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ABSTRACT: 

 

In recent years, the world is suffering from frequent natural disasters. Change detection (CD) technology can quickly identify the 

change information on the ground and has developed into an important means of disaster monitoring and assessment. Synthetic aperture 

radar (SAR) has the characteristics of periodic observation and wide coverage. Moreover, SAR has the advantages of penetrating, all-

day and all-weather observation, which plays an important role in disaster monitoring. Due to the rapid development of satellite sensors, 

the available CD data has been greatly enriched. This situation provides an opportunity for deep learning change detection (DLCD) 

techniques. However, SAR data are affected by speckle noise and lack of available labeled samples, it remains challenging to precisely 

locate the change information with high efficiency. This paper focuses on several commonly used and outstanding networks in the 

DLCD field to evaluate their performance and develop them to SAR data. In addition, Transfer learning experiments are designed to 

evaluate the generalization performance of each network for the CD task. The experimental results show that the Siamese CD network 

encoding multi-temporal data separately has the best ability to detect changes and generalization performance. In addition, adding high 

quality explicit difference guidance information to the network is more specific for the CD task, which can further improve network 

performance and refine the boundaries of changed ground objects on change map. 

 

 

1. INTRODUCTION 

In recent years, earthquakes, floods, landslides, forest fires, and 

other natural disasters have occurred frequently around the world, 

which has brought terrible suffering to humanity and nature. By 

using multi-temporal remote sensing data to detect change in 

affected areas, decision makers can quickly obtain disaster 

information. Synthetic aperture radar (SAR), as active remote 

sensing technology, has the advantages of penetrability, all-

weather all-day observation ability, and wide coverage.  As a 

result, SAR can obtain ground information even in the harsh 

environment with disasters, which provides technical support for 

rapid emergency response and disaster rescue. Therefore, SAR 

image change detection technology is widely used in land use, 

disaster monitoring, ecological protection, and agricultural 

investigation(Erten et al., 2016; Manavalan, 2017). 

 

The early research on change detection using SAR images is 

mainly based on manually designed features(Bovolo & Bruzzone, 

2005, 2007). These methods are simple to implement, but require 

high image quality and lack robustness to speckle noise. The deep 

learning (DL) technique has achieved great success in many 

fields due to its powerful feature extraction ability. Some 

researchers have made many attempts to introduce DL into 

remote sensing image change detection (RSCD) and created 

many surprising outcomes. 

 

According to different strategies of multi-temporal information 

fusion, the change detection based on the deep learning (DLCD) 

method can be divided into two types: (1) Early Fusion (EF): 

multi-temporal images are stacked together as different channels 

into the network to fuse temporal information. Simultaneously, 

other manually designed features can be added to increase the 

information  for  different  tasks. For  the  SAR  CD  task,  many  
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studies(Gong et al., 2016; R. Wang et al., 2021) first generated 

the difference image (DI) as a channel of input to increase 

explicit difference information. The deep belief network (DBN) 

and autoencoder require the input to be converted into a vector, 

and researchers usually connect the neighboring data of different 

times into a vector as the network input. These methods fuse 

multi-temporal information before the data is fed into the 

network. Therefore, similar methods are classified as Early 

Fusion, this term was first mentioned in Daudt et al., (2018), and 

this paper expands its meaning. (2) Siamese network: multi-

temporal images are fed into different branches of the Siamese 

network to extract their high-level feature representations and 

then change detection is performed. Some existing studies use the 

Siamese network to separately extract features from multi-

temporal images and detect change information according to the 

similarity measure of feature vectors (Chen et al., 2021; Zhan et 

al., 2017). Other researchers fed multi-temporal high-level 

features extracted from the Siamese network into a change 

decision network to output the final change map (M. Wang et al., 

2020). In addition, some researchers use the Siamese network as 

an encoder to extract features from multi-temporal data, then fuse 

these features in the decoding stage (Caye Daudt et al., 2018; 

