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ABSTRACT: 
 
The purpose of this research is to develop an approach for a Spatial Decision Support System (SDSS) that integrates Geographic 
Information Systems (GIS), Automated Machine Learning (AutoML), and Hyperparameter Optimization (HPO) to generate 
precision geo-interventions based on standardized geospatial data and user design constraints. The geo-intervention generation 
approach involves three steps: (1) Geo-binning, (2) AutoML, and (3) Prediction Optimization. Geo-binning is used to standardize 
geospatial data into regularized grids as inputs into AutoML models. Prediction optimization generates geo-interventions by applying 
user-design constraints and optimizing AutoML model output to find optimized input variables that form precise geo-interventions. 
An experiment in reducing road traffic collisions using infrastructural changes in Toronto, Ontario, Canada was done to evaluate the 
geo-intervention generation approach. The results of the experiment found that changing the number of schools, red light cameras, 
and transit shelters in high traffic areas could potentially halve the total number of traffic collisions according to a 80 by 80 geo-
binned grid Auto-Sklearn model with a Mean Absolute Error (MAE) of 117.68. It was also found that user design constraints heavily 
affected the prediction optimization step as when the areas were altered to an alternative grid of cells with scarce infrastructure, the 
number of predicted collisions rose by 6127 collisions. Thus, limitations of this study included subjectivity in user design constraints, 
scalability, and interactivity. Future work involves improving modelling/optimization efficiency and developing an interactive 
interface for exploring generated precision geo-interventions. 
 
 

1. INTRODUCTION 

Geo-interventions, actions implemented in geographic space 
that alter specific outcomes (e.g., safe road design for reducing 
traffic collisions and hotspot policing for reducing crime), are 
an effective solution to reducing a large portion of injuries from 
traffic collisions and violent crimes, which typically occur in 
large urban settings. Common approaches (e.g., cluster 
mapping, cellular automata, and multiple criteria decision 
analysis) to modelling and analysing geo-interventions have 
focused on identifying target areas/risk factors and simulating 
scenarios/impacts/theories to support decision-making 
(Malczewski and Rinner, 2015). However, these approaches 
usually model/analyse a range of existing/pre-defined geo-
interventions, as opposed to generating or exploring potentially 
new geo-interventions based on data and user design constraints 
(Mehaffy, 2008). 
 
In addition, common approaches to modelling/analysing geo-
interventions rely heavily on domain expertise (e.g., 
selecting/interpreting models/variables, data processing, and 
model assumptions) and evaluate only a small number of 
alternative geo-interventions (typically ranging from perhaps 3 
to 12 alternatives). With recent advancements in large-scale 
computing and data availability in urban settings, there is huge 
potential to explore hundreds to thousands of alternative urban 
geo-interventions (Li et al., 2016). This reduces the heavy 
reliance on domain expertise by exploring a larger space of 
alternatives with computing power and big urban data, which 
leads to substantially more comprehensive experiments and 
impact evaluations. 
 
AutoML has had great success in using large-scale computing 
and big data to automatically pre-process data, select important 
variables, and discover/compare accurate models across large 
search spaces (He et al., 2021). Hyperparameter Optimization 
(HPO) has also been effective at improving model performance 

in AutoML approaches through the optimization of model 
parameters given constraints such as time, parameter ranges, or 
desired performance criteria (Feurer and Hutter, 2019). 
 
This research proposes an approach for a SDSS that integrates 
AutoML and HPO with GIS to leverage modern advancements 
in computing power and big data availability. Spatial binning, a 
GIS technique, is first used to standardize and aggregate the 
geospatial data into polygonal bins (e.g., cells and hex-grids). 
AutoML is then used to automatically pre-process and generate 
geo-intervention models based on existing geospatial data. HPO 
is finally used to optimize the most performant models from the 
AutoML process under user design constraints (e.g., applicable 
intervention areas, budget/resource constraints, and desired 
impact). In the HPO process, model inputs represent the 
potential geo-interventions (e.g., road width and number of 
traffic speed cameras/schools/police stations), while the outputs 
represent the predicted impacts from the geo-interventions (e.g., 
change in traffic collisions/stabbings/gun violence). By 
optimizing the inputs to the AutoML models, the HPO process 
explores and generates hundreds to thousands of possible geo-
interventions based on the model inputs and outputs 
automatically. These potential geo-interventions are precise – 
locatable to each grid cell based on the spatial binning 
resolution (e.g., grid size), and quantitatively measured as a 
change in specific model inputs for each cell, which can be 
visualized as GIS map layers. 
 

