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ABSTRACT:

The lower reaches of the Yajiang River are high in the east and low in the west, with abundant rainfall, and contain a large amount of
hydropower resources that have not been exploited and utilized. Nonetheless, due to the unique geographical environment in
southeast Tibet, rainfall debris flow is one of the frequent geological disasters in this area. In this research, 42 debris flow points were
collected, ten disaster-causing factors were selected, and satellite elevation data were analyzed to evaluate the disaster susceptibility
of the study area. The disaster-causing factors information is extracted from Arcgis. The certainty factor model (CF) was used to
calculate the coefficient of certainty of 10 factors including fault distance, elevation, normalized difference vegetation index (NDVI),
average annual rainfall, profile curvature, relief, silt content, TWI, SPI, and slope aspect. The Analytic Hierarchy Process (AHP),
Binary Logistic Regression (LR), Random Forest (RF) and CF model were used to analyze and predict the possibility of debris flow
occurrence. The results show that the accuracy of the CF-LR model is the highest under the verification of the ROC curve. In the
prediction model, the high-risk areas of debris flow are mainly concentrated in the first half of the lower reaches of the Yajiang River
and distributed along both sides of the river bank. After bringing the data of different annual rainfall into the model, it is found that
the saturation critical value of debris flow water source in the study area is within the range of 600-700mm annual rainfall.

1. INTRODUCTION

Debris flow is a fluid mixture carrying water, sand and stones,
which commonly erupts in the rainy season and has great
explosive power and destructive power. Due to the influence of
climate, environment and other factors, mudslides account for
about 58 percent of the total geological disasters in Tibet, which
critically affects the safety of local people and property. It
occurs predominantly in the southeast of Tibet, and the time of
occurrence is concentrated from May to September when the
rainfall is high.

Southeast Tibet, with complex hydrological conditions, is the
site of the great bend of the Yarlung Zangbo River. The lower
reaches of the Yajiang River are characterized by large terrain
drops, abundant rain and a narrow and deep valley, so it
contains enormous water energy and can create more excellent
value in agriculture, fishery, forestry and ecological
environment protection. However, its steep terrain and massive
flood also create good conditions for debris flow. It poses a
potential threat to nearby engineering facilities.

In recent years, many methods have been proposed to study
geological hazards. The qualitative analysis method represented
by the Analytic Hierarchy Process (AHP) was first presented
and widely used in geological disaster risk assessment.
Research results showed that it can accurately predict the
prediction of disaster risk distribution within ten years. Later,
quantitative methods such as Fuzzy Comprehensive Analysis
and Binary Logistic Regression combined with GIS have been
widely applied in the geological disaster evaluation system,
among which Binary Logistic Regression is the most
outstanding method. Nowadays, with the rise of machine
learning, Decision Tree, Random Forest, Convolutional Neural
Network and other machine learning methods have been widely

used in the research of debris flow risk prediction. Compared to
the results of many previous studies, Random Forest stands out
among other methods because of its high accuracy, low
redundancy and fast learning speed. The certainty factor(CF) is
a method to manage uncertainty in a rules-based expert system.
It is a model developed by Shortliffe and Buchanan in the mid-
1970s and widely used in medical diagnosis research in the
early stage. Now it is generally used in the field of geological
hazard risk assessment.

The selection of disaster factors is the basis for making a
geological hazard susceptibility evaluation map. Considering
the special hydrological and rainfall conditions near the Yajiang
River, the topographic humidity index(TWI), the Standard
Precipitation Index(SPI), profile curvature, average annual
rainfall and other hydrologic-related disaster factors were
selected. The certainty factor can calculate CF values of
different categories of the same element. The southeast of Tibet
is dominated by rainfall-type debris flow. By substituting CF
values of annual rainfall of different categories, the
susceptibility map of debris flow under different rainfall
conditions can be obtained, so as to study the influence of
annual rainfall on debris flow.

