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ABSTRACT: 

 

As a typical type of natural disaster, landslides may result in injuries to humans, threats to property security, and economic loss. As 

such, it is important to understand or predict the probability of landslide occurrence at potentially risky sites. Using typically 

machine learning (ML) to estimate landslide susceptibility based on a landslide inventory and a set of factors that impact the 

occurrence of landslides is a common practice. However, in landslide susceptibility assessment, existing DL-based neural network 

methods use a fully connected layer to optimize the selection of factors, which limits their efficiency in extracting features of those 

contributing factors. In response to those problems, this study proposed a CNN-LSTM model with an attention mechanism (AM) to 

avoid the complex optimization of input factors while the same or even better prediction accuracy can be achieved. To compare our 

method with the existing ones, the historical landslide inventory and the remote sensing data of Kerala, India were used to produce 

the input variables needed in the methods considered. The results show that our method produced more accurate results, compared to 

those existing neural network methods (e.g.  CNN, LSTM and CNN-LSTM). 

 

 

1. INTRODUCTION  

As a common natural hazard, landslides are characterized by the 

downward movement of a mass of soils and rocks (Leynaud et 

al. 2017). They may result in varied degrees of infrastructure 

destructions and human injuries (Peduto et al. 2021), in addition 

to a variety of potential damaging consequences on the social 

and environmental sustainability. Prediction of landslides is 

essential for landslide prevention and control, as it provides the 

basis for determining whether to take actions to mitigate the 

probable negative effects of landslides. In this regard, landslide 

susceptibility mapping (LSM) is frequently considered 

(Reichenbach et al. 2018), where the categorization and the 

geographical distribution of a potential landslide are evaluated. 

It is also an effective and proactive method for delineating 

landslide-prone zones. 

Many data-driven approaches have been used to generate LSM, 

ranging from simple to complex mathematical models. Many 

studies were conducted on the landslide genesis to determine 

the mathematical or the statistical links between the 

contributing factors and the probability of landslide occurrence. 

It is widely accepted that machine learning (ML) more 

efficiently build the nonlinear relationship between landslides 

occurrence and contributing factors (Wei et al. 2022).  

The statistical prediction models for LSM have widely been 

explored in the field. To improve the accuracy of LSM, deep 

learning (DL) as extended ML is capable of learning more 

complex and hidden features by a hierarchical analysis of 

features. Therefore, DL frameworks have recently been applied 

to the landslide susceptibility assessment to efficiently extract 

more features from the mapping of landslide contributing 

factors and to enhance the accuracy of the prediction. DL 

models are less likely to have the defects of ML models such as 

local optimum and overfitting. A convolutional neural network 

(CNN) is a variant of multilayer perceptron, consisting of one or 

more convolutional, max-pooling and fully connected layers. It 

benefits from local connections, shared weights and the use of 

the multiple layers to identify the information that is correlated 

and invariant to locations within local groups of values (Sameen 

et al. 2020). Convolutional neural networks (CNNs) have 

demonstrated their capabilities of automatically extracting a 

large number of robust and invariant features (Romero et al. 

2015). Wang et al. (2019) introduced a CNN into LSM for the 

first time and achieved better LSM results than those obtained 

using SVM and MLP. Sameen et al. (Sameen et al. 2020) used a 

DL classifier for LSM based on the feature extraction by 1D-

CNN. Pham et al. (2020) used swarm intelligence algorithm for 

parameter optimization in the CNN-based LSM model to 

improve the LSM prediction accuracy. Fang et al. (2020) 

integrated a CNN with three conventional machine learning 

classifiers and conducted a case study in Yongxin County, 

China. Xiao et al. (Xiao et al. 2018) also applied long short time 

memory (LSTM) to landslide susceptibility. LSTM is a special 

recurrent neural network (RNN) architecture that inherits the 

sequence learning advantage of RNN and is able to learn time-

series data with long time dependence. With its memory block 

structure, the LSTM model can determine whether the rules 

learned at the previous time step are useful or not, and then 

determine whether the learned rules should be passed to the next 

time step or discarded. Thus, the prediction accuracy is not 

affected by errors at some previous data. 