2. METHODS 

The method for generating geo-interventions consist of three 
steps: 
 
(1) Geospatial Binning (Geo-binning) 
(2) Automated Machine Learning (AutoML) 
(3) Prediction Optimization 
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The initial input consists of any geospatial data in a standard 
format read by the geopandas1 Python library. This data is 
standardized into regularized grid cells by binning, and then 
aggregating, the geospatial data and their associated variables 
by each grid cell. This regularized grid is then used as  input for 
the AutoML step, which involves a target variable y (the 
variable to be predicted) and inputs x1 … xn. After building an 
AutoML model with adequate performance, the predictions 
from the model are optimized based on user design constraints 
relevant to a decision-making problem. For example, if there is 
suspicion that red light cameras help reduce the number of 
traffic collisions, the AutoML model would produce predictions 
on the number of traffic collisions in each cell, while the user 
may enforce that only areas without red light cameras and high 
traffic can be changed. Thus, the prediction optimization step 
would try to minimize the number of collisions while 
attempting to determine the number of red light cameras needed 
for each cell to help reduce traffic collisions in the desired areas. 
The overall workflow of the methods in this paper are illustrated 
in Figure 1. 
 

 
Figure 1. Methods for Generating Geo-interventions. 

 

 
1 https://geopandas.org 

2.1 Geospatial Binning (Geo-binning) 

A regularized grid of cells is used to bin and aggregate input 
geospatial data before the AutoML step. This standardizes the 
input data for the AutoML models into each cell of the grid by 
aggregating input geospatial geometries and associated 
variables contained inside each cell. When aggregating 
geometries and variable values, numeric statistics are calculated 
and stored inside each cell. These statistics include the: sum, 
mean, median, min, max, variance, skew, standard deviation, 
standard error of the mean, and mean absolute deviation. 
Geometric data are aggregated for each cell if they intersect 
from applying spatial joins. The aggregation behaviour applied 
is based on the three basic geometry types seen in Table 1. 
 

Geometry Type Aggregation Behaviour 
Point Count points inside cell 
Line Count line objects inside cell; 

Calculate statistics for line 
lengths and sinuosity in cell 

Polygon Count polygon objects inside cell; 
Calculate statistics for polygon 
areas, lengths, and widths in cell 

Table 1. Geo-binning behaviour for geometry types. 
Variables inside each geospatial dataset are assumed to be 
numeric or textual. Given this assumption, the aggregation 
behaviour applied to variable values is based on the two generic 
data types seen in Table 2. When the geometries and variables 
are aggregated into a regularized grid of cells, each cell can be 
seen as a row of data, while the aggregated statistics and counts 
are columns in a standard tabular format. This allows using this 
data for training and testing any model that accepts tabular 
formats. 
 

Data Type Aggregation Behaviour 
Numeric Calculate statistics for variable 

values in cell 
Textual Count unique variable values in cell 

Table 2. Geo-binning behaviour for data types. 
 
2.2 Automated Machine Learning (AutoML) 

After geo-binning the geospatial data into a regularized grid of 
cells where each row represents a cell and each column 
represents aggregated statistics for geometries or variables 
inside each cell, the geo-binned data are used as training data to 
create AutoML models. A target variable y must be specified as 
the variable to be predicted while all other variables x1 … xn are 
considered independent variables used to predict y. The 
modelling problem then becomes yp = f(x1 … xn), where yp is the 
predicted target variable from the model. An appropriate metric 
m(y, yp) representing the performance of the model is then used 
to guide the AutoML process to find the most accurate model 
provided with a time constraint t ≤ tmax. Thus, the user is 
required to only define the target variable y, the metric m (can 
be selected from pre-determined standard metrics), and the 
maximum running time tmax allowed to search for an AutoML 
model. 
 