Fang et al., 2022). These two designs can be based on patches or 

images, and both of them produce many state-of-art CD 

algorithms. However, these methods based on patch sampling 

cannot make full use of the spatial information, and overlap 

between patches leads to high computational cost, which limits 

the efficiency improvement of the CD algorithm. While a series 

of image-based fully convolutional semantic segmentation net-

works, CD algorithms based on FCN (Song et al., 2018), Unet 

(Fang et al., 2022), DeepLab (Y. Wang et al., 2021) and their 

variants can overcome these shortcomings. These methods can 

accept input of any size and directly generate dense predictions 

corresponding to each input pixel, which is efficient and accurate,  
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and has become the most popular network of DLCD. 

 

In this paper, SAR images are used to detect the change caused 

by natural disasters or environmental factors. The change 

detection based on Fully Convolutional Neural Network (FCNN) 

architectures are introduced and used in the multi-temporal SAR 

images. Firstly, we compare the Encoder-Decoder architecture 

represented by the Unet with the Siamese structure design and 

analyse the impact of these two structural designs on detection 

accuracy. Secondly, the DI image is added to the input of 

Encoder-Decoder architecture to evaluate the effect on the 

accuracy of the CD. In addition, the transfer learning experiment 

is designed to evaluate the ability of networks to detect change 

information. Finally, considering the scarcity of SAR datasets, 

we verify the generalization ability of the pre-trained model when 

applied to heterogeneous data. 

 

The rest of this paper is organized as follows: the principle and 

detailed procedures of the proposed method are described in 

Section 2. Section 3 provides the experimental results and 

analysis. Finally, our conclusions are drawn in Section 4. 

 

2. METHOD 

Based on the work of Caye Daudt et al. (2018), we design an 

unsupervised CD flow that automatically selects reliable training 

samples from SAR data to evaluate the performance of several 

different network structures for SAR image change detection. 

Furthermore, we are interested in the network's ability to detect 

change information. Therefore, we design transfer learning 

experiments to evaluate the generalization performance of these 

networks. 

 

2.1 Sample Selection and Augmentation 

 

Figure 1. The flowchart of SAR change detection based on 

deep learning 

 

The CD method in this paper is designed to work in an 

unsupervised manner via generating training samples with a pre-

task (Qu et al., 2022). Given two SAR images acquired at 

different times in the same geographical area, the difference 

image (DI) is generated by using the log-ratio operator (Bovolo 

& Bruzzone, 2005). Hierarchical FCM (HFCM, Bazi et al., 2006) 

clustering is used to classify DI into three categories: changed 

class, unchanged class, and uncertain class. Pixels classified as 

changed and unchanged class can be considered as reliable 

samples with a high probability of having changed or no change. 

 

Although the training samples have been obtained, only a few 

pixels are selected as samples, and others need to be further 

classified, so the training samples are still scarce. Therefore, we 

need to use data augmentation techniques that can augment 

samples to prevent overfitting and improve network generaliza-

tion ability and performance (Krizhevsky et al., 2012; Zhou et al., 

2018). we applied random crop with a 50% probability to expand 

training data. Then we use these samples to train the network. 

This CD flow is unsupervised even though the training of the 

network is supervised. The flowchart of this CD flow is shown in 

Figure. 1 

  

2.2 Networks 

Caye Daudt et al. (2018) proposed three Fully Convolutional 

Neural Network (FCNN) architectures to perform change 

detection on multi-temporal images of earth observation. We 

extend the other two structures based on their work and a total of 

five different networks for our experiments. 

 

2.2.1 FC-EF: The first architecture, named Fully 

Convolutional Early Fusion (FC-EF), The term “Early Fusion 

(EF)” was proposed by Daudt et al. (2018). The EF network in 

the original paper is patch-based. Caye Daudt et al. (2018) 

extended it to an image-based full convolutional network and 

obtained the FC-EF (Figure 2 (a)). This network is directly based 

on the UNet (Ronneberger et al., 2015) model, but FC-EF only 

contains four layers of encoder-decoder, which is shallower than 

the U-net. The input of the network is stacking multi-temporal 

images. 