The specific flow chart of this paper is shown in Figure 1.
Firstly, different analysis methods are used to study the
susceptibility of debris flow. Secondly, the accuracy of different
models was compared by the ROC curve. Then, the model with
the highest accuracy is selected to make and analyze the debris
flow disaster distribution map. Finally, combined with the
susceptibility of debris flow under different annual rainfall, the
threshold interval of debris flow rainfall in the study area is
obtained. The three main purposes of this study are as
follows:(1) The accuracy of CF-AHP, CF-LR and CF-RF
coupled models for predicting debris flow was calculated; (2)
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To predict the distribution of debris flow susceptibility in the
study area; (3) To analyze the susceptibility of debris flow
under different annual rainfall intensity, and find the annual
rainfall threshold.

Figure 1. Flow chart of research method.

2. THE STUDY AREA

2.1 Research Scop

The research area is located in the southeast of Tibet, in a
temperate monsoon climate with abundant rainfall and an
average annual temperature of 8.7℃ without high temperature
throughout the year. Yajiang flows from Lang County into
Nyingchi City, from Modog County into India. The elevation
ranges from 86 to 5110m.

The Yajiang River basin is prone to natural geological disasters,
which will cause serious damage to the surrounding
environment. For example, in 2010, an ice collapse occurred in
India due to weather conditions, which subsequently triggered a
massive mudslide disaster, causing continuous damage to 437
basic hydropower facilities. In 2013, flash floods and landslides
caused by heavy rainfall in northwestern Himalayan State killed
more than 6000 deaths. In this paper, the width of the two banks
of the Yajiang River in southeast Tibet is 2 km as the study area.
The area accounts for about 4309.5 ㎢ , recorded 42 potential
debris flow points. In order to calculate and verify the model,
another 42 non-debris flow points in the study area were
randomly selected. The assessment work was carried out
through 84 debris flow sample points, as shown in figure2.

Figure 2. Scope of the study area.
2.2 Disaster-inducing factors

2.2.1 Topographic factors: The research area has a special
plateau environment. The weathering degree of rocks, climatic
conditions and natural environment are distinctive at different
elevations. Slope aspect affects sunshine duration, vegetation
growth and airflow direction. The profile curvature can better
reflect the concavity of the overall topography than the slope.
Refers to the difference between the highest elevation and the
lowest elevation in a specific region, and the formula is:

minmax hhH  （1）

2.2.2 Meteorological factors: Most of the debris flows in
southeast Tibet are rainfall type, and the outbreak time is
concentrated in the rainfall season. Because the topographic
geology and environmental conditions do not change much in a
short period of time, the average annual rainfall is taken as the
main factor in this study.

2.2.3 Geological factors: After weathering for a long time, the
surface of some rocks becomes silty sand and melts into the soil.
According to the content of silty sand in the soil, the weathering
of surrounding rocks can be known. In addition, severely
weathered rocks can be transformed into solid sources of debris
flow under certain conditions. Therefore, the content of silt and
sand is selected as the geological factor.

The seismic fault zone in southeast Tibet is active. The
earthquake will seriously damage the mountain structure,
damage the ecological environment, cause secondary geological
disasters, is a natural disaster that cannot be predicted at present.

2.2.4 Hydrological factors: TWI and SPI are important
hydrological factors commonly used in the study of geological
hazards. The calculation is as follows:

  Slopetan/lnTWI  （2）

 SlopetanSPI  （3）

where ɑ is the cumulative upslope area of a drainage basin
through a point and tan(Slope) is the angle of the slope at the
same point. ɑ high index value indicates a great potential of
water accumulated due to low slope angles.

2.2.5 Inducer factors: Vegetation coverage has the function of
preventing soil erosion, especially in areas with high rainfall.
But in the case of debris flow, vegetation can also become a
solid source.
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2.2.6 The data source: Elevation data were obtained from
ASTGTM2 satellite images with an accuracy of 30 m. Debris
flow sites were provided by geological disaster survey data of
counties and cities in Tibet Autonomous Region. Other data
were obtained from the Center for Resources and
Environmental Science and Technology, Chinese Academy of
Sciences.