Two approaches were used in this paper to produce AutoML 
models: (1) A genetic algorithm-based approach called Tree-
Based Pipeline Optimization Tool (TPOT) using the Python 
package tpot and (2) A Bayesian optimization based approach 
called Auto-Sklearn using the Python package autosklearn. 
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TPOT evolves tree-based machine learning pipelines with 
genetic programming to automate variable selection, 
transformation, construction, and model selection and parameter 
optimization (Olson et al., 2016). Auto-Sklearn initiates a 
suggested machine learning pipeline using meta-learning, then 
optimizes this pipeline of data/feature pre-processors and a 
known set of models followed by ensembling these pipelines to 
produce AutoML models (Feurer et al., 2015). For both 
approaches, regression and classification models are both 
available, and no additional manual processing of the geo-
binned grid is required as input to these AutoML models. 
 
In addition to creating AutoML models, permutation importance 
is calculated to interpret the effects of variables in AutoML 
models. Permutation importance measures variables affect the 
model performance if variables are randomly shuffled, which 
indicates how important variables are to any generic model 
(Altmann et al., 2010). The mean permutation importance over 
randomly shuffled runs is used to guide the user design 
constraints for the prediction optimization step, allowing the 
user to select particular variables to generate geo-interventions 
for more important variables that indicate significant areas for 
intervention and geospatial objects that have larger effects on 
the target variable y. 
 
2.3 Prediction Optimization 

After creating an AutoML model, geo-interventions are 
generated by optimizing the predictions and inputs for this 
model. User design constraints related to the filtering of data for 
optimization are used to guide the optimization process, provide 
better initial starting points, and reduce the search space for 
efficiency (Feurer and Hutter, 2019). The user may limit the 
optimization process by only particular variables and to only 
specified cells in the geo-binned grid. These design constraints 
can be guided by the variable importance from the AutoML 
models. For example, the optimization process can be limited to 
the top three most important variables from the permutation 
importance computations using the AutoML models. To further 
this example, grid cells can be limited to priority areas in which 
one or more of the important variable values are much higher or 
lower than the average. After filtering the input variables and 
grid cells for optimization, Bayesian Optimization is used to 
find the optimal input values for each grid cell to maximize or 
minimize an aggregate metric based on the predicted target y 
values (Wu et al., 2019). Since the major consideration and 
constraint often relates to the time allowed for the search, 
Bayesian optimization offers an appropriate approach for 
optimization by using Gaussian processes and previous samples 
to lower the number of iterations and relatively reduce the time 
needed to find more optimal values (Snoek, Larochelle, and 
Adams, 2012). When the optimal aggregated variable inputs and 
associated grid cells are found from the Bayesian Optimization 
approach, the geo-interventions are then a combination of the 
user constrained grid cells with their optimized variable values 
(also constrained by user design). Whether the generated 
intervention is useful is then determined by the AutoML 
performance, user design constraints on chosen variables and 
grid cells, and the predicted outcome determined by the 
optimization metric associated with the target variable target 
variable y. 

3. EXPERIMENTAL EVALUATION 

3.1 Experiment 

Traffic collisions kill over a million people each year and is one 
of the leading causes of premature mortality in urban areas 
(WHO, 2017). There is evidence that infrastructure changes to 
targeted areas aid in reducing a large share of road traffic 
collisions in urbanized areas (Noland, 2003). To evaluate the 
methods mentioned in the previous section, an experiment 
related to reducing traffic collisions with infrastructure-related 
geo-interventions in Toronto, Ontario, Canada was conducted. 
 
The experiment involved generating geo-interventions using a 
variety of publicly available geospatial datasets in Toronto and 
evaluating the effect of important variables related to 
infrastructure (detected from the variable importance during the 
AutoML step) as geo-interventions for reducing road traffic 
collisions. The experiment also used different grid sizes for the 
geo-binning step to observe the effects of changes in scale in 
relation to variable importance and model performance. 
 
3.2 Data 

The study area was Toronto, Ontario, Canada. Datasets were 
downloaded from the City of Toronto Open Data (CTOD) 
Portal2 and Toronto Police Service Public Safety (TPS-PS) Data 
Portal3. A total of 21 datasets with 550 variables (columns) and 
1,140,927 objects (rows) were used to study geo-interventions 
for road traffic collisions in Toronto, ON, which were related to 
transportation (e.g., traffic and red light cameras), infrastructure 
(e.g., police stations, fire hydrants, and schools), and crime. 
Table 1 provides the complete list of the 21 datasets4. 
 