  Despite the aforementioned progress made by the state-of-the-

art DL approaches on LSM, a big challenge in their 

implementation is the selection and combination of the input 

contributing factors, which may be categorised into topography, 

geology, hydrology and land-cover conditions. Atkinson and 

Massari (1998) used generalised linear modelling to build LSM, 

and found that the importance of land cover and concavity of 

slope increased when the other factors were added. Gaidzik and 

Ramírez-Herrera (2021) compared the performance of LSM 

using empirically selected contributing factors with that using 

all contributing factors, and found that the former outperformed 

in terms of the overall prediction accuracy. These suggest that 
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the selection of input factors is essential for the prediction 

accuracy of LSM.  

 To solve the aforementioned issues, this paper proposes a 

CNN-LSTM landslide susceptibility mapping model with the 

attention mechanism. CNN is used to effectively extract the 

certain features (i.e. abstract concepts for describing the raw 

images) from each contributing factor map. The attention 

module is added to assign different weights to contributing 

factors to optimize the usage effectiveness of feature maps for 

improved prediction performance. LSTM works as a decoder to 

predict the probability of landslide occurrence. The maps of 

topographical, geological, hydrological and land-cover 

contributing factors were produced using remote sensing images 

of Kerala, India, and were used to test our model. The 

performance of our model was compared.  

 

 

2. STUDY SITE AND DATA 

2.1 Study area 

Kerala has been selected as the evaluation location for our 

method. As seen in Figure 1, it is situated in the southwestern 

portion of the Indian peninsula on the windward slopes of the 

Western Ghats and the eastern shore of the Arabian Sea  (Hao et 

al. 2020). This area has a climate typical of the tropics, with 

seasonal monsoon features. Kerala's bedrock is heavily eroded, 

resulting in a thick, poorly-consolidated soil layer (mostly clay) 

across a large portion of the territory (Sajinkumar et al. 2011). 

In terms of geomorphology, its eastern portion consists of rocky 

mountains with deep valleys and plateaus, whilst its western 

shore consists of plains (Vishnu et al. 2019). The Western Ghats 

are governed by old faulted escarpments situated on the plateau 

and can have very steep slopes prone to slope collapses 

(Kuriakose et al. 2009). The maps of the research region (shown 

in Fig. 1) were generated using Esri's ArcMap software. 

 

 
Fig. 1. Study area  

2.2 Study data and landslide contributing factors 

Kerala's historical landslide inventory was compiled by the 

Indian Space Research Organisation's National Remote Sensing 

Centre (NRSC) and the Geological Survey of India. It is 

accessible on the NRSC website (NRSC 2018). The dataset 

included a total of 4,728 identified landslides at the time it was 

consulted for this investigation. As seen in Fig. 1, these 

landslide locations are represented by a scattering of blue dots. 

Google Earth (Gorelick et al. 2017) and the Indian Institute of 

Remote Sensing (Ramasamy et al. 2021) were used to get 

remote sensing photos of the research region. NASA's SRTM 

Digital Elevation provided the DEM map with a spatial 

resolution of 30 meters.  

Contributing factors are involved in the formation of LSM 

(Sameen et al. 2020). In this study, fifteen contributing factors 

were considered, including topography factors (i.e. altitude, 

aspect, slope, plan curvature and profile curvature), geological 

factors (i.e. lithology, distance to faults), land-cover factors (i.e. 

land use, distance to roads, normalized difference vegetation 

index (NDVI)), and hydrological factors (i.e. distance to stream, 

rainfall (Lee and Talib 2005), sediment transport index (STI), 

stream power index (SPI), topographic wetness index (TWI)). 

The maps of the aforementioned landslide contributing factors 

can readily be derived, which are essentially the input data to 

LSM.  

