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ABSTRACT: 

This study aims to introduce new methods for assessing risk of wildfires around power transmission line corridors(PTCs) using multiple 

sourced active monitoring data. The proposed approach starts from fire analysis using interpretative structural modeling(ISM) from 

historical data of fire-caused transmission line(TL) fault, which emphasizes on the fire regimes and the fire factors. The ISM illustrates 

the sequence and relationships among fire factors. The main influencing factors are then ranking using analytic hierarchy process (AHP) 

to distinguish each relative importance. FRP, a high-resolution fire risk index conducting fire risk around PTCs, was constructed 

considering these factors as a series of assessment criterion. Variable meteorological-type factors such as maximum temperature and 

minimum relative humidity, less variable basic elements such as surface conditions, and human activity elements are all weighed and 

considered in FRP. The risk of this line can be obtained by calculating the collected monitoring data from TLC. Moreover, the safety 

risk level can be analyzed based on this assessment and the risk map of the power corridor can be used to help the power department 

to improve the maintenance plan of the power corridor.  

1. INTRODUCTION

Power transmission maintenance is an essential part of power 

industry at the present industrial age. The electrical power 

service could be interrupted by natural disaster such as wildfire 

around transmission line corridor (Upreti et al., 2019). As one 

kind of disaster, wildfire is a vital factor disturbing the power 

transmission system in the forestry area, which plays a role as a 

potential hazard to power transmission system and as a result of 

the transmission failure. One of the routine jobs of risk 

management by power companies is inspection and fire 

surveillance. However, the use of large-scale fire warning for 

power safety protection fails to address fire hazards around 

transmission corridors in a timely and accurate manner. 

Traditionally, inspections and early warming of high voltage 

(HV) PTC mainly rely on laborious and dangerous human work 

using aerial- and ground-based devices (Huang et al., 2021). 

Those monitoring techniques are not efficient nor effective in 

terms of data capturing and mining. To improve the disaster 

prevention and resilience capability of the power grid, it is also 

necessary to conduct a detailed understanding and assessment of 

the environmental risk conditions around the line before the 

occurrence of wildfires, hence raising the accuracy of early 

warning of the power grid. 

The occurrence of wildfires is closely related to the 

meteorological environment. According to the research on 

wildfire, it can be seen that in different regions, wildfires are 

related to relative humidity or minimum relative humidity, 

maximum temperature or daily temperature difference, average 

or maximum wind speed, precipitation or continuous non-

precipitation days. Factors such as land cover stage and 

vegetation index often have a significant linear correlation, and 

the related objects are generally a single factor or a combination 

of several factors (Ferreira et al., 2020; Jolly et al., 2015; Wang 

et al., 2016; Gallardo et al., 2016; Tian et al., 2014; Shen, et al., 

2019). In addition, it calls for research on local "micro-

meteorology" of the power grid corridor. People need to obtain 

the accurate weather forecast of one section or even a few towers 

for the safety precaution areas, so as to realize the early warning 

of the corridor fire disaster caused by the meteorological station 

(Chen et al., 2014; Yang et al 2019). Due to the low accuracy of 

the fire risk assessment model, Liu et al. selected a variety of 

wildfire factors and used BP neural network to establish a 

transmission line fire risk model. Taking the main wildfire 

factors as input, it can automatically explain the factor 

relationship and output the wildfire risk (Liu et al., 2017). Xu et 

al. studied the historical law of fire points during the Chinese 

Qingming Festival, and established a monthly fire risk model to 

forecast the fire risk in power corridor by combining 

precipitation, surface type, and normalized vegetation index. 

Their result shows that this evaluation system has high accuracy 

in Hubei power grid (Safwanah et al., 2017). 

Faced with the situation that it is difficult to accurately assess 

and predict the fire risk in high-voltage transmission corridors, 

the meteorological environment, surface vegetation condition, 

historical fire patterns and human activity characteristics are 

analyzed as profiles of wildfire. The FRP (fire risk around 

power-lines) is proposed in terms of these characteristics. The 
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model is constructed and solved by ISM and AHP, and then 

validated by practical instances. 

