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ABSTRACT: 
 
In view of the problem that some multi-line light detection and ranging (LiDAR) scans a small field of view in the vertical direction, 
a framework that uses an integrated handheld hemispherical view LiDAR and inertial measurement unit (IMU) scanning system for 
simultaneous localization and mapping (SLAM) is proposed. For the structural characteristics of the hemispherical view LiDAR scan 
lines, a ground segmentation pre-processing module based on seed points is designed. The segmented ground points are downsampled 
to eliminate redundant vertical constraints. The IMU data and the pre-processed point cloud are performed state estimation via a tightly 
coupled iterative Extended Kalman Filter (iEKF) to obtain the real-time poses. The detected loop closures provide global constraints 
for the point cloud map. The factor graph is used to process the back-end optimization incrementally to eliminate the accumulation 
error of the system. Data from diverse scenes are collected via a prototype system. Both qualitative and quantitative experiments are 
performed to prove the accuracy and performance of the framework. Experiments show that our framework outperforms the state-of-
the-art SLAM methods for the hemispherical view LiDAR-IMU integrated scanning system. 
 

1. INTRODUCTION 

Light detection and ranging (LiDAR) is a technique for 
determining accurate distances between laser scanners and object 
surfaces based on the time of light propagation. Depending on 
whether the station is fixed, LiDAR systems can be divided into 
two categories including Terrestrial Laser Scanning (TLS) and 
Mobile Laser Scanning (MLS). Among MLS, the handheld laser 
scanning (HLS) system is widely used in 3D mapping 
(Makkonen et al., 2015; Duan et al., 2022), architectural 
modeling (Hu, Wang and Xu, 2016; Previtali, Banfi and Brumana, 
2020), heritage reconstruction (Zlot et al., 2014; Chan et al., 
2016), and other scenes. Typically, LiDARs on HLS can be 
classified into three categories: mechanical LiDAR, solid-state 
LiDAR, and mixed solid-state LiDAR (Chen and Shi, 2019). 
Among them, the mixed solid-state LiDAR utilizes Micro 
Electromechanical Systems (MEMS) mirrors to reflect lasers at 
different angles while keeping the laser transmitter stationary. 
This type of LiDAR is widely integrated into autonomous 
vehicles profiting from its balance between cost and accuracy. 
 
A stable and robust Simultaneous Localization and Mapping 
(SLAM) algorithm plays a fundamental role in estimating the six 
degrees of freedom (DOF) ego-motion of HLS in GNSS-denied 
environment. Over the past few years, LiDAR Odometry and 
Mapping (LOAM) (Zhang and Singh, 2014) has been considered 
the most classical 3D laser SLAM method. It extracts edge and 
surface features from scan lines based on the local smoothness. 
The ego-motion is then estimated by jointly optimizing point-to-
edge and point-to-surface metrics using the Levenberg-
Marquardt method. Thereafter, LeGO-LOAM (Shan and Englot, 
2018), a variant of the LOAM method, was proposed. In LeGO-
LOAM, a ground point extraction method, an image-based point 
cloud segmentation method, and a loop closure module are 
applied to improve the accuracy of LOAM. The authors of 
LeGO-LOAM further fused LOAM with IMU pre-integration 
and factor graph, and proposed LIO-SAM (Shan et al., 2020) 
which is a tightly coupled LiDAR-inertial odometry method. 

Literature (Ye, Chen and Liu, 2019) proposed a LiDAR-IMU 
tightly coupled LIOM by replacing the image process in vision 
with feature extraction in LOAM, drawing on the idea of joint 
state estimation of vision and inertial observations in (Qin, Li and 
Shen, 2018). Literature (Xu and Zhang, 2021) adopted an iterated 
extended Kalman filter to mitigate linearization errors and 
presented a new formula to compute the Kalman gain to lower 
the computation load. Their team has also subsequently proposed 
an improved FAST-LIO (Xu et al., 2022). This method achieves 
superior performance by maintaining a map with an ikd-Tree 
structure, which enables incremental updates and dynamic re-
balancing. 
 
The typical design schemes for HLS systems include (1) 
mounting a multi-line 360° LiDAR horizontally, as shown in 
Figure 1(a), and (2) mounting a LiDAR with a small field of view 
facing forward, as shown in Figure 1(b). Both scanning systems 
and their corresponding SLAM algorithms ignore the importance 
of acquiring sufficient scan points in the vertical direction. 
 