 

 
Fig. 2. Maps of the contributing factors considered: (a) 

altitude, (b) slope, (c) aspect, (d) plan curvature, (e) 

profile curvature (f) lithology, (g) distance to faults, (h) 

land use, (i) distance to road, (j) NDVI, (k) rainfall, (l) 

distance to stream, (m) SPI, (n) STI and (o) TWI. 
3. METHODOLOGY 

3.1 The CNN-LSTM-attention deep learning model 

proposed 

In our method, a network model combining CNN and LSTM is 

developed, and meanwhile an attention mechanism is added to 

enhance the useful information. Its overall structure is shown in 

Fig. 3. The maps of contributing factors are derived from the 

remote sensing images and pre-processed as the inputs to our 

model. As shown in Fig. 3, the CNN framework is used as an 

encoder to take the input maps to extract features. Specifically, 

this framework is constructed by a deep residual block, which is 

a simple but extremely effective network structure that adds a 

skip connection to the simple forward propagation (Kwon 2021). 

The framework consists of three one-dimensional convolutional 

layers, three normalization layers, three ReLU (Rectified Linear 

Units) activation functions and a maximum pooling layer. Since 

the inputs are continuous spatial sequences, one-dimensional 

convolutional layers are used. To fully utilise the spatial 

information of the contributing factor maps, continuous 
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convolution, activation functions and pooling layers are used to 

extract features from those maps and to deepen the network.  

After the encoder, the input data are transformed into higher-

dimensional feature maps. Since the feature maps extracted by 

the convolution and the pooling operations do not change their 

order, the feature maps are fed directly into LSTM. A LSTM 

network processes series data through the gating mechanism, 

including forget gates, input gates and output gates. They can 

control the removal or the addition of information for forgetting 

and remembering, respectively. The feature maps are converted 

to the corresponding hidden states by the LSTM network. After 

that, the LSTM hidden layer states are used to schedule 

attention weights to each contributing factor map. The attention 

weights affect the input and the output of the LSTM cells, 

where the channels with higher weights will have more 

information being fed into the LSTM network. The attention 

weights can be adjusted dynamically to improve the 

effectiveness of data extraction of the network during training.  

Its final output is a prediction of the probability of landslide 

occurrences at individual pixel locations. 

 

 
Fig 3. Overall structure of our method 

 

 

3.2 Component structure of CNN 

 The basic CNN always has an input layer, a convolutional layer, 

an activation function, a pooling layer, a fully connected layer, 

and an output layer. The CNN acts as an encoder to extract 

features and captures the salient feature attributes from the 

dataset, enabling it to differentiate without the need for 

manually driven complex rules. The purpose of the convolution 

operation is to extract different features of the input layer. More 

convolutional layers enable iterative learning of more complex 

representations from low-level features. Pooling is a form of 

down-sampling that is used to reduce the dimensionality of the 

feature maps without changing the depth. As the most 

commonly used operation among different pooling methods, 

MaxPooling can retain strong features and eliminate weak 

features to reduce the model complexity and avoid overfitting. 

The activation function ReLU of the convolution layer is an 

exponential linear unit, which can speed up the convergence and 

improve the robustness of the model. 

3.3 Component structure of LSTM   

LSTM is special type of RNN, which can avoid the vanishing 

gradient problem and accelerate convergence (Bahad et al. 

2019). As for the basic structure of LSTM, there are three cells 

(input gate, forget gate and output gate) responsible for 

regulating in or out of the memory cell. The main function of 

the input gate is to add information to the memory unit. The 

forget gate controls whether to remember or delete the 

information from the previous step. The output gate is 

responsible for providing useful information to the subsequent 

memory block. The data processing flow in the LSTM unit is 

shown in Fig. 5  

 

 
Fig. 4. Basic LSTM cells. 

