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ABSTRACT:

The development of effective solutions for automated vehicles ensuring high levels of safety in any scenario have to be tested in
many real world conditions. Large datasets describing real user behaviors in many conditions should be collected to this aim. To
this purpose, a quite attractive option is that of using Unmanned Aerial System (UAS) imagery, which can be effectively used to
extract real world driver trajectories, and to extract information of interest concerning both their interactions and the context. This
work aims at providing an assessment of the accuracy of the geometric information that can be extracted on users’ trajectories and
to present a strategy for the estimation of the 3D shape of the involved vehicles. The obtained results show a quite remarkable
performance in terms of ability of determining a proper description of the characteristics of the vehicle trajectories, i.e. speed and

track.

1. INTRODUCTION

The realization of safe and effective solutions for automated
vehicles requires the availability of large real-scenario datasets
in order to properly check and test the implemented methods.
To such aim, the use of Unmanned Aerial System (UAS) im-
agery appears as an attractive option to collect quite long se-
quences of video data, which can be used to extract real world
driver trajectories, to model their behavior and their interactions
(Puri et al., 2007, Khan et al., 2017, Kanistras et al., 2013, Coi-
fman et al., 2006). Automated vehicles shall be appropriately
integrated in real scenarios, hence the availability of the above
mentioned datasets, along with additional information on the
context (e.g. road types, maps, traffic signs), is of remarkable
importance to check via simulation their behavior in a number
of real-like conditions.

Despite some datasets of UAS imagery are already available
for the purpose of properly describing real car user behaviors
(Krajewski et al., 2018, Bock et al., n.d., Krajewski et al., 2020),
the goal of our work is:

e providing an assessment of the reliability of the geometric
information computed by the UAS imagery;

e providing, in addition to the user trajectories, high resolu-
tion geometric information of the test area (e.g. HD maps
(Chiang et al., 2022)) and of the involved vehicles;

e presenting an approach for computing 3D information
from the UAS imagery, in particular for what concerns the
moving vehicles.

In addition to the previous considerations, a real-time analysis
of the UAS imagery could also be used to support position-
ing and navigation in challenging environments (e.g. urban
canyons, GNSS-denied areas, (Masiero et al., 2021a)), if
the obtained solutions are immediately made available to the

* Corresponding author

vehicles, which could be possible for future interconnected
smart vehicles.

This paper focuses on the first and last item of the previous list,
whereas the rest will be considered in our future investigations.

Similarly to (Masiero et al., 2022), this work aims at exploiting
vision tools in order to properly track moving objects/persons
on the ground. In particular, the rationale of the method used
here for determining an initial assessment of the driver traject-
ories is similar to that in (Kurz et al., 2022), i.e. via forward
ray intersection. Nevertheless, this work extends the approach
in (Kurz et al., 2022) by also considering a partial assessment
of the vehicle shape.

Section 2 introduces the case study considered in this pa-
per. Section 3 provides a description of the proposed method:
first, summarizing the implemented approach to determine the
vehicle trajectories, and then providing a more detailed descrip-
tion on a procedure to assess also the 3D shapes of the moving
vehicles from the imagery acquired by the (moving) UAS. Sec-
tion 4 shows the obtained results. Finally, some discussion and
conclusions are drawn in Section 5 and 6.

2. CASE STUDY

This paper presents the results obtained in a portion of the
data acquired within a collaboration between the Joint Research
Center, the University of Florence and the IAG Working Group
4.1.4 (Computer Vision in Navigation), during the SARA pro-
ject test campaign.

A DJI Mini 2 UAS, shown in Fig. 1, was used to acquire the im-
agery to be used to track car positions in a urban environment.

Geodetic GNSS receivers were fixed on the top of the vehicles,
to collect the reference vehicle trajectories. Furthermore, in or-
der to make a proper validation of the vision-based tracking
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method, the GNSS receiver position has been apparently poin-
ted out with a black x-mark on the car ceilings (Fig. 2): this en-
sured the possibility of comparing the reference solutions with
the estimated trajectories on the same points on the cars.

Figure 1. DJI Mini 2 drone.

Figure 2. Car top view: a geodetic GNSS receiver was fixed on
the top of the vehicle, and its position apparently pointed out
with a black x-mark.