3. MATERIALS AND METHODS

3.1 Certainty Factor model

The CF model can well calculate the CF values of different
categories of the same factor, and the calculation formula is as
follows:

 

 


















PPsPPa  if   

PPaPPs
PPsPPa

PPsPPa  if   
PPsPPa

PPsPPa

CF

1

1
（4）

Where PPa is the occurrence probability of debris flow points in
different categories of single factor area, and PPs is the
occurrence probability of debris flow points in the total study
area. CF values range from -1 to 1, with the closer to 1 the more
certain, and the closer to -1 the more uncertain.

The 10 disaster causing factors of 42 debris flow sample points
in the study area were classified. The CF value is calculated by
CF model, as shown in Table 1.

Disaster factor classification Category area
（㎢）

Debris flow
point

The total number of
（%）

CF

Fault distance

0-2000 390.1167 3 7.14 -0.2126
2000-4000 787.4118 9 21.43 0.1488
4000-6000 477.3636 6 14.29 0.2268
6000-8000 434.9799 5 11.90 0.1536
8000-10000 640.6857 4 9.52 -0.3616
10000-12000 256.8735 9 21.43 0.7289
12000-14000 99.7353 6 14.29 0.8462

Elevation

2900-3100 657.1017 17 40.48 0.6294
3100-3300 369.9387 7 16.67 0.4897
3300-3500 296.8272 7 16.67 0.5925
3500-3700 261.7623 4 9.52 0.3658
3700-3900 213.7941 5 11.90 0.5890
3900-4100 153.8442 2 4.76 0.2528

NDVI

0.2-0.4 259.7121 3 7.14 0.1578
0.4-0.6 486.9963 11 26.19 0.5741
0.6-0.8 1062.332 18 42.86 0.4290
0.8-1 2428.728 10 23.81 -0.5799

Average annual
rainfall

600-700 1263.117 3 7.14 -0.7581
700-800 1779.83 22 52.38 0.2136
800-900 1069.183 14 33.33 0.2582
900-1000 183.0861 3 7.14 0.4092

Profile
curvature

0-5 1071.729 13 30.95 0.1985
5-10 1509.003 16 38.10 0.0816
10-15 962.2728 7 16.67 -0.2554
15-20 471.6315 5 11.90 0.0815
20-25 197.0577 1 2.38 -0.4817

Relief

0-10 264.9465 7 16.67 0.6373
10-20 535.6998 9 21.43 0.4240
20-30 512.3988 5 11.90 0.0013
30-40 586.0062 4 9.52 -0.3017
40-50 641.7855 6 14.29 -0.0411
50-60 595.4427 2 4.76 -0.6576
60-70 458.5059 4 9.52 -0.1058
70-80 301.1166 0 0.00 -1.0000
80-90 177.4665 3 7.14 0.4276
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90-100 236.2662 2 4.76 -0.1325

Silt content
10-20 335.1366 3 7.14 -0.0822
20-30 2598.244 27 64.29 0.0628
30-40 963.4104 12 28.57 0.2197

TWI

<0 1262.587 10 23.81 -0.1888
0-2 1247.879 10 23.81 -0.1792
2-4 943.4673 5 11.90 -0.4587
4-6 350.8659 2 4.76 -0.4175
6-8 141.7248 3 7.14 0.5449
8-10 173.4723 5 11.90 0.6684
10-12 130.9842 6 14.29 0.7950
12-14 28.9854 1 2.38 0.7246
>14 29.5353 0 0.00 -1.0000

SPI

<-8 414.8919 5 11.90 0.1932
-8,-4 872.6598 8 19.05 -0.0599
-4,0 877.1535 12 28.57 0.2904
0-4 1930.46 15 35.71 -0.2043
4-8 203.0436 2 4.76 0.0107

Aspect

north 532.7046 6 14.29 0.1360
northeast 513.9783 3 7.14 -0.4035
east 484.9236 2 4.76 -0.5792

southeast 543.9105 5 11.90 -0.0573
south 543.357 7 16.67 0.2459

southwest 559.8576 5 11.90 -0.0844
west 539.8083 4 9.52 -0.2415

northwest 580.2552 10 23.81 0.4388
plain 10.7055 0 0.00 -1.0000

Table 1. CF values of 10 disaster-causing factor classification levels.