 
The LSTM unit is specifically explained in Fig.5. The input  (a 

complex feature extracted from the contributing factors map, 

which is the output from the CNN), the hidden state from the 

previous state  and the previous cell state  are input 

through the  unit to get the output gate. The output gate is 

a value between 0 and 1 where the value 0 represents the 

complete deletion of information and the value 1 represents the 

complete retention of information. Next, the input gate uses two 

values  and  to consider storing new information in the 

new cell state t. At the same time, the value through the input 

modulation gate has a hyperbolic tangent activation function, so 

that the output value ranges from -1 to +1, which reflects the 

amount of information to be forgotten. Subsequently, the old 

cell state  is updated to the new cell state by multiplying 

the output of the old cell state and the forget gate, followed by 

adding the multiplication of the input gate and the input 

modulation gate output. After that, the output gate takes the 

input value and updates the old hidden states. Finally, the cell 

state  goes through the hyperbolic tangent function, and the 

output of the output gate is multiplied by the new hidden state 

. The equations associated with this calculation processing are 

given in Eq. (1) – Eq. (6). By updating the learnable parameters 

such as the coefficient matrices and the bias vectors, the model 

can learn more data information through the LSTM unit. 

 

                                   (1) 

                                   (2) 

                                (3) 

                                       (4) 

                                  (5) 

                                       (6)                                                           

 

where  is the sigmoid function; tanh is the hyperbolic tangent 

function;  is the pointwise multiplication operator from 

Hadamade product; , , , ,  and  are input gate, forget 

gate, output gate, input modulation gate, cell state, and hidden 

state at time t, respectively; , , ,  are the coefficient 

matrices; , , ,  are the bias.  

3.4 Attention mechanism 

The attention mechanism prefers to selectively learn the inputs 

and to correlate the inputs with the output sequence at the 

output of the model. In more details, the prediction results in the 

output sequence depend on which input items are selected.  

The output from the hidden layer of LSTM is represented as the 

input of the attention to obtain the distribution of the initial 

attention weights. In the decoding phase, the attention 

mechanism uses the attention weights represented by Eq. 7 to 

select the relevant parts from the hidden vectors. The hidden 

information between the front and the back layers is split over 

time and useful outputs are generated from the sequence using 
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Eq. 8. Probability is forwarded to the fully connected layer 

(FCN) for predicting the probability of landslide occurrences. 

The weights represent the importance of the state parameters. 

These hidden states are aggregated into a vector representation 

C by the attention computed using Eq.7 to Eq. 9.  

                                     (7) 

                                         (8) 

                                                     (9) 

where  indicates the probability distribution of attention at i-th 

moment; u and w denote the weighing coefficients; b is the bias 

coefficient; tanh is hyperbolic tangent function;  is the 

summation weight obtained by the normalization of the 

alignment coefficient and C is the weighted feature. 

3.5 Model evaluation criteria 

To assess the accuracy of the results produced by the models 

considered, the following set of evaluation criteria are 

considered in our investigation. True Positive (TP) and True 

Negative (TN) represent the number of correctly predicted 

landslide and non-landslide, respectively. False Positives (FP) 

and False Negatives (FN) represent the number of mis-predicted 

landslide and non-landslide. The statistical metrics such as 

accuracy, recall, Precision, ROC curve and AUC, can be 

calculated using the following four metrics (i.e. TP, TN, FP and 

FN). 

                                         (10) 

                                                  (11) 

                                                   (12) 

                                    (13) 

                                                       (14) 

                   (15) 

 

where,  represents the classification accuracy;  represents 

the random correct rate. 

3.6 Experiments descriptions 

The performance of our model (i.e. the CNN-LSTM with 

attention mechanism) for LSM using the Kerala dataset is 

presented. The effects of the selection of input data (i.e. the 

contributing factor maps) on the prediction results of our model 

are explored. The Kerala dataset had recorded a total number of 

4728 identified landslides. As LSM is a binary classification 

task that needs positive and negative samples, non-landslide 

data with the same proportion of identified landslide is 

randomly selected. The Kerala dataset was randomly divided 

into three subsets for training (70%), validation (15%) and 

testing (15%), respectively. The training dataset was used to 

train the models considered, while the validation dataset was 

used to optimize the parameters of those models. Finally, our 

model and the reference models were evaluated using the test 

dataset, the performances of which were compared. The 

experiments were implemented using TensorFlow, which are 

open source software libraries that use data flow graphs and 

have widely been used DL. Five-fold cross validation was used 

to objectively characterize the performance of the models 

considered, and the mean value of the five-fold cross validation 

results is used to represent model evaluation criteria.  