 
(a) 

 
(b) 

Figure 1. Two Classic handheld laser scanning system design 
solutions (Shan et al., 2020) 

 
To address this problem, this paper proposes a SLAM method for 
hemispherical view LiDAR scanning to achieve a larger field of 
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view by expanding the vertical view via a 180° hemispherical 
view LiDAR. The SLAM method is designed according to the 
scan line structure characteristics of the hemispherical view 

LiDAR to achieve lightweight and portable handheld 3D 
mapping. 
 
 

 
Figure 2. Workflow chart of the handheld hemispherical view laser scanning system SLAM method. 

 
2. METHODOLOGY 

We build a workable handheld hemispherical view laser scanning 
system prototype, as shown in Figure 2. The point cloud acquired 
by the hemispherical view LiDAR is first pre-processed for 
ground points down sampling and subsequently combined with 
the IMU measurement for the state estimation. The LiDAR frame 
without distortion, the extrinsic parameters, and the system’s six 
DOF poses can be estimated consequently. The detected closed-
loops will be added to the factor graph optimization module to 
construct a globally consistent 3D point cloud map. 
 
2.1 System Overview 

The handheld hemispherical view laser scanning system 
integrates a nine-axis IMU (Owllmo IMU3910), a hemispherical 
view LiDAR (RoboSense RS-Bpearl), a synchronization control 
board, an industrial control computer, and a power module, as 
shown in Figure 3. 
 

 
Figure 3. Handheld hemispherical view laser scanning system 

prototype. 

 
The Owllmo IMU3910 consists of a gyroscope, an accelerometer, 
a magnetometer, and other proprioceptive sensors. The 
gyroscope can maintain a bias instability of 2.5×10-5 rad/s and a 
random walk of 1.2 × 10-3 rad/s, and the accelerometer can 
maintain a bias instability of 1.0×10-4 m/s2 and a random walk of 
1.3×10-2 m/s2 at a maximum operating frequency of 500 Hz. The 

RoboSense RS-Bpearl is a LiDAR with a 360° × 90° super wide 
field of view (FOV). In its body coordinate system, the LiDAR 
can scan 360° with a maximum resolution of 0.2° in the 
horizontal direction and 90° with a resolution of 2.81° in the 
vertical direction. The distinctive hemispherical shape results in 
its 32 scan lines distributed in concentric circles. The LiDAR can 
scan up to a 100m range at an optional 10Hz or 20Hz frame rate. 
Mounted directly in front of the handheld system, it can 
effectively provide maximum data capture of the user-facing 
scenes. The IMU and the hemispherical view LiDAR are fixed 
under strict industry standards. The data acquisition terminal is 
connected to a portable industrial control computer with an Intel 
Core i7-8565U central processing unit (CPU) which strongly 
supports the SLAM algorithm. The system is powered by a DJI 
TB48S intelligent battery which has such a long life that can be 
used in large-scale scenes. 
 
2.2 Ground Segmentation 

Extracting feature points in the original scanned point cloud is a 
popular solution to reduce computational effort (Zhang and Singh, 
2014; Lin and Zhang, 2020). The number and quality of feature 
points will directly affect the accuracy of SLAM. In most scenes, 
the single-frame point cloud scanned by hemispherical view 
LiDAR has a relatively large proportion of points falling on the 
ground. Figure 4 shows the distribution characteristics in a 
typical scene. Once the feature extraction is performed without 
classification, the non-ground feature points will be further 
reduced. In this paper, we segment out the ground points and 
downsample them to ensure a more uniform distribution of the 
single-frame scanned point cloud in space.  
 

 
Figure 4. Ground segmentation for a forward-mounted 

hemispherical view LiDAR. 
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We suppose that the scan points in the area directly under the 
handheld system will fall on the planar ground. The ground seed 
points are selected according to the following principles: In the 
forward direction of the LiDAR, the outermost 𝑀𝑀 scan lines are 
selected as the candidate scan lines; On the candidate scan lines, 
the points with an included angular of less than 𝛼𝛼  from the 
direction under the handheld system are selected as the seed 
points (green points in Figure 4). The principal component 
analysis (PCA) method is utilized to extract planar parameters 
from the seed points (Li, Li and Hanebeck, 2021). The eigenvalue 
decomposition is performed on the covariance matrix of the seed 
points as 
 