2. RELATED WORK 

Major failures such as tripping and shutdowns are often caused 

by lightning fires, wildfires, burning and other natural or typical 

meteorological disasters near the PTC. In recent years the 

number of fires caused by transmission faults is increasing, and 

wildfires contributed transmission faults are also on the rise, 

while line tripping reclosing rate is low, whose failure time is 

long (Millera et al., 2017). Accurate assessment of mountain fire 

disaster risk in power corridors, effective prediction of affected 

power corridor sections in case of mountain fire and provide 

corresponding early warning are the major needs and basic 

aspects of disaster prevention and safety maintaining in power 

corridors. At present, researchers are focusing on the use of 

multi-source remote sensing data, human activity range data and 

historical disaster data for fire risk assessment and regional fire 

dangerous classification, and the use of probability and statistical 

theory to analyze the risk level of transmission failures 

experiencing wildfires based on historical detection and disaster 

conditions. For the former, there are a large number of fire risk 

zoning and mapping in and around PTCs and studies on fire risk 

factors and fire occurrence patterns near TLs (Xu et al., 2016; 

Millera et al., 2017; CÁCERES, 2011). While most of the latter 

studies utilize neural networks, hierarchical analysis, APRIORI 

algorithm, random forest, genetic algorithm, logistic regression, 

fuzzy models, and other methods to predict fire risk, to build fire 

meteorological risk assessment models that predicting failure 

rates due to wildfires (Wang et al., 2016; Shen et al., 2019; Frost 

et al., 2012; França et al., 2014; Mitchell, 2013; Ziccardi et al., 

2019). A precise model to associate PTC fire risk is still needed. 

In this report, a high-voltage transmission corridor is defined as 

a strip with a certain width (about 2-3km) formed by the 

overhead TLs, pylons, terrain, vegetation and other objects. The 

risk assessment data of TLC on the mesoscale and small scale 

would be applied to prevent the wildfire risk in TLC. The 

purpose of this research is to serve the safe operation of power 

grids, to improve the pertinence and system efficiency of TL 

inspection, and to provide data support and suggestions for 

protection of power transmission against disasters. The risk 

assessment of wildfire in power corridor was deeply explored in 

this dissertation. 

3. PROPOSED METHOD 

Figure 1 schematically illustrates the overall workflow of the 

subsequent processes in which three major components, fire 

impact factor selection, FRP construction and FRP mapping and 

high risk warning are proposed in this study. 
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Figure 1. Overall workflow for FRP modelling and evaluating of PTC. 

 

3.1 Factor selection 

Facing the frequently occurred wildfires around the forestry PTC, 

the risk assessment methodology of wildfire in the long large-

scale transmission area was studied, to accurately assess the risk 

of wildfires. ISM and SPSS are used in the analysis of data 

during 18 years from Shaoguan, China, to be concluded that the 

wind, humidity, temperature, precipitation, terrain, seasonal 

change, and human activity have a greater impact than the 

factors. 

Correlation analysis was established using historical fire spots 

and ground-based meteorological station monitoring data, 

topographic data, and surface vegetation observation data f for 

18 consecutive years from 2001-2018 in Shaoguan City. The 

data used mainly include: 

[1] hot spot detection data from MCD14ML (Global Monthly 

Fire Location Product) from 2001-2018. Surface hotspots with 
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confidence levels greater than 70 in the March fire were selected 

as a sample data. 

[2] Meteorological data. Ground-based meteorological station 

monitoring data from 2001-2018 were selected, and March of 

each year was used as the observation value (Figure2, 3). 

[3] Terrain. Three types of terrain data, elevation, slope and 

slope direction, were used. 

[4] Surface vegetation. Two types of data, surface type and 

vegetation cover, were used. 

 

(a) 

 

   (b)          

 
(c) 

 

(d) 

Figure 2. Meteorological observation around Dengping_220kV 

HV TL: (a) daily average temperature in each month, (b) daily 

average precipitation from 20:00 to 20:00 in each month, (c) 

daily average minimum relative humidity in each month, (d) 

daily average maximum wind speed in each month. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. Meteorological observation around Diewu_500kV 

HV TL: (a) daily average temperature in each month, (b) daily 

average precipitation from 20:00 to 20:00 in each month, (c) 

daily average minimum relative humidity in each month, (d) 

daily average maximum wind speed in each month. 