3.7 Generation of landslide susceptibility map 

On the basis of prior research, there are two primary ways to 

create maps of landslide susceptibility. One method calculates 

the susceptibility value (i.e., the probability of landslide 

occurrence generated by the model) of random location points 

in the study area, and then uses inverse distance weighted (IDW) 

spatial interpolation to assign values to the entire study area 

based on a small number of location points. Using the Jenks 

natural break method, the susceptibility values were then 

divided into five classes: very high, high, medium, low, and 

very low. Another approach determined the susceptibility 

values of every pixel in the research region. The choice between 

the two approaches is mostly determined by the research area 

and computer performance. Due to the size of the research 

region and the lack of available computing resources, the 

random location points-based approach is used in this study. 

4. RESULTS 

4.1 Effects of different combinations of contributing 

factors on model performance 

Comparing the different DL-based models, LSTM performed 

the worst and CNN performed better than LSTM. Our model 

achieved the best performance with a final test accuracy of 

98.30%.  

CNN and LSTM have a contributing factors extraction method 

related to their network structure, their features goes from local 

to abstract level (Taherkhani et al. 2018). For the DL-based 

model, the attention mechanism can be used to select 

contributing factors by reinforcing the channel weights in the 

network. Due to the end-to-end characteristics of deep learning 

models, it is more reliable to rely on the network's own weights. 

 

Model 
Training 

accuracy 

Testing 

accuracy 
AUC Recall Precision 

F1 

score 
Kappa MCC 

CNN 0.9326 0.9288 0.9518 0.9101 0.9121 0.9111 0.8211 0.8424 

CNN-

LSTM 
0.9668 0.9638 0.959 0.9489 0.9569 0.9529 0.8406 0.8417 

CNN-

LSTM 

Attention 

0.9851 0.983 0.9836 0.9713 0.9719 0.9716 0.871 0.8913 

Table 1. Results of the reference models for the three feature 

combination scenarios. 

As the proposed model used attention mechanism to assign the 

channel weights for adjusting of the selection of contributing 

factors, its effectiveness of the proposed model is validated 

compared with CNN and CNN-LSTM models. The learning 

curves of CNN, CNN-LSTM, and our model are shown in Fig. 

5 – Fig.7, respectively. It can be seen from the training curves 

that CNN and CNN-LSTM were able to reach early 

convergences during model training. It benefited from their 

simpler network structures, making them have fewer training 

parameters for an early convergence. Conversely, our model 

was in a slower convergence rate due to the lack of convergence 

of the attention mechanism in the early stage of training (shown 

Fig. 7). However, the advantage of the attention mechanism is 

that it weighed the target data and effectively focused on the 

valid data for prediction, and as such it led to better prediction 

accuracy in the end.  

 
Fig. 5. Learning curve of Loss value and accuracy using 

CNN  
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Fig. 6. Learning curve of Loss value and accuracy using 

CNN with LSTM 

 
Fig. 7. Learning curve of Loss value and accuracy using 

CNN LSTM with attention mechanism 

 

 

4.2 Contributing factors weights from attention 

mechanisms 

The results in Table.1 shows that our proposed model can 

improve the prediction accuracy with attention mechanism. In 

more detail, our model more effectively addresses the issue of 

choosing which contributing factors within the model will be 

more useful in a single prediction among the DL-based models. 

It can automatically learn the importance of each contributing 

factor at each step of the training process and make the more 

critical components play larger roles by giving larger weights to 

those contributing factors.  

To better understand how the attention mechanism worked, we 

used the representation  in Eq. 8 to describe the attention 

weights. We randomly selected four samples from the sorted 

dataset to visualise the process of the attention mechanism in 

Fig. 8. The values of the weights given to individual 

contributing factors are shown in Fig. 8, which visualise the 

degree of influence of different input contributing factors of the 

model.  The most impactful from the first sample are altitude, 

aspect, TWI, SPI, NDVI and plan curvature. In addition, the 

weights assigned to the same contributing factor varied from 

one sample to another. The determination of weights in the 

attention mechanism was integrated with the model, and the 

weights of the attention mechanism were sought by updating 

u,w,b (shown in Eq. 14) during the training process.  