                                          ΣsV=VΛ                                                          (1) 
 
where Σs is the covariance matrix, V=[V1, V2, V3] is the matrix 
composed of eigenvectors, and Λ  is the diagonal matrix with 
eigenvalues in descending order (i.e.,  λ1≥λ2≥λ3 ). If λ2  is 
significantly larger than λ3 (i.e., λ3 λ2⁄ <0.3), the seed points are 
confirmed to form a plane whose normal vector is the feature 
direction Vn=V3. Let the centroid of the seed points be 𝝁𝝁𝒔𝒔, the 
distance from a point 𝒑𝒑 to the seed plane can be calculated as 
 
                              𝑑𝑑𝑖𝑖𝑖𝑖 = (𝝁𝝁𝒔𝒔 − 𝒑𝒑) ∙ 𝑽𝑽𝒏𝒏/|𝑽𝑽𝒏𝒏|                           (2) 
 
This distance metric is calculated for each point in a scan. The 
points with a distance less than the threshold 𝑑𝑑𝑖𝑖𝑖𝑖𝜏𝜏𝑖𝑖 are classified 
as ground points. Considering the beam-directing noise of 
LiDARs, 𝑑𝑑𝑖𝑖𝑖𝑖𝜏𝜏𝑖𝑖  is defined as a threshold that increases linearly 
with the detection range. 
 
                                      𝑑𝑑𝑖𝑖𝑖𝑖𝜏𝜏𝑖𝑖 = 𝜎𝜎 × |𝒑𝒑𝒊𝒊|                                   (3) 
 
The number of candidate scan lines 𝑀𝑀 , the seed point angle 
threshold 𝛼𝛼, and the distance factor 𝜎𝜎 are the parameters of the 
ground point segmentation algorithm, which can be adjusted 
according to the actual scanning scene. The point cloud is 
downsampled using the voxel grid method. The centroid of all 
points in the voxel is used to approximate the other points, which 
reduces the redundant ground points and improves the operation 
efficiency of the algorithm while ensuring the number of non-
ground points remains unchanged. 
 
2.3 State Estimation 

The state estimation module is a tightly coupled iterative 
extended Kalman filter. Taking the first IMU frame (denoted as 
𝐼𝐼) as the global frame (denoted as 𝐺𝐺), we denote the state of the 
handheld system as 
 
                    𝒙𝒙=[ G𝑻𝑻I

T     GvI
T    bω

T     ba
T     GgT     I𝑻𝑻L

T]                 (4) 
 
where  G𝑻𝑻I

 = [ G𝑹𝑹I
    G𝒑𝒑I

 ] is the global orientation and position 
of the IMU,  GvI

  is the global velocity of the IMU, bω
  and ba

  are 
IMU biases,  Gg  is the global gravity, and  I𝑻𝑻L

 = [ I𝑹𝑹L
    I𝒑𝒑L

 ] is 
the extrinsic parameters between LiDAR and IMU. 
 
First, the prior state 𝒙𝒙�𝑘𝑘 and the covariance 𝑷𝑷�𝑘𝑘 corresponding to 
the 𝑘𝑘th laser scan frame are calculated according to the kinematic 
equations and the error propagation law. Then, the five points 
nearest to the prior position of the current scan point are searched 
in the history scan frames to form a local plane patch, and the 
point-to-plane distance is calculated as 
 
                                𝑑𝑑𝑗𝑗 =  𝐺𝐺𝒖𝒖𝑗𝑗T� G𝒑𝒑�𝑗𝑗 –  G𝒒𝒒𝑗𝑗 �                            (5) 
 

where  Guj
  is the normal vector of the corresponding plane,  Gqj 

is the centroid of the corresponding plane, and  𝐺𝐺𝒑𝒑�𝑗𝑗 =
 𝐺𝐺𝑻𝑻�𝐼𝐼𝑘𝑘

  𝐼𝐼𝑻𝑻�𝐿𝐿𝑘𝑘
  𝐿𝐿𝒑𝒑𝑗𝑗 is the prior position of the current scanning point 

in the global coordinate system. The residual calculation model 
shown in (6) is constructed by fusing the prior state with the 
point-to-plane distance and linearizing at the currently updated 
state 𝒙𝒙�𝑘𝑘. 
 