 

2.2.2 FC-EF-DI: Based on FC-EF, we replaced the input with 

concatenating multi-temporal images and DI generated by the 

log-ratios operator, in other words, incorporating difference 

information at the beginning of the network. This design has been 

used in many studies, and we intend to examine whether this 

design could improve detection accuracy. This structure is named 

FC-EF-DI, it is the same as FC-EF except for the number of input 

channels (Figure 2 (a)). 

 

2.2.3 FC-Siam-conc: The third architecture is a Siamese 

Network, also inspired by the work of Daudt et al. (2018). The 

basic idea is to process multi-temporal images in parallel through 

two branches with shared weights and fuse them at the output. 

Caye Daudt et al. (2018) extended it to the fully convolutional 

network with Decoder-Encoder architecture (Figure 2.(b)). The 

encoding module of the network is divided into two branches 

with shared weights for processing multi-temporal pairs of 

images respectively, and the features from the two branches were 

fused in the decoding module. Each decoding layer uses two skip 

connections, which concatenate the output of the decoding layer 

with features of the corresponding scale from two encoding 

streams. This network structure is named Fully Convolutional 

Siamese-concatenation (FC-Siam-conc). 

 

SAR Image I1

Generate a difference image

Obtain the binary change 

map

SAR Image I2

Hierarchical FCM clustering

Choose training samples

Sample augmentation

Train network

Whether the training

is complete?

Yes

No
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Figure 2. Our implementation of three different change detection frameworks proposed by Caye Daudt et al.(2018) . Two types of 

residual blocks and encoder modules are used. Xe represents the input features from the last layer and Xe
′  represents the output features 

at the encoding stage. Xd, Xd
′  has a similar denotion to Xe, Xe

′  but belong to the decoding stage. Xe1,2
 denotes the combination of 

encoder multi-temporal outputs. Orange arrows illustrate weight sharing. 

 

2.2.4 FC-Siam-diff: This network differs from FC-Siam-

conc only in how skip connections are used. Each decoding block 

using one skip connection obtains the absolute value of feature 

difference from the corresponding scale of the encoding stream 

(Figure 2.(c)). As detecting differences in the multi-temporal data 

is critical in the CD task, this design is intuitive. 

 

2.2.5 FC-Siam-conc&diff: This structure is a combination of 

FC-Siam-diff and FC-Siam-conc, named FC-Siam-conc&diff. 

The original output of two encoding streams and the absolute 

value of their difference are concatenated simultaneously via skip 

connections. In this way, the network can maintain the original 

information of the high-level features from encoding streams, 

and explicit guidance of the difference information can be 

obtained. We are interested in whether a combination of the two 

structures could improve the network performance. Inevitably, 

the number of training parameters increases. 

 

The above five networks have the same backbone. Caye Daudt et 

al. (2018) failed to provide further details about the 

implementation of the network. Our implementation refers to the 

work of Zhang et al., (2021), the details are shown in Figure 2. 

Each encoding block and decoding block uses the residual 

connection to prevent gradient disappearance to train a deeper 

network, and the skip connection between the encoder and 

decoder is used to add more local information to high-level 

features and fuse multi-temporal information. Readers can refer 

to Figure 2 for more details. 

 

2.3 Loss Function 

As the distribution of changed and unchanged classes is often 

highly unbalanced in the CD task, the loss function will be biased 

to the class with large samples during training, resulting in low 

recognition accuracy for the class with small samples. Therefore, 

it is necessary to use the weighted cross-entropy function to train 

the network, which is defined as follows: 

 

𝐿𝐶𝐸(𝑷, 𝑮) =
1

𝑁
∑[−𝜔𝑐𝑮𝑖 log(𝑷𝑖) − 𝜔𝑢(1 − 𝑮𝑖) log(1 − 𝑷𝑖)]

𝑖

 

(1) 

where       𝑷 : change predicted map 

                  𝑮  : ground truth 

                   𝑖  :  pixel index 

                 𝜔𝑐 : weights for the changed classes 

                 𝜔𝑢 : weights for the unchanged classes 
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Dice Loss is the appropriate choice when the number of 

foreground and background pixels is unbalanced as in CD tasks. 