 

 
Fig. 8. Attention mechanism weights map of four 

samples (the horizontal coordinates are Altitude, Aspect, Slope, 

Plan Curvature, Profile Curvature, TWI, SPI, STI, Lithology, 

Land use, NDVI, Distance to road, Distance to fault, Rainfall, 

Distance to stream, in that order. The vertical axis is randomly 

selected four samples) 

 

To rank the contributing factors, the relative importance of each 

contributing factor in the proposed model was expressed using 

the average attention weight value of the whole testing samples. 

Fig. 9 shows the average attention weights of the proposed 

model, from which altitude, distance to the road and land use 

were found to have larger weights (0.429, 0.278, 0.196, 

respectively). In addition, the attention weight of lithology was 

small (0.009). The rest of weights ranged between 0.08 and 0.15.  

 
Fig. 9. The average attention weights of the contributing 

factors in the proposed model 

4.3 Landslide susceptibility mapping 

In this experiment, each contributing factor map was divided 

into 155,783,680 grids with a spatial resolution of 30 m. Fig.14 

shows the landslide susceptibility map generated by our model 

and the reference models (i.e. red, orange, yellow, cyan and 

green are indicated as very high, high, medium, low and very 

low of the landslide occurrence probability respectively.). 

Referring to the locations of the historical landslide in Fig.1, the 

obtained susceptibility maps in Fig.10 showed the area of very 

high and high probability of the landslide occurrence generally 

conform to the distribution of the historical landslides. CNN 

and CNN-LSTM provided a clearer characterisation of the 

specific extent of landslides. The LSM of our model had a 

representation of the distribution of landslides, in which the 

susceptibilities of the southwest and northeast locations were 

described as regions of high-risk and medium risks, respectively. 

These are consistent with the landslide information shown in 

Fig. 1, demonstrating that the LSM created using our model was 

a good fit for the recorded landside inventory. 

 
Fig.10. Landslide susceptibility maps 

5. DISCUSSION 

In this case, locations of landslides were concentrated in 

mountainous areas. This was also related to the topographic 

variations of the area, with a clear demarcation between plains 

and mountains, which also related to the digital elevation 

models. So that the digital elevation models with high temporal 

resolution as well as spatial resolution will contribute to the 

prediction accuracy of the LSM. However, due to limitations in 

data acquisition, the effects of the digital elevation models 

could not be explored in the paper. Landslides are highly 

spatially and temporally correlated, but the historical landslide 

inventory data used in this study cannot cover a wider time span 

of collection and a precise temporal record of the landslides.  
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A range of contributing factors were considered in this study. 

However, it is unlikely that all the information associated with 

these contributing factors were collected at the same time. It is 

more likely that there will temporal differences in that 

information. This may lead to inconsistency in the information 

used for the modelling if temporal changes occurred, which 

would affect the prediction accuracy of landslide susceptibility. 

 The construction of landslide susceptibility maps relies heavily 

on the credibility of historical landslide inventories. As such, for 

modelling, the credibility of the data needs to be strictly 

considered. This requires adequate field or remote sensing 

surveys to obtain a detailed regional description of the landslide. 

However, the landslide inventory used in this study only 

recorded the point location of the latitude and longitude 

coordinates.  

6. CONCLUSION 

An CNN-LSTM-attention network is proposed in this paper for 

landslide susceptibility mapping. It is characterized by 

adaptively reassigning weights of the input contributing factor 

maps using the attention mechanism to achieve better prediction 

accuracy. Experiments were carried out using the Kerala dataset 

to test the performances of the proposed model and reference 

models (CNN and CNN-LSTM). Experimental results show 

that our proposed model outperforms than the reference models 

in classification and sensitivity prediction. 
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