3. METHOD

Since mini-UASs are usually provided with navigation systems
able to determine the vehicle geographic position with errors at
meter level, first, a vision-based UAS positioning procedure has
been implemented.

A set of targets, surveyed with geodetic GNSS receivers, have
been distributed over the area of interest. Alternatively, any
other point of known position, easy to be identified in the UAS
images, can be used as landmark.

The UAS camera is assumed to be pre-calibrated (Remondino
and Fraser, 2006, Luhmann et al., 2015, Fraser, 2018, Habib and
Morgan, 2003, Balletti et al., 2014), hence tracking on the UAS
images the above mentioned target positions (for instance with
the Kanade-Lucas-Tomasi feature tracker (Lucas et al., 1981,
Shi and Tomasi, 1994)) allow to determine frame by frame the
camera exterior orientation by spatial resection (Forstner and
Wrobel, 2016, Kraus, 2007, Mikhail et al., 2001).

Furthermore, so long as the UAS moves over all the area of in-
terest while acquiring images, it is well known that in the con-
ditions mentioned above it is possible to obtain, via trinagula-
tion (Mikhail et al., 2001, Hartley and Sturm, 1997), a georefer-
enced 3D reconstruction of the static parts of the scene visible
in the UAS imagery (commercial software can be used to this
aim, e.g. Agisoft Metashape, Pix4D).

Then, as long as a vehicle point is identified on the UAS im-
agery, for instance by determining the vehicle region by means
of background subtraction or by using a deep-learning based
method (Masiero et al., 2021b), its 3D position can be estim-
ated via forward ray intersection (assuming the vehicle height
approximately known, and that a digital terrain model of the
area is available, e.g. obtained via photogrammetric reconstruc-
tion using the UAS imagery).

Since different parts of a vehicle have different heights, the
above mentioned method could be used to determine an initial
approximation, used also in the following to assess the vehicle
motion, whereas the approach reported below is used in order to
determine the 3D positions of the tracked points of the vehicle.

First, it is assumed that the vehicle movements can be model
as a rigid body motion. Let M; be the position of a point on
the vehicle at time ¢, and R;,. and ¢ . the rotation matrix and
the translation vector representing the vehicle orientation and
position (of its centroid, for instance) at time ¢. Then, M; can
be expressed as a function of its original position My at time 0
and of { Ry, t¢,c} as follows:

My = Ry,c Mo + t,c (1

where estimates of R; . and t; . are assumed to be available, as
previously explained.

Then, the following procedure, similar to the Direct Linear
Transformation (DLT) (Hartley and Zisserman, 2003, Abdel-
Aziz et al., 2015), can be used in order to assess My (and con-
sequently the point position during all the time instants when it
has been tracked).

First, without loss of generality assume that the lens distortion
has already been corrected, and hence that the camera can be
modeled as a pinhole camera. Then, the relation between the
measured pixel coordinates (u¢, v¢) and the 3D point M, is:

Ut ~ Mt
=Y @
where ~ stands for an equality up to a scaling factor.

Let p¢,., pt,- and wy,. be defined as it can be derived from the
following:
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then, from (2) and the equation above:

M, M,

wpis | o | =pia| @
1 1
M, M,

vtplg[ n ] :plz{ L } )

Given the similarity of the two equations above, let’s focus just
on the first one, substituting p;': . with p;': cand wy,.:
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ut[PtT,3 wt,3]|:]\ft:|:[p;,1 wt,l][]\ft:| (6)

Then, after some trivial computations:

(UtptT,g—ptT,l)Rt,cMo = (le_Utpz3)tt,c+wt,1_utwt,3 @)

(vepds—pia)Re.cMo = (pio—vep] 3)te,c+we2—uswe s (8)
Finally, let A and b as defined below:

T T
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b= (PtT,l - UtPtT,3)tt,c + we,1 — UrWe,3 (10)
(PtT,z - UthS)tt,c + Wi2 — UrWe,3

Hence, My can be estimated as:

Mo = At (1)

where AT is the pseudo-inverse of A.

Clearly, this method allows to obtain just an approximate value
of My, which could be optimized as the solution of a proper
bundle adjustment step.