Dice similarity can  measure the  similarity  of two sets, and  its 

value is [0, 1] (Equ.2). For the change predicted map 𝑷  and 

ground truth 𝑮, the Dice Loss is defined as (Equ.3):  

 

𝐷𝑖𝑐𝑒 =
2|𝑷⋂𝑮|

|𝑷| + |𝑮|
  (2)      

 

𝐿𝐷𝑖𝑐𝑒(𝑷, 𝑮) = 1 − 𝐷𝑖𝑐𝑒                             (3)                                                                         

 

The Joint Loss Function is defined as follows (Equ.4), and we 

use it to train our CD networks. 

 

𝐿 = 𝐿𝐶𝐸(𝑷, 𝑮) + 𝐿𝐷𝑖𝑐𝑒(𝑷, 𝑮)                       (4) 

 

2.4 Transfer Learning 

Transfer Learning generally refers to using the mastered know-

ledge to acquire new knowledge. The core of this concept is to 

find the similarity between the source domain and the target 

domain and use this similarity as a bridge to achieve the purpose 

of transfer learning. DL has a strong dependence on a large 

amount of training data, and we expect our network can 

understand the underlying nature of data. In the RSCD, although 

a large amount of observation data has been accumulated, 

available labeled data is still scarce, especially for SAR data. 

However, if we design a network with strong change detection 

ability, which is the most critical for the CD task, we use this 

network for different sources of data with different distributions, 

also can better complete the change detection task, we will 

consider that this network possesses good generalization 

performance for CD task. Briefly, designing networks with 

strong change detection capabilities is crucial for making full use 

of multi-source remote sensing CD datasets to accomplish more 

complex CD tasks with higher accuracy.  

 

3. EXPERIMENTS AND RESULTS 

This section is organized as follows. Section 2.1 describes the 

datasets; Section 2.2 introduces the evaluation criteria; In Section 

2.3, comparative experiments are designed to evaluate the 

performance of five different change detection networks on SAR 

data.  In Section 2.4, transfer learning experiments are designed 

to evaluate the generalization performance of each network for 

heterogeneous data. 

 

3.1 Datasets 

3.1.1 Ottava dataset: The dataset was acquired by the 

Radarsat satellite over Ottawa in May 1997 and August 1997. 

The changes were caused by summer flooding. 

 

       
(a)                           (b)                           (c) 

Figure 3. Ottava dataset. (a) Image acquired in May 1997, 

during the summer flooding. (b) Image acquired in August 

1997, after the summer flooding. (c) Ground truth. 

3.1.2 Sulzberger dataset: The dataset was acquired by the 

Envisat satellite on March 11 and 16, 2011. Both the images 

show the process of sea ice breakup. When the Tohoku tsunami 

in the Pacific Ocean was triggered on March 11, 2011, the 

massive waves caused the ice shelf to flex and break (Gao et al., 

2019). 

 

       
(a)                           (b)                           (c) 

Figure 4. Sulzberger dataset. (a) Image acquired on March 11, 

2011. (b) Image acquired in on March 16, 2011. (c) Ground truth. 

 

3.1.3 Yellow River dataset: The dataset was acquired by 

Radarsat-2 satellite in June 2008 and June 2009 at the region of 

Yellow River Estuary in China. It is worth noting that the two 

images are single-look image and four-look image, respectively. 

This indicates they suffer from different levels of speckle noise. 

This dataset is associated with environmental change. We 

selected two typical changed areas, the YellowRiver -Inland 

water (Figure 6. second row) and YR-Farmland (Figure 6. third 

row).  