0 = h𝑗𝑗�𝒙𝒙𝑘𝑘 ,  𝐿𝐿𝒏𝒏𝑗𝑗� 
≈ h𝑗𝑗(𝒙𝒙�𝑘𝑘 , 0) + 𝑯𝑯𝑗𝑗(𝒙𝒙𝑘𝑘 ⊟ 𝒙𝒙�𝑘𝑘) + 𝒘𝒘𝑗𝑗  

                        = 𝐺𝐺𝒖𝒖𝑗𝑗T� G𝒑𝒑�𝑗𝑗 −  G𝒒𝒒𝑗𝑗 � + 𝑯𝑯𝑗𝑗(𝒙𝒙𝑘𝑘 ⊟ 𝒙𝒙�𝑘𝑘) + 𝒘𝒘𝑗𝑗       (6) 
                        = 𝒛𝒛𝑗𝑗 + 𝑯𝑯𝑗𝑗(𝒙𝒙𝑘𝑘 ⊟ 𝒙𝒙�𝑘𝑘) + 𝒘𝒘𝑗𝑗  
 
where ⊟ is the encapsulation operation that act on manifolds, 𝑯𝑯𝑗𝑗  
is the Jacobian matrix of h𝑗𝑗�𝒙𝒙𝑘𝑘 ,  𝐿𝐿𝒏𝒏𝑗𝑗� with respect to 𝒙𝒙�𝑘𝑘 , and 
𝒘𝒘𝑗𝑗 ∈ 𝒩𝒩�0,𝑹𝑹𝑗𝑗� is the raw observation noise (Xu et al., 2022). 
Finally, combining the prior and observation yields the maximum 
a posterior (MAP) estimation problem as 
 
        𝑚𝑚𝑖𝑖𝑚𝑚

𝒙𝒙𝑘𝑘⊟𝒙𝒙�𝑘𝑘
 �∥∥𝒙𝒙𝑘𝑘 ⊟ 𝒙𝒙�𝑘𝑘∥∥𝑷𝑷�𝑘𝑘

2 + ∑  𝑚𝑚
𝑗𝑗=1 ∥∥𝒛𝒛𝑗𝑗 + 𝑯𝑯𝑗𝑗 (𝒙𝒙𝑘𝑘 ⊟ 𝒙𝒙�𝑘𝑘)∥∥𝑹𝑹𝑗𝑗

2 �    (7) 

 
The first half represents the prior of the state and the second half 
represents the observation residual. This MAP problem is solved 
by iterated Kalman filter on manifolds. The converged state 
estimate 𝒙𝒙�𝑘𝑘 and the Hessian matrix 𝑷𝑷�𝑘𝑘 yield the pose output and 
continue to propagate the incoming IMU measurements.  
 
2.4 Factor Graph Optimization and Mapping 

To eliminate the drift caused by long-time error accumulation, 
this paper uses the factor graph to conduct back-end optimization. 
The Scan Context method is used for loop-closure detection (Kim 
and Kim, 2018). As shown in Figure 5, the state of the system is 
considered to be optimized and is incrementally inserted into the 
factor graph in the form of variable nodes. The pose information 
estimated in the previous step provides inter-frame constraints, 
and the loop-closure frames are matched with the historical local 
submap to provide loop constraints. The constraints are inserted 
between the variable nodes in the form of factor nodes. 
 

 
Figure 5. Schematic diagram of factor graph optimization 

 
The factor graph is optimized via the incremental smoothing and 
mapping method. Each time a new LiDAR observation is 
received triggers the optimization computation, the window 
keeps sliding forward and the factor graph maintains a fixed 
number of nodes, thus ensuring the efficiency of the optimization 
computation (Kaess et al., 2012). The factor graph is transformed 
into the nonlinear function 
 
                            𝑚𝑚𝑖𝑖𝑚𝑚

𝒙𝒙𝑖𝑖
  �∑  

 
 𝓒𝓒�𝑖𝑖−1,𝑖𝑖

𝑝𝑝 + ∑    𝓒𝓒�𝑘𝑘,𝑖𝑖
𝑙𝑙 �                               (8) 
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where 𝓒𝓒�  
𝑝𝑝 and 𝓒𝓒�  

𝑙𝑙 are the nodes corresponding to the inter-frame 
constraints and the loop constraints, respectively. The optimal 
estimate of each variable node is solved using the Levenberg-
Marquardt method to obtain globally consistent poses. Using the 
LiDAR-IMU extrinsic parameters and the system poses 
optimized by the factor map, the real poses of the scanned points 
can be restored by rigid body transformation of the point cloud 
frame without distortion. Finally, the point cloud is accumulated 
frame by frame in the global coordinate system to obtain the 3D 
point cloud map of the whole scene. 
 