3.2 CF-AHP

The Analytic Hierarchy Process (AHP) is an evaluation method
combining qualitative and quantitative methods, which
decomposes the elements related to decision-making into levels
of objectives, criteria and schemes, etc. The core is to rely on
experts to score the disaster-causing factors and calculate the
results after the evaluation matrix passes the consistency test].
The factor weight w can be calculated by AHP. Each factor w
multiplied by the corresponding CF value was added to obtain
the debris flow occurrence coefficient φ of the grid cell. If φ>0,
debris flow may occur. The larger φ is, the greater the
possibility is. If φ< 0, no debris flow will occur. Finally, 84
debris flow points in the sample database were used to verify
the accuracy.

In order to judge the rationality of factor scoring, formula (5) is
obtained by converting Aw=λw and then max is calculated.
According to Formula (6), CI can be obtained. The smaller the
CI value is, the more reliable the weight is. When CR<0.1, the
matrix passes the consistency test.

 




n

1i inw

Aw
i

max
(i=1,2,....n) （5）

   1 n/nCI （6）

RI
CICR  （7）

where A is the constructed judgment matrix, w is the weight, n
is the number of indicators, and RI can be obtained by
consulting the table.

The disaster factors are divided into two layers. In the first
criterion layer, A1 is terrain, A2 is solid source, and A3 is a
water source. The matrix is shown in Table 2, CR=0.058<0.1,
passing the consistency test. The second criterion layer is
divided into three matrices, as shown in Table 3, which are B1
elevation, B2 slope aspect, B3 profile curvature and B4 relief;
C1 fault distance, C2 silt content, C3 NDVI; D1 rainfall, D2
TWI, D3 SPI. CR was 0.033, 0.0582 and 0.089, respectively.

A1 A2 A3
A1 1 1/2 1/4
A2 2 1 1/2
A3 4 2 1

Table 2. Judgment matrix of the first criterion layer.
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B1 B2 B3 B4
B1 1 2 1/4 1/3
B2 1/2 1 1/6 1/4
B3 4 6 1 3
B4 3 4 1/3 1

C1 C2 C3
C1 1 1/4 1/2
C2 4 1 2
C3 2 1/2 1

D1 D2 D3
D1 1 3 5
D2 1/3 1 2
D3 1/5 1/2 1

Table 3. Judgment matrix of the second criterion layer.

3.3 CF-LR

The binary logistic regression model is an algorithm that
expresses or predicts trends with a linear relationship based on
statistics. 70% of the sample points, including 29 groups of
debris flow points and 29 groups of non-debris flow points,
were randomly selected to construct the model. The remaining
30% of debris flow was used to validate the model. The
calculated CF value was used to replace the data of 10 disaster
causing factors of debris flow and was used as the independent
variables of the model. Whether debris flow occurs (" 1 "means
debris flow occurs," 0 "means no debris flow occurs) is used as
the dependent variable of the model, and the results are shown
in Table 4.

Regression
coefficient Standard error Chi-square value Degree

freedom
Fault distance 2.217 1.746 1.612 1
Elevation 3.991 2.619 2.322 1
NDVI -0.282 1.067 0.07 1
Average annual rainfall -1.779 1.863 0.912 1
Aspect 0.917 1.574 0.339 1
Profile curvature 0.062 2.633 0.001 1
Relief 2.259 1.231 3.367 1
Silt content 0.292 5.683 0.003 1
TWI 3.088 2.195 1.98 1
SPI -4.016 2.269 3.132 1
constant -0.885 1.556 0.324 1

Table 4. Binary regression analysis table.