4. RESULTS

An initial assessment of the vision-based trajectory estimation
is provided in Fig. 3 for the car in Fig. 2 in a 60 s time interval.
Fig. 3 compares the vision-based estimated trajectory (shown
with blue dot marks) with the GNSS-based reference solution
(yellow line). Table summarizes the characteristics of the posi-
tioning error.

Fig. 4 shows the comparison, on a 30 s interval, between
the vision-based estimated car speed (red dot marks) and the
GNSS-based reference velocity (blue solid line). It is worth to
notice that the two solutions are provided at 5 Hz in the GNSS
case, whereas at 30 Hz in the vision one. Fig. 4 apparently
shows the similarity between the two solutions. The numer-
ical comparison between the assessed speed (in the previously
mentioned 60 s interval) and the reference one leads to a median
error of 0.00 m/s, and a median absolute deviation between the
two of 0.05 m/s. The speed error distribution is shown in Fig. 5.

mg [cm] | Dg [cm] | my [cm] | D, [cm]

5 | 25 | o0 | 30

Table 1. Positioning error (median m and median absolute
deviation D) along = and y directions.
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Figure 3. Assessment of the estimated car trajectory:
comparison of the vision-based estimated trajectory (blue dot
marks) with the GNSS-based reference solution (yellow line).
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Figure 4. Comparison between the vision-based estimated car
speed (red dot marks) and the GNSS-based reference velocity
(blue solid line).

The procedure to determine an approximate vehicle 3D shape
(e.g. the values of My for a set of feature points) is tested
on a synthetic example: 400 points have been sampled from
a LiDAR point cloud of the vehicle and synthetic noisy meas-
urements (affected by Gaussian noise of standard deviation of 3
pixels, on both the x and y image pixel coordinates) were sim-
ulated on 150 frames, with the vehicle moving on a portion of
the trajectory shown in Fig. 3.

Fig. 6 and 7 compare, from two different points of view, the
LiDAR point cloud with the 3D point positions assessed as
described in Section 3, showing a reasonable compatibility
between the shapes of the two clouds.

Finally, Fig. 8 compares (cloud-to-cloud point distance distri-
bution) the LiDAR scan of the vehicle and vision-based point
cloud.
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Figure 5. Speed error distribution.
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Figure 6. Car shape (view 1): (a) LiDAR scan, (b) vision-based
assessment.

5. DISCUSSION

The obtained results show that the driver trajectories can be de-
termined with the proposed method with a median error of few
centimeters (with a variability of the error at few decimeter level
(Table 1)).

In addition to the vehicle location, other parameters character-
izing the vehicle dynamics can be computed, such as the vehicle
speed (half width at half maximum of the speed error distribu-
tion is less than 0.1 m/s, as shown in Fig. 5).

Furthermore, the proposed method to assess the 3D shape of
the vehicle provided quite reasonable results in the considered
synthetic example, with most of vision-based reconstructed 3D
points at less than 5 cm from the LiDAR point cloud, as shown
in Fig. 8. A more in depth investigation on the performance
of the proposed method on real data shall be considered in our
future investigations.

z [m]
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Figure 7. Car shape (view 2): (a) LiDAR scan, (b) vision-based
assessment.
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Figure 8. Comparison of LiDAR scan of the vehicle and
vision-based assessment: cloud-to-cloud point distance
distribution.

Since varying the flight altitude influences the UAS imagery
spatial resolution and the visible area, it shall have a great im-
pact on the obtained level of tracking accuracy and, on the other,
on the number of vehicles visible in the image. Hence, our fu-
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ture works shall also include an analysis of the proposed system
performance variation as a function of the flight altitude.

6. CONCLUSIONS

The results presented in this paper show that mini-UAS imagery
can be quite effectively used in order to track vehicle trajector-
ies in urban environments, and to reliably extract certain in-
formation of interest (e.g. vehicle speeds).

Furthermore, the proposed method for assessing the 3D shape
of the tracked vehicles led to quite satisfactory results in the
considered synthetic example. Nevertheless, a more in-depth
investigation should be carried out on real data.

A more detailed analysis of the obtained results varying the
UAS altitude and the vehicle speed shall also be considered
in our future works, along with an investigation on the main
factors influencing the obtained estimation errors.
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