 

The results of the correlation analysis between the factors and 

the number of fire points prove that nine indicators can be 

selected to characterize the influence of three types of fire risk 

factors, namely, maximum temperature, minimum relative 

humidity, precipitation, wind speed, vegetation index, average 

slope direction, average slope, average elevation and ground 

cover type, on fire risk in power corridors.
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Relevance Max TEM Min RH PRE WND Vegetation 

Index 

Average 

SLP 

Average 

ASP 

Average 

Altitude 

LC 

Pearson  0.455 -0.667 -0.782 0.315 0.458 0.320 0.36 0.357 0.44 

Significance 0.190 0 0 0.272 0.061 0.220 0.251 0.187 0.199 

N 28 28 28 28 28 28 28 28 28 

Table 1. Relevance analysis between fire frequency and impact factors. 

3.2 FRP construction 

 

3.2.1  AHP construction: Considering various factors relevant 

to the fire risk (Figure 4), including surface vegetation condition, 

topography, humanity, season, meteorology and their correlation 

with the occurrence of wildfire, FRP, a fire risk index of power-

lines, is designed to quantitatively evaluate and determine the 

areas and time periods getting high risk of fire in the whole 

corridor and to judge areas that need urgent inspection. In 

practice, the multi-source data was fused to be archiving and 

standardized. 

Data fusion needs to solve the problem of spatial and temporal 

consistency and the unification of resolution. Data 

standardization includes two aspects: numerical index and 

descriptive index data quantification. More, an improved AHP 

method is proposed to calculate the weight of each factor. FRP 

is described as: 

 

FRP = 𝑥1 ∑ 𝑤𝑖𝑥𝑖 + 𝑐
𝑛
𝑖=2           (1) 

                    

 

where wi = weight of each index in lowest layer. 

 𝑥𝑖(𝑖 = 2,3,··· ,10) = fire indexes 

𝑥1 = seasonal suppressor factor 

c = absolute term 

 

The default value of c is 0.1, to which added that ensuring a 

positive RFP value. In view of these factors, Equation (1) can be 

described as: 

 

FRP = 𝛼0(𝛿1𝑅𝐻𝑈 + 𝛿2𝑇𝐸𝑀 + 𝛿3𝑃𝑅𝐸 + 𝛿4𝑊𝐷𝐼 +
𝛿5𝐻𝑒𝑖𝑔ℎ𝑡 + 𝛿6𝑆𝑙𝑜𝑝𝑒 + 𝛿7𝐴𝑆𝑃 + 𝛿8𝐿𝐶 + 𝛿9𝐹𝑉𝐶) + τ   (2) 

3.2.2  Weight calculation: indicators are classified as 

numerical (positive, formula 1, negative, formula 2, moderate, 

formula 3) and descriptive. Numerical indicators are 

standardized in the following way. 

𝑦𝑖 = {

1                  𝑥𝑖 ≥ 𝑚𝑎𝑥𝑖
𝑥𝑖−𝑚𝑖𝑛𝑖

𝑚𝑎𝑥𝑖−𝑚𝑖𝑛𝑖
    𝑚𝑎𝑥𝑖 > 𝑥 ≥ 𝑚𝑖𝑛𝑖

0                  𝑥𝑖 < 𝑚𝑖𝑛𝑖

   (3) 

𝑦𝑖 = {

1                  𝑥𝑖 < 𝑚𝑖𝑛𝑖
𝑚𝑎𝑥𝑖−𝑥𝑖

𝑚𝑎𝑥𝑖−𝑚𝑖𝑛𝑖
    𝑚𝑎𝑥𝑖 > 𝑥𝑖 ≥ 𝑚𝑖𝑛𝑖

0                  𝑥𝑖 > 𝑚𝑎𝑥𝑖

   (4) 

𝑦𝑖 =

{
 

 
𝑥𝑖−𝑚𝑖𝑛𝑖

𝑜𝑖−𝑚𝑖𝑛𝑖
        𝑚𝑖𝑛𝑖 ≤ 𝑥𝑖 < 𝑜𝑖

𝑚𝑎𝑥𝑖−𝑥𝑖

𝑚𝑎𝑥𝑖−𝑜𝑖
        𝑚𝑎𝑥𝑖 > 𝑥 ≥ 𝑜𝑖

0                  𝑥 > 𝑚𝑎𝑥𝑖

    (5) 

where x = value of ith element 

mini = the minimum value of ith element 

maxi = the maximum value of ith element 

𝑜𝑖  = the optimal of the element belonging to moderate 

criteria.  