Therefore, the occurrence probability of debris flow in the cell can be expressed as follows:

8850100164908838292072592606205917047791328202991312172 .x.x.x.x.x.x.x.x.x.x.Y  （8）

3.4 CF-RF

Random Forest (RF) is a non-parametric statistical technique
based on regression or classification of decision tree set (forest).
The workflow flow chart is shown in Figure 3. The importance
of features is obtained by using 70% debris flow sample points.
The remaining 30% verifies model accuracy.

Figure 3. Schematic diagram of random forest.

4. RESULTS AND DISCUSSION

4.1 Comparison of model accuracy

In the AHP, the weight of the disaster factor is obtained by
multiplying the weight of the first criterion layer and the second
criterion layer. The characteristic importance of disaster-causing

factors was obtained after data training in Random Forest, and
the specific parameters are shown in Figure 4.

Receiver operating characteristics (ROC) graphs are useful for
organizing classifiers and visualizing their performance.
Subsequently, the accuracy of the three models was calculated
by the ROC curve, as shown in Figure 5. According to the AUC
area, the accuracy of the CF-LR coupling model reaches 0.911,
followed by the CF-RF coupling model and CF-LR coupling
model.
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Figure 4. AHP calculated weight and RF characteristic
importance value.

Figure 5. ROC curve verification of the three models.

4.2 Debris flow susceptibility map of the study area

GIS can well collect, analyze and process complex spatio-
temporal data and provide good help in processing geological
disaster information. The calculated CF value is used to assign
values to the raster graph, as shown in Figure 6. The CF-LR
coupling model is used to make the debris flow disaster
susceptibility distribution map. The evaluation chart of debris
flow susceptibility in the lower reaches of the Yajiang River is
shown in Figure 7.

(a) Fault distance (b) Elevation (c) NDVI

(d) Average annual rainfall (e) Aspect (f) Profile curvature

(g) Relief (h) Silt content (i) TWI

(j) SPI

Figure 6. CF value raster layer.
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The susceptibility was divided into four categories by equal
interval classification: low susceptibility area, mild
susceptibility area, moderate susceptibility area and high
susceptibility area. It can be seen from FIG. 7 that most of the
study area belongs to the low risk area of debris flow,
accounting for 65.55% of the total study area. mild, moderate
and high risk areas accounted for 11.58%, 10.39% and 12.48%
respectively. With the Grand Canyon as the boundary point, the
areas prone to debris flow are basically distributed on both
sides of the upstream river bank of the Grand Canyon, and a
small amount of them are distributed downstream.

The high susceptibility areas are mainly concentrated in the "n"
shaped watershed that just flowed into Nyingchi. The current in
this water is fast and complex, as shown in Figure 8. At
continuous turns, rapid water flow will also increase the hidden
danger of debris flow, as shown in FIG. 9 and FIG. 10.

Figure 7. Susceptibility map of rainfall-type debris flow in the

study area.

Figure 8. "n" shape watershed.

Figure 9. The first river bends continuously.

Figure 10. The second river bends continuously.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3/W1-2022 
14th GeoInformation for Disaster Management (Gi4DM 2022), 1–4 November 2022, Beijing, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-3-W1-2022-51-2022 | © Author(s) 2022. CC BY 4.0 License.

 
57



4.3 Disaster factor analysis

FIG. 11 is the floating point diagram of CF value obtained from
Table 2. The ordinate of the point is the CF value of each
category. It can be seen from the figure that the classification of
each disaster-causing factor with the greatest impact on debris
flow is respectively. It can be seen from the figure that each
disaster-causing factor has the greatest impact on debris flow in
the following categories: 1000-14000m (classification 7) of
fault distance, 2900-3100m (classification 1) of elevation, 0.4-
0.6 (classification 2) of NDVI, 900-1000mm (classification 4)
of annual rainfall, 0-5 (classification 1) of profile curvature,0-
10 (classification 1) of relief, 30-40 (classification 3) of silt, 10-
12 (classification 7)of TWI, -4-0 (classification 3) of SPI, and
northwest (classification 8) of slope aspect. FIG. 12 is the
average CF of each factor corresponding to 42 debris flow
points. It can be seen from the figure that elevation, fault
distance, NDVI and rainfall have a greater possible influence
on debris flow.

