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ABSTRACT: 

 

Today, natural disasters have a huge impact all over the world, while GNSS plays an important role in disaster relief and rescue. 

However, when the ground surface is severely damaged and covered, satellite positioning means are denied. In addition, disaster site 

conditions are often very complex and may require unmanned robots such as UAVs for pre-surveying. To address the raised 

problem, we reconstructed the 3D scene by laser SLAM; improved PRM path planning method for better computational efficiency 

while solving feasible path results; and realized UAV autonomous flight along the planned path in GNSS-denied environment. The 

experiments prove that the reconstructed scene map provides a feasible means for UAV autonomous navigation in GNSS-denied 

environment, and the proposed path planning method has a significant improvement in computational efficiency. 

 

 

                                                                 
* Corresponding author 

1. INTRODUCTION 

Natural disasters have brought undeniable impacts to all 

countries and regions of the world, threatening human lives and 

safety, as well as interfering with economic and social 

development. Satellites play an important role in the monitoring 

and assessment of disasters. Satellite remote sensing (Rees, 

2013) is available to assist in the monitoring and management 

of disasters (Kaku, 2019), while Global Navigation Satellite 

System (GNSS) (Hofmann-Wellenhof et al., 2007) can provide 

location information for emergency rescue. However, when 

natural disasters cause serious damage to the ground surface 

resulting in it being covered and obscured, signals from 

traditional satellites have difficulty reaching the ground thus 

cannot obtain the real situation on the ground. This makes 

satellite remote sensing failed and satellite positioning denied, 

bringing difficulties and challenges to disaster relief and rescue. 

Therefore, we need to develop new means of environmental 

sensing and positioning, and integrate them into emergency 

equipment such as unmanned aerial vehicles (UAVs), in order 

to achieve rapid reconstruction and localization of damaged 

areas. 

 

The 3D scene is reconstructed using UAV to serve as a map for 

the priori knowledge of path planning. Models of the buildings 

are widely used, such as Building Information Modeling (BIM) 

(Xu et al., 2017) and terrain models (Dehbi et al., 2020). 

However, the buildings are likely to be severely damaged by 

natural disasters, so that the previous model will not be able to 

correctly represent the actual situation. There are also methods 

to reconstruct the scene based on images and perform path 

planning (Zhang et al., 2020), but optical images require good 

lighting conditions in the scene, which is difficult to meet after 

a power outage caused by disasters. In contrast, light detection 

and ranging (LiDAR) technology works in a poor lighting 

environment, and rapid 3D scene reconstruction by the UAV 

with LiDAR has proven to be effective (Chiang et al., 2017). 

 

Based on LiDAR, laser simultaneous localization and mapping 

(SLAM) (Bailey, Durrant-Whyte, 2006) provides a feasible 

method for 3D scene mapping and local navigation. Hector 

SLAM (Kohlbrecher et al., 2011) achieves point cloud 

matching by aligning point clouds to grid maps. LiDAR 

odometry and mapping (LOAM) (Zhang, Singh, 2014) splits 

the task into high-frequency localization and low-frequency 

mapping, which substantially improves real-time performance. 

LiDAR inertial odometry via smoothing and mapping (LIO-

SAM) (Shan et al., 2020) adds an inertial measurement unit 

(IMU) pre-integration factor to the SLAM back-end for factor 

graph optimization. Fast direct LiDAR-inertial odometry 

(FAST-LIO) (Xu, Zhang, 2021) fuses feature point data of IMU 

and LiDAR, which can cope with fast motion and noisy 

environments. Following some recommended strategies (Karam 

et al., 2020), laser SLAM can well meet both outdoor and 

indoor mapping requirements. Laser SLAM can achieve 

autonomous localization without relying on GNSS and is 

adaptable in environments with poor lighting conditions, which 

can play a unique role in disaster relief and rescue. 

 

Maps of the disaster scene are the basis for navigation, 

according to which ambulance crews recognize the situation 

and carry out rescue. However, when the disaster scene is too 

complex and unpredictable, it is safer to use unmanned robots 

for pre-search, especially UAVs with better manoeuvrability. 

Therefore, it is also critical to plan search paths for UAVs based 

on disaster scene maps. Considering the complexity and 

uncertainty of the disaster scene, the path planning algorithm 

has to ensure its robustness and efficiency. As a result, graph-

based path planning algorithms are more suitable for this 

application because they are often simpler and faster. 