 

The standardization of descriptive indicators is based on the 

classification of the corresponding attribute descriptions of the 

indicators, and the scoring is based on the impact of different 

attribute categories on the occurrence of hill fire. The descriptive 

indicators include surface type and seasonal indicators, and the 

specific quantitative results are shown in Table 2. 
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Figure 4. The general hierarchical structure constructed by ahp.
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1. 337.5-67.5°;  2. 292.5-337.5°, 67.5-112.5°;  3. 247.5-292.5°, 112.5-157.5°;  4. 157.5-247.5°

Criteria Factors Land usage Value fi(x) Type 

Vegetation Ecology 

land cover (LC) 

shrub, forest 1 

descriptive index 

grass 0.8 

country land, Farmland 0.6 

tundra 0.3 

urban land, impervious surface 0.1 

waters, ice and snow, bare land 0 

fractional vegetation coverage 

(FVC) 
(0,1) positive 

Meteorology 

precipitation(PRE) (0,1) negative 

max wind(WND) (0,1) positive 

highest temperature(TEM) (0,1) positive 

min relative humidity (RHU) (0,1) negative 

Topology 

elevation(DEM) (0,1) negative 

slope(SLP) (0,1) positive 

aspect(ASP) 

schattenseite1 

(0,1) moderate 
half shady 2 

half sunny3 

sunny slope 4 

Season seasonal fire peak 

Jan., Feb., Mar., Apr., Sep., 

Oct., Nov., Dec. 
1 

descriptive index 

May., Jun., Jul., Aug. 0.8 

Table 2. Index quantification.

By equivalence interval division, FRP was classified to be five 

grades (table 3). When the FRP in a region was identified as high, 

the regions would be marked and got an alarm signal, so as to 

providing corresponding data support and implementation 

suggestions for transmission line inspection and maintenance. 

This would provide accurate data for the further routine 

inspection, and lay a good foundation for the early warning of 

the potential disaster of vegetation obstacles. 

FRP grade Value Description 

Low < 0.2 yellow green 

Normal 0.2 - 0.4 little green 

Moderate 0.4 - 0.6 yellow 

Important 0.6 - 0.8 brown 

Extra important > 0.8 red 

Table 3. FRP grades. 

4. EXPERIMENTAL RESULTS

The TLCs run through the north-south, across the east and west, 

forming a multi-level transmission and distribution network that 

have different voltage levels in China. Multi-source remote 

sensing data and weather monitoring data were obtained in some 

areas of Southern Power Grid, China. By experimental analysis 

(Figure 5), the weights of each parameter in FRP model are 

calculated by factor analysis, entropy weight method and AHP 

respectively. The comparison of these methods shows that the 

weight obtained by the AHP is slightly heavy but basically 

average. Using this method to calculate the weights of the FRP 

model can comprehensively and clearly perform a hierarchical 

analysis of all factor relationships, and achieve a good 

quantitative result according to the importance between each 

factors classes and within classes. 

In terms of the weights of these influencing factors, the weight 

of "meteorological factors" was higher among the three criterion 

layers analyzed. While, the topographic factors and vegetation-

ecological factors were relatively balanced, with the latter 

slightly dominant. In order to verify the weighting results, the 

FRP factor weights were calculated using factor analysis, 

entropy weighting method and AHP, and the results were 

compared as shown in Table 4. Through the comparison, it is 

found that the factor analysis method emphasizes the correlation 

between several main influencing factors and the evaluation 

target. When all the indicators are analyzed together, it cannot 

reflect the relative relationship between factors in a more 

detailed way, but tends to weaken some factors that are not 

significant enough. For example, factors like "slope", "aspect" 

that got low weights, may lead to the reduced applicability of the 

model in different voltage or varying scenarios. The entropy 

weighting method lacks reliance on the internal relationships of 

each factor. Although the calculation process is more objective, 

it is impossible to know the significance of each factor because 

it is weighted with factor uncertainty, and it is impossible to 

know which fire factor is really referred to an indicator or 

another. In contrast, the AHP focuses on the intra-class relative 

importance, parent-child importance, and inter-type importance 

of each factor in each type, and focuses on the equalization of 

the weight assignment of each factor, resulting in a slightly over 

weighted but basically even of each weights. Therefore, using 

the AHP method to solve the index weights of FRP can provide 

a more comprehensive and clear hierarchical analysis of all 

factor relationships, and achieve a quantitative result based on 

inter-class and intra-class importance. The weighting result 

would not over-rely on some of the strongly correlated factors 

and are able to exploit the role of short-term changes in 

meteorological factors on the corridor fire risk. Further, it does 

not fully combine the spatial variability of other factors, which 

makes the evaluation better applicable.
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Figure 5. Experimental result by AHP. 