3. EXPERIMENTS 

A series of datasets in indoor and outdoor scenes are logged to 
evaluate our proposed framework qualitatively and quantitatively. 
Some of the experimental data are collected in GNSS-denied 
environments by a user holding the handheld LiDAR system with 
hand, while other data are collected in open-air environments by 
fixing the system on a mobile platform equipped with a GNSS + 
Inertial Navigation System (INS) system, as shown in Figure 6. 
 

 
Figure 6. The equipment for outdoor data collection 

 
In the qualitative experiments, we verify the fineness of point 
cloud objects and the compatibility of point cloud maps with 
Google Earth images. In the quantitative experiments, we 
evaluate the accuracy of the trajectory with the good quality 
GNSS ground truth and conduct a runtime analysis of the 

framework. See Table Ⅰ for details of the datasets. Note that all 
experiments are executed on the industrial control computer 
equipped with an Intel i7-8565U using the robot operating system 
(ROS) (Quigley et al., 2009) in Ubuntu Linux. 
 

Dataset Frames Duration (s) Length (m) GNSS 
Indoor 1 2266 226.63 218.39 unavailable 
Indoor 2 1252 125.29 54.63 unavailable 

Outdoor 1 3306 330.72 335.59 unavailable 
Outdoor 2 3414 341.45 422.25 unavailable 
Outdoor 3 9530 953.00 869.16 available 
Outdoor 4 5667 566.75 573.64 available 

Table 1. Dataset details. 

 
3.1 Point Cloud Details 

We evaluate the fineness of the indoor point clouds by comparing 
the detail of the point cloud objects generated by LOAM (Zhang 
and Singh, 2014), LIOM (Ye, Chen and Liu, 2019), and Ours, as 
shown in Figure 7. These point clouds are rendered by the 
intensity values.  
 
In the Indoor 1 dataset, we select a car that is scanned over a large 
area as the study object. Compared to our algorithm (Figure 7(c)), 
the point clouds of the car generated by the LOAM (Figure 7(a)) 
and LIOM (Figure 7(b)) have significant discrete noise 
(especially around the rear of the car). The details such as the 
license plate and the car lights distinguished based on the 
intensity information are more markable in our algorithm. In the 
Indoor 2 dataset, a chair scanned at several angles is selected as 
the observation object. The chair generated by LOAM (Figure 
7(d)) is blurred and has obvious distortion at the backrest; the 
chair generated by LIOM (Figure 7(e)) produces misalignment in 
the vertical direction, and the ground is misclassified into two 
planes; the chair generated by our algorithm (Figure 7(f)) ensures 
both consistency in the whole and uniformity and delicacy in the 
details and the intensity information can be used to distinguish 
the chair armrests and backrests. The above comparison shows 
that the algorithm of this paper performs better in the fineness 
and uniformity of the point cloud. 
 

 
(a) 

 
(b) 

 
(c)  

 
(d) 

 
(e) 

 
(f) 

Figure 7. The comparison of point cloud details. (a) the car generated by LOAM; (b) the car generated by LIOM; (c) the car 
generated by Ours; (d) the chair generated by LOAM; (e) the chair generated by LIOM; (f) the chair generated by Ours.  
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3.2 Point Clouds Aligned with Google Earth Images  

Figure 8 shows the point cloud maps aligned with Google Earth 
images via our algorithm. The bird’s eye view point cloud map 
and the 3D point cloud details are rendered according to the 
height values and the intensity values, respectively. In the 
Outdoor 1 dataset and Outdoor 2 dataset, the instability of 

handheld does not cause the point cloud maps to drift 
significantly. Landmarks such as bushes, corridors, and buildings 
can be well aligned with real scenes. Our algorithm also conquers 
the challenges posed by the open environment of the Outdoor 3 
dataset and Outdoor 4 dataset and still shows excellent 
performance in long-distance scenes. 
 