 

The research on graph-based path planning is maturely 

developed. A* (Hart et al., 1968) and D* (Ferguson, Stentz, 

2007) are both commonly used path search algorithms, they are 

both heuristic search methods to obtain a best path by 

predicting a minimum cost. Besides, rapidly exploring random 

tree (RRT) can also be used in UAV path planning (Yin et al., 
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2017), which is based on random sampling to continuously 

expand a tree-like search path from the start. It is fast in 

exploration but not guaranteed to obtain an optimal path. 

Probabilistic roadmap (PRM) also has advantages and is 

applied to the quadrotor UAV (Chen et al., 2019). It constructs 

a connection network by random sampling in the map and then 

performs path search on the network, which has the capability 

of finding a better path. 

 

In this paper, we proposed a 3D scene reconstruction and path 

planning method for UAV in GNSS-denied environment. The 

3D scene is reconstructed by laser SLAM; the PRM path 

planning method is improved for better computational 

efficiency while solving feasible path results; and the UAV 

flight is realized in GNSS-denied environment where the UAV 

can autonomously fly along the planned path. 

 

2. METHODOLOGY 

The workflow of our method is shown in Figure 1, consisting of 

the following parts: 

 

1. Laser SLAM, to capture the point cloud of the 3D 

scene frame by frame and estimate the pose of the UAV 

during scanning. 

2. Grid map generation, to produce a basis map for path 

planning and navigation. 

3. Improved PRM path planning, to rationally construct 

a connection network, adaptively update and search for a 

collision-free path. 

4. Path optimization, to obtain a straightforward and 

feasible path by reordering waypoints in the path. 

5. UAV positioning and navigation control, to 

implement the autonomous flight along planned path in 

GNSS-denied environment. 

 

 

Figure 1. Workflow of our method. 

 

2.1 3D Scene Reconstruction Based on Laser SLAM 

Based on laser SLAM, GNSS is not required in our method of 

3D scene reconstruction which is efficiently achieved with only 

two kinds of sensors, LiDAR and IMU. Laser SLAM is divided 

into two parts: front-end and back-end. 

 

The SLAM front-end is mainly to estimate real-time state of the 

UAV based on sensor fusion. The commonly used sensor fusion 

method is Kalman filter (Welch, 2020). The point cloud of the 

3D scene is acquired using LiDAR, and the UAV pose is 

estimated using IMU. They respectively form the observation 

and prediction equations in the Kalman filter framework. 

Solving the equation, we can obtain the UAV pose state at 

every corresponding moment. 

 

The SLAM back-end is mainly to optimize the historical state 

of the UAV. We use factor graph (Indelman et al., 2012) to 

constrain the odometry and IMU pre-integration and obtain a 

maximum posteriori estimation by measuring the residuals, 

which is essentially defining and solving a least squares 

problem, i.e., achieving further correction of the UAV historical 

state by nonlinear optimization. The advantage of the factor 

graph method is that it transforms the action of various 

constraints into a product of factors, simplifying the 

computation while allowing the convenient inclusion of 

different constraints. 

 

According to the optimized historical state sequence of the 

UAV, each frame of the point cloud is transformed according to 

the UAV pose at the moment of its observation, and then all 

transformed point clouds are fused to a global point cloud. 

Based on this global point cloud, we can then construct a map 

of the scene. Firstly, the spatial entities such as ceiling and floor 

are identified by detecting the plane and segmented out from 

the global point cloud. Secondly, the initial top view of the 3D 

scene is constructed based on the remaining point cloud using a 

projection method. Finally, the scene top view is converted into 

a binary grid map. The grid map is divided into obstacle grids 

and free grids. An obstacle grid represents a square area that 

cannot be occupied or passed, while a free grid represents an 

area that can be traversed and hovered by the UAV. The grid 

map is used as the navigation map for path planning. 

 

2.2 Connection Network Initialization 

PRM is a graph-based path planning method. It randomly 

samples in the map as candidate nodes and adds connected 

edges between those which are visible to each other, thus 

construct a connection network. To better distinguish the edges, 
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we divide them into two categories and simply name the edges 

that have two visible nodes as good edges, and the other as bad 

edges. The path search is performed on the connection network 

to obtain a path from the start to the end. 

 

The most time-consuming part of the basic PRM method is the 

connectivity check of the nodes, so we adopt some strategies in 

order to reduce the computational effort and improve the 

computational efficiency. The improvement strategies include 

specifying the connection distance and incrementally updating 

the path sections. 