 

3.1.4 Muragia dataset：The dataset was acquired by the 

Landsat-5 satellite in September 1995 and July 1996. The single-

band optical images show the changed lake in Muragia, Italy 

(Figure 7). 

 

Ottawa and Sulzberger Dataset were used to evaluate the 

performance of five different CD networks on SAR data, and 

Yellow River and Muragia datasets were used to conduct transfer 

learning experiment.  

 

3.2 Evaluation Criteria 

The evaluation indicators used in this paper are: overall accuracy 

(OA), precision (Pre), recall, F1-score, and Kappa, which are 

computed by: 

 

𝑂𝐴 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝐹 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)             (5) 

 

𝑃𝑟𝑒 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)                               (6) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)                            (7) 

 

𝐹1_𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (8)  

 

𝑃𝑒 =
(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁) + (𝐹𝑁 + 𝑇𝑁) × (𝐹𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 

(9) 

𝐾𝑎𝑝𝑝𝑎 =
𝑂𝐴 − 𝑃𝑒

1 − 𝑃𝑒
 (10)     

 

where  TP: the number of true positives 

TN: the number of true negatives 

FP: the number of false positives 

FN: the number of false negatives 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3/W1-2022 
14th GeoInformation for Disaster Management (Gi4DM 2022), 1–4 November 2022, Beijing, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-3-W1-2022-61-2022 | © Author(s) 2022. CC BY 4.0 License.

 
64



 

 

 

       

       
(a)                                (b)                               (c)                                 (d)                              (e)                               (f)  

Figure 5. Visualized results for different change detection networks on the Ottawa dataset (first row) and Sulzberger dataset (second 

row). (a) Ground truth. (b) FC-EF. (c) FC-EF-DI. (d) FC-Siam-conc. (e) FC-Siam-diff. (f) FC-Siam-conc&diff. 

 

Network 
Results on Ottava dataset Results on Sulzberger dataset 

OA Pre Recall F1 Kappa OA Pre Recall F1 Kappa 

FC-EF 97.12 96.51 84.83 90.29 88.61 97.53 95.23 91.78 93.47 91.95 

FC-EF-DI 96.18 88.20 87.54 87.87 85.60 97.77 95.51 92.34 93.90 92.71 

FC-Siam-conc 97.96 95.67 91.21 93.39 92.18 98.04 95.06 94.73 94.89 93.68 

FC-Siam-diff 96.84 96.13 88.22 92.01 90.58 97.92 95.68 93.39 94.52 93.34 

FC-Siam-conc&diff 96.20 92.78 82.40 87.28 85.06 97.64 95.55 92.03 93.76 92.30 

Table 1. Change detection results for different networks on the Ottawa dataset (left) and Sulzberger dataset(right). Pre and F1 

representative precision and F1-score respectively. The best results are marked in bold and the second-best results are underlined. 

 

3.3 Comparative Experiments 

This paper evaluated SAR image change detection networks on 

Ottawa and Sulzberger datasets. We implemented five networks 

in PyTorch, and the training was powered by an NVIDIA 

GeForce RTX 3060 Laptop GPU. 

 

The hyperparameter setting is shown in Table 2. For all the 

datasets and networks, we use the Adaptive moment Estimation  

(Adam) optimizer to optimize the parameters and train 100 

epochs. The initial learning rate is set to 0.001. We used the data 

augmentation strategy described above to augment the samples 

and prevent overfitting. The normalized transform is applied to 

the data.  𝜔𝑐 and  𝜔𝑢 in the weighted cross-entropy loss function 

are set as (0.6, 0.4). 

 

Hyperparameter Setting 

𝜔𝑐 , 𝜔𝑢 0.6, 0.4 

Initial learning rate 0.001 

optimizer Adam 

Table 2. Hyperparameter setting. 