Figure 11. CF value floating-point diagram.

Figure 12. Average CF value.

4.4 Studies of different amounts of rainfall

Rainfall is the only factor that can influence the debris flow in a
short time. The study of rainfall can improve the prevention of
debris flow. The influence of annual rainfall on the study area
was studied by bringing CF values of different annual rainfall
into the model. CF value of 600-700mm rainfall in grade A is -
0.7581, that of 700-800mm rainfall in grade B is 0.2136, that of
800-900mm rainfall in grade C is 0.2582, and that of 900-
1000mm rainfall in grade D is 0.4092. The susceptibility of
debris flow at different gears is obtained through grid
calculation and processing, as shown in Figure 13. The results

showed that when the annual rainfall was in the range of 600-
1000mm, the proportion of low-prone areas increased with the
annual rainfall, while the proportion of high-prone areas
decreased with the annual rainfall.

The occurrence conditions of low, mild, moderate and high
debris flow were assigned 1, 2, 3, and 4 respectively. The
distribution area of each susceptible area was divided by the
total area of the study area to obtain the proportion of different
susceptible areas. The susceptibility index of the study area in
each case of A, B, C and D =1*proportion of low susceptibility
area +2*proportion of mild susceptibility area +3*Proportion of
moderate susceptibility area +4*proportion of high
susceptibility area. The relationship between the susceptibility
index and the occurrence threshold of debris flow is shown in
Figure 14.

The vulnerability value is higher in grade A, but the number of
landslides suddenly increases in grade B. This may be due to
the influence of geographical environment and geological
factors in the study area; when the annual rainfall reaches 600-
700mm, it is at the critical point of debris flow outbreak. After
that, due to drainage difficulties or sufficient water sources,
solid source movement is driven in some areas, and then a
debris flow disaster breaks out.

Figure 13. Comparison of vulnerable areas under four grades
of annual rainfall.

Figure 14. Susceptibility index and debris flow initiation
diagram in the study area.

5. CONCLUSION

By establishing a 1:1 database of debris flow points and non-
debris flow samples (70% randomly selected as the research
database, and the remaining points as the verification database)
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and collecting disaster factor information, the evaluation of CF-
AHP, CF-LR and CF-RF coupling models is relatively accurate,
but the accuracy of CF-LR model is up to 0.911.

The study concluded that debris flows are most likely to erupt
in the study area under these geological and geomorphic
conditions: 1000-14,000m away from the fault; altitude
between 2900 and 3100m; NDVI in 0.4 to 0.6; the profile
curvature ranges from 0 to 5; the fluctuation is 0-10; silt sand
content in 30%-40%; TWI in 10 to 12; SPI in the - 4-0; the
slope aspect is located in the northwest range.

In GIS, based on the CF-LR model calculation, the proportion
of low-risk areas in the study area is as high as 65.55%. The
proportion of high risk areas is only 12.48%. The remaining
mild and moderate risk areas accounted for a small proportion.
The danger zone is mainly distributed in the Grand Canyon and
the watershed before it, and is concentrated within 1 km on
both sides of the river bank.

Four levels of rainfall CF values were respectively brought into
the model, and the analysis showed that the annual rainfall
threshold of debris flow in the study area was within the range
of 600-700mm, and the debris flow erupted intensively when
the rainfall reached 700-800mm. After the rainfall of 800 mm,
the proportion of low-prone areas gradually increased, while
the proportion of high-prone areas gradually decreased.
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