 

To initialize the connection network, firstly, a certain number of 

points are randomly sampled in free grids of the map as 

candidate nodes of the connection network. Secondly, a 

threshold of connection distance is set, and the connections 

between nodes smaller than this threshold are regarded as 

candidate edges, which are checked for connectivity later. The 

connection networks under different connection distances are 

shown in Figure 2. 

 

  
(a) (b) 

  
(c) (d) 

Figure 2. Connection network under different connection 

distances of 0.1 (a), 0.25 (b), 0.5 (c) and 1 (d). The blue and red 

lines represent the good and bad edges. 

 

The connection distance threshold should be adapted to the 

number of sampling points. When there is a small number of 

sampling points, the threshold should be increased, otherwise it 

may lead to a shortage of effective edges in the initial network; 

when there is a large number of sampling points, the threshold 

should be reduced, otherwise it may lead to many redundant 

edges in the initial network, bringing unnecessary checks and a 

decrease in search efficiency. 

 

2.3 Path Section Incremental Update and Search 

We set a threshold of connection distance during the network 

initialization to reduce ineffective checks, since inter-node 

connectivity checks requires much computation, and nodes that 

are farther away are more likely to be blocked by obstacles in 

the scene, so calculating their connectivity is not effective in 

increasing the overall connectivity of the network. In addition, 

as a result of the greedy strategy that the path search adopts, not 

all edges in the network will be searched. Instead of checking 

connectivity of all candidate edges after initialization, we 

directly start path searching and perform connectivity checks 

during searching, and update the network after each check. 

 

During path searching, only the currently searched edge is 

checked for connectivity. If the edge collides with obstacle 

grids in the map, it will be removed from the network, then we 

search for a new path that can connect the two nodes of the 

removed edge; if the edge passes the collision check, it will be 

added to the result path, and then we continue searching 

backward. These steps are repeated until we obtain a collision-

free path from the start to the end, as shown in Figure 3. 

 

The method of incremental update and search greatly reduces 

the number of collision checks for they are performed only 

when needed. Not only does this method improve 

computational efficiency, but the path is collision-free with the 

obstacles, ensuring a safe flight for UAV in the scene. 

 

  
(a) (b) 

Figure 3. Path sections before (a) and after (b) update. 

 

  
(a) (b) 

Figure 4. Path before (a) and after (b) optimization. 

 

2.4 Waypoint Optimization 

We name the initially searched path as candidate path which 

consists of candidate waypoints for the UAV flight. With the 

incremental update of path sections, on the one hand, we ensure 

that the candidate path is collision-free with the environment, 

on the other hand, we cannot ensure that it is straightforward 

and smooth. This is because the two nodes on each side of a 

checked edge are always fixed during updating, based on which 

we search for new connections. Despite the fact that this 

strategy may lead to unnecessary detours, it is still possible to 

obtain a shorter and smoother path if we reorder and remove 

redundant waypoints in the candidate path. 

 

In order to further optimize the candidate path, we perform 

cross-waypoint connectivity check for each candidate waypoint 

in the path. If two distant and non-adjacent waypoints are 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3/W1-2022 
14th GeoInformation for Disaster Management (Gi4DM 2022), 1–4 November 2022, Beijing, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-3-W1-2022-69-2022 | © Author(s) 2022. CC BY 4.0 License.

 
71



 

 

visible to each other, we directly reconnect them and discard 

the other waypoints in between. 

 

With this waypoint optimization method, we can obtain a 

straightforward optimal path, as shown in Figure 4. The optimal 

path helps to achieve better motion of the UAV along the 

waypoints, reduces energy loss due to severe pose changes as 

well as improves safety of the flight. As for path smoothness, 

there is little need to further optimize the path for its 

smoothness, since the UAV we use is a quadcopter which has 

few motion constraints, it has very low requirements for the 

smoothness of the path. However, the result path can easily be 

further optimized by curve generation methods, e.g., B-splines 

(Stoican et al., 2017), Bezier curves (Faigl, Váňa, 2018). 

 

2.5 UAV Positioning and Navigation in GNSS-denied 

Environment 

In the “3D Scene Reconstruction Based on Laser SLAM” 

section, we use laser SLAM to record the real-time pose state of 

the UAV, which can be used as the reference for positioning in 

GNSS-denied environment. In addition to the tasks of take-off 

and landing, the UAV calculates its real-time distance to the 

waypoint goal and flies toward it during the flight. The UAV 

will switch to the next waypoint after reaching the current one, 

until it traverses all the waypoints in the path, thus completes 

the flight task. 