 

Figure 5 shows the CD results using different networks. The 

quantitative results are listed in Table 1. For the Ottawa dataset, 

FC-Siam-conc and FC-Siam-diff based on Siamese network 

achieve the best and second-best results respectively.  These 

results suggested that the design of Siamese structure is 

beneficial to improve the accuracy of change detection. The 

Siamese network separately extracts the high-level features of 

multi-temporal images, then integrates them in the high-

dimensional space. We infer that these high-level features 

contain less noise, therefore, Siamese structure design is a better 

fusion strategy for multi-temporal information. Furthermore, FC-

Siam-conc outperforms FC-Siam-diff. The former has a larger 

capacity, and it’s skip connection retains more original 

information about the multi-temporal high-level features. FC-EF, 

as a shorter version of the Unet, also perform well. However, FC-

EF-DI show poor performance. We estimated that the poor 

quality of the DI adds a noisy difference guide. The results of 

Sulzberger dataset also confirm the above conclusion. The results 

of both datasets demonstrated that FC-Siam-conc&diff achieves 

bad results, so this design leading to redundant information is 

unnecessary. 

 

3.4 Generalization performance evaluation  

The Siamese network proposed by Caye Daudt et al.(2018) is 

aimed at the CD task. It can use the available multi-source CD 

dataset to train without the addition of other types of data. 

Therefore, these networks should possess a better ability to detect 

change information but not others. We designed transfer learning 

experiments to evaluate the generalization performance of FC-

EF, FC-Siam-conc, FC-Siam-diff, and FC-Siam-conc&diff. 

 

This part of the experiment still follows the unsupervised flow 

mentioned above. The Ottawa dataset is used to select reliable 

samples and train these networks to get the pre-trained models. 

These models are used to perform change detection on other 

datasets to evaluate the generalization performance of each 

network. 

 

First, we applied these pre-trained models to other SAR datasets 

which are acquired from different sensors and have different 

causes of change. Furthermore, the unsupervised flow in this 

paper  has  yielded  poor  results  when  applied  to   these  datasets.  
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(a)                          (b)                          (c)                        (d)                          (e)                          (f)                         (g) 

Figure 6. Visualized change detection results for different pre-trained networks on the SAR dataset, Sulzberger dataset (first row), 

YellowRiver-Inland water (second row), YellowRiver-Farmland (third row).  (a) Image captured at 𝑡1. (b) Image captured at 𝑡2 . (c) 

Ground truth. (d) FC-EF. (e) FC-Siam-conc. (f) FC-Siam-diff. (g) FC-Siam-conc&diff. 

 

       

(a)                          (b)                          (c)                        (d)                          (e)                          (f)                         (g) 

Figure 7. Visualized change detection results for different pre-trained networks on the optical Muragia dataset. (a) Image captured at 

𝑡1. (b) Image captured at 𝑡2 . (c) Ground truth. (d) FC_EF. (e) FC_Siam_conc. (f) FC_Siam_diff. (g) FC_Siam_conc&diff. 

 

Network 
Results on Sulzberger dataset Results on YellowRiver-Inland water dataset 

OA OA OA OA OA OA Pre Recall F1 Kappa 

FC-EF 97.77  97.74  97.74  97.74  97.74  97.74  78.77  89.61  83.84  83.62 

FC-Siam-conc 97.39  97.27  97.27  97.27  97.27  97.27  84.08  83.20  83.64  83.43 

FC-Siam-diff 98.01  98.77  98.77  98.77  98.77  98.77  88.32  84.42  86.33  86.15 

FC-Siam-conc&diff 96.89  97.00  97.00  97.00  97.00  97.00  0.00  0.00  NaN 1.62 

Table 3. Change detection results for different pretrained networks on the SAR dataset, Sulzberger dataset (left) and YellowRiver-

Inland dataset (right). Pre and F1 representative precision and F1-score respectively. The best results are marked in bold and the 

second-best results are underlined. 