 

Criteria Indicator/factor AHP Factor analysis method Entropy weighting method 

Meteorological PH 0.1590 0.0911 0.1704 

TEM 0.1191 0.1114 0.1981 

PRE 0.1605 0.1485 0.1055 

WND 0.0743 0.0756 0.1217 

Topological DEM 0.0915 0.1141 0.1302 

SLP 0.0891 0.0527 0.1013 

ASP 0.0438 0.0381 0.0905 

Vegetation ecological LC 0.1452 0.1487 0.0651 

FVC 0.1180 0.2181 0.0172 

Table 4. Analysis of FRP weight calculation results.

FRP mapping was conducted using ArcGIS10.1, as shown in 

Figure 6. The risk level was rendered in different colors from 

light to dark, and from blue to red. The FRP contains 5 classes, 

including low, normal, moderately high and extra high. The 

experimental results distinguish and mark the high-level fire risk 

zones under different seasons. Therefore, certain sections with 

higher risk levels are proposed for timely and accurate inspection 

and safe clearance detection of the surrounding vegetation 

hazards. The research results can provide important data support 

for fire risk warnings of power transmission maintenance and 

power reliability operation analysis.

  

 
(a)  

(b) 

FRP  map  to  the  Diewu-500kV  transmission  corridor 
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(c) 

Figure 6. FRP of HV power lines in 2018. (a) FRP map to the 

Diewu-500kV transmission corridor in June, (b) RP map to the 

Quhua & Qutan transmission corridor in September, (c) RP map 

to the Quhua & Qutan transmission corridor in January. 

5. CONCLUSION 

Experiments show that precipitation and vegetation cover are the 

most important influencing factors of FRP, while micro-

environments (i.e. temperature, relative humidity and slope) near 

the TL often lead to the transmission facilities being exposed to 

hazards. In addition, the vegetation growth in transmission lines 

through forested areas often affects the fire risk, for example, 

dense (thick and lush) forestry areas usually result in a higher 

FRP. The proposed algorithm, unfortunately, has a few 

requirements on the data quality, such as the moderate weather 

stations around each corridor, so that the resolution of the FRP 

map is incapable of distinguishing each transmission pylon. 

When the data gap in the main direction of PLs is larger than 3km, 

the value will be affected in view of the scale of the FRP map. 

The research object of this paper is the high-voltage and ultra-

high-voltage power corridors mainly in forestry areas, which are 

erected in the wild or on the highlands of mountains and forests, 

and rarely pass through populated areas. According to several 

statistics, as the population density around our study areas is less 

than 1 person/hm², this study does not calculate indicators for 

such factors related to human activities. As far as human 

activities are concerned, more people will appear in the 

distribution area around the corridor when a special solar term 

comes or when it is suitable for outdoor travel, which can 

otherwise be reflected by the indicators through seasonal or 

month factors.  

There are still other factors affect wildfires in power transmission 

corridors. For example, vegetation moisture content is an 

important indicator to reflect the flammability of vegetation, but 

its value often requires field measurement or sampling analysis. 

Fortunately, vegetation moisture content is closely related to 

actual meteorological data such as precipitation, humidity and 

temperature, and to a certain extent, it can be indirectly reflecting 

by these above factors. Secondly, in the study of the 

characteristics of wildfire caused transmission faults, it was 

found that seasonal changes, dry weather, low humidity, high 

wind speed, low air pressure, and special topographical 

conditions are the most important signs of the frequent 

occurrence of wildfire faults. In addition, factors such as road 

network density, water system, residential area, and distance 

from nearby roads also have a certain impact on wildfires around 

the power corridor. Finally, for human activity factors, e.g., 

various human behaviors that affect the occurrence of wildfires 

and unnatural fire sources formed by artificial facilities, large 

wildfires often form, but this factor generally needs to be 

combined with the specific study area and through limited human 

behavior and festival customs information, that would be 

analyzed completely. Thus, more factors will be assessed to 

improve the accuracy in the future. 
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