 

3. EXPERIMENTS 

Our path planning and optimization method has been tested in 

three cases: 

 

1. The first case is an indoor scene of low complexity, as 

shown in Figure 5(a). It is a hall where the main obstacles 

are two staircases.  

2. The second case is also an indoor scene but it is of 

higher complexity, as shown in Figure 5(c). It is a whole 

floor of office area, which is divided into several rooms 

and corridors. 

3. The third case is an outdoor scene, as shown in Figure 

5(b). We deliberately left a lot of noise in this case in order 

to test the robustness of our method. 

  

  
 

(a) 

  

 
 

(b) (c) 

Figure 5. Point cloud and planning results of Map 1 (a), Map 2(c) and Map 3 (b). The first row of each sub-figure is the top view of 

its point cloud and planning result, and the second row is the overview of the point cloud from another angle. In the figures of point 

clouds, the point clouds are rendered in height ramp, and the black lines represents the path result. In the figures of planning results, 

the blue lines represent the edges in the connection network, the yellow lines represent the updated path sections, the cyan lines 

represent the collision-free path before optimization, and the green lines represent the finally optimal path.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3/W1-2022 
14th GeoInformation for Disaster Management (Gi4DM 2022), 1–4 November 2022, Beijing, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-3-W1-2022-69-2022 | © Author(s) 2022. CC BY 4.0 License.

 
72



 

It should be noted that there are some blank areas in the original 

point cloud due to the lack of scans. For the safety reason, we 

regard them as impassable and treat them as obstacle grids in 

the map. We performed our planning method after selecting the 

start and end grids in two farthest rooms which locates in the 

diagonal direction on the maps. The planning results are shown 

in Figure 5. For simplicity, we name the grid maps of these 

scenes as Map 1, Map 2 and Map 3. 

 

We implemented the path planning and optimization method in 

MATLAB, after processing the point clouds using Point Cloud 

Library (PCL). The computer configuration is Intel® CoreTM 

i7-6700 3.40GHz CPU with 8GB of RAM. We loaded the 

LiDAR and IMU sensors on the UAV, as shown in Figure 6, 

achieving autonomous navigation and flight. 

 

 

Figure 6. Our UAV with LiDAR and IMU sensors below. 

 

To illustrate the effectiveness and efficiency of our method, we 

use planning time and path length as evaluation metrics. The  

 

planning time is the time for the method to solve a feasible and 

optimal path from the start to the end in the map, including the 

time for initializing connection network, updating, searching 

and optimizing the path. It reflects our improvements in 

planning efficiency. The path length is the length of the finally 

optimal path, which reflects the effectiveness of our path 

optimization method. In addition, due to the randomness of 

sampling in PRM algorithm, we chose several sets of 

representative results for analysis. The experimental results are 

listed in Table 1. 

 

Comparing the planning time under different number of nodes 

and connection distances, as shown in the first row of Figure 7, 

we found that the planning time of the basic PRM method is 

mainly consumed by network initialization, while the time of 

our method is mainly consumed by path section update and 

search. The reason why our method is superior to the basic one 

is that, time consumed by the basic method in network 

initialization increases linearly as the number of nodes increases, 

while the redundancy of the network increases at the same time. 

In our method, on the contrary, connectivity checks are 

performed only when needed. Therefore, time for network 

initialization maintains a steady change, and time for update 

and search is better utilized to expand the path. Although our 

method needs additional path optimization, it has little impact 

on the planning time. As a result, our method can critically 

reduce the planning time in simple scenes and also has 

advantages in complex scenes. Besides, it also shows 

computational efficiency in the presence of noise. 

Node 

num. 

Connection 

distance 

Edge num. Time (basic PRM) Time (ours) 

Good Bad Skipped Updated Init. Search Init. Update Opt. 