 

Network 
Results on YellowRiver-Farmland dataset Results on Muragia dataset 

OA Pre Recall F1 Kappa OA Pre Recall F1 Kappa 

FC-EF 83.32 0.00  0.00  NaN 8.27 89.49  0.00  0.00  NaN 5.37  

FC-Siam-conc 78.54 0.00  0.00  NaN 9.38 98.40  86.69  87.49  87.09  86.24  

FC-Siam-diff 98.63 94.06  82.03  87.63  86.91 98.25  81.12  93.42  86.84  85.90  

FC-Siam-conc&diff 78.05  0.09  0.25  0.13  9.32  90.75  0.00  0.00  NaN 4.28  

Table 4. Change detection results for different pretrained networks, YellowRiver-Farmland dataset (left) and optical Muragia dataset 

(right). Pre and F1 representative precision and F1-score respectively. The best results are marked in bold and the second-best results 

are underlined. 
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Figure 6 shows the visualization results obtained by the four pre-

trained networks, and Table 3 show their quantitative results. For 

the Sulzberger dataset (Figure 6.first row), the results are almost 

comparable to the above, and the boundary of the part marked by 

the red box is closer to the Ground truth than the above results. 

FC-Siam-diff had the best performance and the least false alarm. 

FC-EF and FC-Siam-conc achieved the second-best result, and 

FC-Siam-conc&diff got the worst result. For the Yellow River 

dataset, it is challenging to detect changes due to different levels 

of noise in image pairs. For Inland water (Figure 6.second row), 

only FC-Siam-diff can detect the changes in the red box. For the 

Farmland data (Figure 6. third Row), only FC-Siam-diff 

effectively detects changes, all other networks achieved messy 

results. 

 

Therefore, a structure design like FC-Siam-diff adding an 

effective difference information guide to the network, is more 

capable of detecting changes. Even if its pretrained model is used 

for data with different sensors, different resolutions, and different 

change causes, it can achieve better results, so we consider that 

this kind of network has a stronger generalization ability. 

 

We further applied the pre-trained model based on the Ottawa 

dataset to optical CD datasets, which is more challenging as their 

imaging mechanism is completely different. Figure 7 shows the 

visualized results, and Table 6 shows their quantitative compa-

rison. For the optical Muragia Dataset, FC-Siam-conc and FC-

Siam-diff win by a large margin. FC-Siam-diff is best in 

preserving change details although the accuracy metrics are 

slightly worse than FC-Siam-conc. The other two structures fail 

to detect any useful information. 

 

Therefore, the structure design like FC-Siam-conc and FC-Siam- 

diff that uses different encoding streams to process the multi-

temporal data separately and then fuses them in an abstract high-

dimensional space, is beneficial to improve the ability of the 

network to detect changes. Moreover, this ability can be 

maintained even for transfer learning between heterogeneous 

data. 

 

4. CONCLUSIONS 

In this paper, we evaluate the performance of several network 

structures commonly used in the field of change detection in SAR 

images. In addition, we designed transfer learning experiments to 

evaluate the generalization performance of each network on the 

CD task. The experimental results show that the network design 

similar with FC-EF (the most basic and widely used one) is 

simple and efficient for CD. However, FC-EF-DI based on FC-

EF is generated by adding DI to the input. Although more 

information is added to the network, the poor quality of DI also 

brings noisy difference guidance information to the network, 

which often leads to worse CD results. The network of FC-Siam-

conc and FC-Siam-diff based on the Siamese structure is better 

at detecting change information and generalization performance, 

and FC-Siam-diff is best at preserving the boundaries of the 

changed areas. However, FC-Siam-conc&diff, the combination 

of them with larger model capacity, has the worst performance 

unexpectedly for the data used in this paper. Therefore, if readers 

consider using it for other data, it is necessary to implement 

several experiments to test the effect. In conclusion, this study 

demonstrates the ability and generalization performance of 

various CD algorithms in SAR image change detection. We hope 

that these conclusions will aid researchers to design more 

effective CD algorithms in the future. 
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