLAM (simultaneous 
localization and mapping) to assist with the autonomous vehicle 
research efforts. 
 
It is noted that the significant efforts have been directed at 
applying deep learning techniques to handling point cloud data, 
including registration. There are clear benefits available from 
employing deep learning-based feature extractors to avoid the 
need to invest in the development of their hand-crafted 
counterparts. These can be utilised now to give immediate 
benefits in identifying features to facilitate global registration. 
One example of this is the use of deep learning modules like 
DGCNN and PPFNet feature extractors. These are shown to be 
more effective than the non-learning-based feature extractors 
such as FPFH. However, it is also clear that deep learning 
techniques are still some way from being able to handle large 
scale projects where there are possibly billions of data points 
spread across hundreds of scans, as might be faced in a 
significant construction project, for example. The current state 
of the art is effectively limited to dealing with small to medium 
scale data sets. A note of caution is needed as it remains to be 
demonstrated that the deep learning approaches can generalise 
sufficiently and do not fall into the trap of ‘over fitting’ to their 
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training data; a situation where the deep learning model, 
actually models the training data too well and cannot be used 
outside of that dataset effectively. 
 
There is a limited number of pre-trained deep learning models 
for various typical real-life scenes, partially due to the lack of 
benchmark datasets. Pre-trained models are a useful way to 
distribute the result of training a deep learning model. Given the 
length of time (many hours or days) the training process for 
some models takes, it is highly desirable to store the parameters 
derived from the training in a file(s) to enable re-loading of the 
model at a later date. For example, if an author of a specific 
deep learning model provides a relevant pre-trained model, 
which matches users’ experiment requirements, a significant 
amount of time can be saved if the model is to be used as a 
benchmark for future works. Providing both codes and pre-
trained models helps make the work both a very good platform 
to study and a useful benchmark. 
 
3.6 Future Research 

Based on our study, the likely future research opportunities are 
recommended in the following.  

1. The application of deep learning methods to large 
scale datasets in a systematic and reproducible way, which 
will require access to large datasets that are appropriate to 
a specific application area.  
2. Further development of tools to facilitate the 
generation of simulated sensor data based on realistic 
environments (e.g. works such as BLAINDER and 
SynthCity show the way forward on this).  
3. Based on more synthetic dataset generators, the 
application of Generative Adversarial Networks (GAN) 
techniques might yield benefits in delivering more realistic 
datasets, much like some of the remarkable results being 
seen with synthetic 2D imagery. 
4. A greater emphasis on the inclusion of meta-data and 
additional point data (e.g. colour, multispectral bands) in 
the development of registration processes. This will be 
particularly relevant in the context of SLAM based capture 
devices. 
5. For applications such as BIM (Building Information 
Modelling), a focus on using registration techniques to 
monitor changes in a scene over time could be fruitful. 
6. Establishment of competent pre-trained deep learning 
models for typical real-life scenes of a particular 
application would be very useful for the future efficient 
utility of the models.  
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