Map 1 

30 

0.25 110   93 293 36   0.854 0.013 0.010 0.283 0.201 

0.5 157 275   64   7   2.123 0.014 0.007 0.144 0.160 

1 159 337     0   8   2.440 0.014 0.008 0.163 0.167 

50 

0.25 287 254 785 40   2.234 0.016 0.010 0.363 0.220 

0.5 366 743 217 47   5.217 0.018 0.012 0.364 0.218 

1 371 955     0 48   6.292 0.015 0.012 0.392 0.223 

70 

0.25 552   438 1566 53   4.328 0.021 0.010 0.292 0.281 

0.5 728 1448   380 57 10.540 0.021 0.016 0.321 0.305 

1 749 1807     0 59 12.336 0.024 0.018 0.412 0.308 

Map 2 

75 

0.25 271 1026 1629   843   3.723 0.016 0.011   4.335 0.311 

0.5 294 2232   400 1430   7.961 0.015 0.023   8.105 0.205 

1 297 2629       0 1497   9.805 0.015 0.019   9.274 0.202 

100 

0.25 584 1610 2957   702   6.136 0.019 0.024   3.155 0.295 

0.5 613 3472 1066 1454 12.572 0.018 0.027   8.936 0.403 

1 617 4534       0 1456 19.783 0.021 0.034   9.303 0.400 

125 

0.25 800 2576 4625 1521 10.297 0.018 0.050   7.350 0.301 

0.5 820 5191 1990 3190 19.184 0.020 0.034 20.437 0.292 

1 825 7176       0 3098 25.664 0.019 0.039 20.544 0.196 

Map 3 

30 

0.25 96 103 297 13 0.770 0.019 0.007 0.109 0.215 

0.5 115 341   40 47 1.624 0.019 0.008 0.242 0.258 

1 116 380     0 71 1.763 0.019 0.007 0.456 0.295 

50 

0.25 234 223 869 162 1.619 0.019 0.011 0.935 0.424 

0.5 313 866 147 264 4.286 0.017 0.013 1.233 0.310 

1 314 1012     0 264 4.639 0.015 0.015 1.237 0.307 

70 

0.25 486 497 1573   33 3.341 0.019 0.019 0.162 0.233 

0.5 558 1681   317 108 6.824 0.020 0.017 0.438 0.611 

1 564 1992       0 108 7.451 0.020 0.019 0.435 0.605 

Table 1. Experimental results. 
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Comparing the path lengths obtained under the same number of 

nodes and different connection distances, as shown in the 

second row of Figure 7, we found that the candidate path is 

often not optimal due to the shortage of network edges when the 

connection distance is small, but our method has a good effect 

on shortening its length. With the connection distance 

increasing, the path length of our method gradually approaches 

the path length of the basic PRM. Although our path length may 

be slightly larger than that of the basic PRM, which is because 

we use an incremental search strategy instead of a global one, it 

is still well worth the sacrifice for computational efficiency, 

especially in an unpredictable and dangerous situation after a 

disaster, where we solve a path the sooner the better. 

 

In summary, our path planning method greatly improves the 

computational efficiency compared to the basic PRM method, 

while keeping reasonable length of the result path with 

optimization. Moreover, it also shows a good performance in 

the presence of noise. As a result, our method facilitates 

efficient path planning based on reconstructed scene maps for 

UAV in GNSS-denied environment. 

   

   

           
Figure 7. Visualization analysis of experimental results. The first row is the result of planning time, the second row is the result of 

path length. From left to right are Map 1, Map 2 and Map 3. 

 

4. CONCLUSION AND DISCUSSION 

In this paper, we proposed a method of 3D scene reconstruction 

and path planning for UAV in GNSS-denied environment. Our 

proposed path planning method greatly improves the 

computational efficiency compared to the basic PRM method, 

while our proposed path optimization method ensures 

reasonable path results. The UAV carrying LiDAR and IMU 

sensors, which can reconstruct the disaster site quickly and 

perform autonomous flight and navigation after path planning, 

provides a promising approach for disaster relief and rescue. 

 

Focusing on reconstruction and planning in GNSS-denied 

environment, our method was originally designed for the scale 

of the indoor space of buildings and their outdoor surroundings 

after disasters. It is possible but not recommended that we use 

the method in large-scale situations, since there exists the 

localization drift problem caused by inadequate feature 

matching of SLAM, especially in open and spacious outdoor 

environment. Fortunately, however, it is not difficult to 

integrate GNSS into our method through data fusion techniques. 

In this way, SLAM is used for localization and modeling in key 

areas while GNSS is used for global positioning and correction. 

Thus combining their respective advantages, we can further 

apply our solutions to disaster situations of a much larger scale, 

e.g., earthquakes, wildfires, floods, landslides. 

 

To develop a method for integration of SLAM and GNSS will 

be a major direction for our future work. Besides, we are also 

going to improve the robustness of our method in more complex 

scenes, conduct further research on environment perception and 

try to apply our method to autonomous exploration. 
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