 
(a) Outdoor 1 dataset 

 
(b) Outdoor 2 dataset 

 
(c) Outdoor 3 dataset and Outdoor 4 dataset 

Figure 8. Point clouds aligned with Google Earth images. 
3.3 Trajectory Accuracy Evaluation 

Outdoor datasets with high-quality ground truths are applied for 
quantitative experiments. We test the Outdoor 3 dataset and the 
Outdoor 4 dataset via LOAM (Zhang and Singh, 2014), LIOM 
(Ye, Chen and Liu, 2019), FAST-LIO (Xu and Zhang, 2021; Xu 
et al., 2022), and Ours, respectively. We utilize two prominent 
indicators including the absolute trajectory error (ATE) and the 

relative pose error (RPE) for accuracy analysis. The root mean 
square error (RMSE) of the ATE and the RPE are reported in 
Table 2, in which the ratio error represents the ratio of ATE or 
RPE to the length of the trajectory. The ablation studies are 
performed by separately supplementing the ground points down 
sampling course and the loop closure optimization course 
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(denoted as FAST-LIO-GD and FAST-LIO-L, respectively) to 
FAST-LIO. The results show that an individual ground points 
down sampling course or loop closure optimization course is of 
value to reduce the trajectory error of FAST-LIO and that the best 
trajectory accuracy is achieved by combining both in our 
improved algorithm. In the Outdoor 4 dataset, the trajectory error 

of our algorithm increases a bit compared with the FAST-LIO-
GD, probably since there is no effective closed-loop during the 
actual data acquisition process. Nonetheless, this does not detract 
from the fact that the improved algorithm is better suited to our 
system than the original FAST-LIO. 
 

Dataset Indicator LOAM LIOM FAST-LIO FAST-LIO-GD FAST-LIO-L Ours 

Outdoor 
3 

ATE (m) 35.55 32.98 5.04 4.53 3.47 3.45 
ATE ratio error 4.09×10-2 3.79×10-2 5.80×10-3 5.21×10-3 3.99×10-3 3.97×10-3 

RPE (m) 0.31 0.25 0.19 0.18 0.19 0.18 
RPE ratio error 3.57×10-4 2.88×10-4 2.19×10-4 2.07×10-4 2.19×10-4 2.07×10-4 

Outdoor 
4 

ATE (m) 30.22 1.25 2.20 0.85 2.67 0.87 
ATE ratio error 5.27×10-2 2.18×10-3 3.84×10-3 1.48×10-3 4.65×10-3 1.52×10-3 

RPE (m) 0.24 0.32 0.16 0.03 0.09 0.03 
RPE ratio error 4.18×10-4 5.58×10-4 2.79×10-4 5.23×10-5 1.57×10-4 5.23×10-5 

Table 2. Trajectory accuracy evaluation. 

 
3.4 Runtime Analysis 

Runtime analysis is implemented to verify the real-time 
performance of the system. Compared to FAST-LIO, the main 
runtime consumption to be counted in our SLAM method occurs 
in the ground segmentation module and loop closure 
optimization module. Note that the loop closure optimization 
module is computed in parallel using OpenMP. A detailed 
runtime comparison between FAST-LIO and Ours is reported in 
Table 3. Our approach of segmenting and then downsampling the 
ground points results in fewer points remaining for subsequent 
computations and thus not a huge increase in runtime. The effect 
of this operation is particularly noticeable in outdoor scenes with 
a large proportion of ground points. This is the reason why the 
runtime of our algorithm on the outdoor dataset will be much 
closer to or even shorter than FAST-LIO. In conclusion, our 
algorithm is not significantly slower than FAST-LIO and can 
operate faster than 20 Hz on the industrial control computer. 
 

Dataset FAST-LIO Ours 
Indoor 1 28.97 35.81 
Indoor 2 27.33 34.11 

Outdoor 1 33.93 33.46 
Outdoor 2 32.89 33.88 
Outdoor 3 21.47 24.36 
Outdoor 4 19.24 21.17 

Table 3. Run time per frame (ms). 

 
4. CONCLUSION 

This paper proposes a SLAM framework using a handheld 
hemispherical view laser scanning system. The hemispherical 
view LiDAR and IMU are integrated onto the prototype as well 
as a data processing system is developed. Taking full advantage 
of the scan line features of the hemispherical view LiDAR, we 
design a targeted ground segmentation module and a loop closure 
optimization module based on the factor graph optimization. 
Plenty of indoor and outdoor data are collected to perform both 
qualitative and quantitative experiments. The results show that 
the proposed framework can meet the low-drift performance 
faster than 20 Hz per frame. Future work will be devoted to 
enriching the types of sensors integrated into the system, such as 
assembling the consumer-grade panoramic camera and 
simultaneously collecting the laser scans and the panoramic 
images. Based on the reconstruction of the 3D scene, the 

panoramic image will be mapped to the 3D point cloud, and the 
coloring of the point cloud will be realized to enhance the effect 
of the scene. 
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