Dataset Cols. Rows Geom. 
centrelines 41 70827 Line 
collisions 18 499538 Point 
traffic 59 226110 Point 
autospeedenforcement 6 100 Point 
watch_your_speed 14 783 Point 
red_light_cams 32 200 Point 
police 6 32 Point 
ambulance 30 46 Point 
fire_hydrants 6 41936 Point 
fire_stations 30 92 Point 
renewables 41 100 Point 
bicycle_parking 20 16998 Point 
transit_shelters 24 5852 Point 
wayfind 21 330 Point 
litter 21 10337 Point 
schools 29 1194 Point 
childcare 19 1038 Point 
art 28 405 Point 
culture 32 895 Point 
religious 45 1407 Point 
crime 28 262707 Point 

Table 3. Data used for Toronto traffic collision experiment. 
 

2 https://open.toronto.ca 
3 https://data.torontopolice.on.ca 
4 https://github.com/rrwen/geogrid-to 
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3.3 Evaluation 

To evaluate the experiment, the experiment data in Table 3 was 
geo-binned to create aggregate variables standardized into 
several regularized grids of cells (namely sets of 10 by 10, 40 
by 40, and 80 by 80 grid of cells). These regularized grids were 
used as input to two AutoML modelling approaches (TPOT and 
Auto-Sklearn) each, which created six AutoML regression 
models (two each for three sets of regularized grid cells). One of 
the six AutoML models was selected based on the Mean 
Absolute Error (MAE) to be used for the prediction 
optimization step. 
 
For the AutoML step, the metric used for guiding the TPOT 
AutoML models was negative mean squared error, which 
allows TPOT to minimize the metric or error when building 
machine-learning pipelines (Wang, Bovik, 2009). The metric 
used for guiding Auto-Sklearn models was the coefficient of 
determination R-squared (R2) (Cameron, Windmeijer, 1997) 
which allows Auto-Sklearn to measure the performance of each 
ensembled machine-learning pipeline. Each AutoML model was 
given one minute of running time to search for the best 
performing model, where each final model (six total) was 
compared and measured with the MAE (Chai, Draxler, 2014) to 
determine the model used for the prediction optimization step. 
Along with the selected model, grid cells were selected for 
optimization based on the most important variable. The most 
important variable was measured by the highest mean 
permutation importance from the selected AutoML model over 
10 randomized runs. 
 
One model was selected out of the six AutoML models to be 
used for the prediction optimization step. During the prediction 
optimization step, scenarios were optimized by minimizing the 
predicted total number of road traffic collisions to generate geo-
interventions. Two scenarios were selected based on the 
variable importance (from permutation importance calculations) 
to evaluate the simulated effects of the generated geo-
interventions. Feasible variables for geo-interventions were 
manually selected by sorting the variable importance from high 
to low and observing the list from top to bottom to find three 
infrastructure-related variables for optimization. In one 
scenario, grid cells selected for intervention were based on the 
most important variable, where areas with higher than the 
average value for the most important variable are selected as 
cells for optimization. In another scenario, grid cells with lower 
than average values for each of the three selected feasible 
variables were chosen as cells for optimization. The differences 
between the original values and predicted values for each of the 
three variables for each cell represented the generated geo-
interventions, while the difference of total road traffic collisions 
between the original values and predicted values provided the 
predicted change from applying the geo-interventions. 
 

 
Figure 2. MAE for AutoML models in experiment. 

4. RESULTS 

The geo-binning step created three sets of regularized grids (10 
by 10, 40 by 40, and 80 by 80) for aggregating the 21 datasets 
in the study area of Toronto, Ontario, Canada. The 550 
variables and associated geometries from the data were 
aggregated into each grid cell to calculate 1417 aggregate 
variables (columns). The 10 by 10, 40 by 40, and 80 by 80 grids 
have 100, 1600, and 6400 cells (rows), respectively. 
 
The 10 by 10, 40 by 40, and 80 by 80 grids were fed into TPOT 
and Auto-Sklearn models to produce six models (two for each 
grid set). The MAE for each model is shown in Figure 2, where 
the first part of the model name indicates the AutoML approach 
and the second part after the underscore indicates the grid size 
(e.g., TPOT model for a 10 by 10 grid input is tpot_10, and 
Auto-Sklearn for a 80 by 80 grid input is autosklearn_80). The 
Auto-Sklearn AutoML model for a 80 by 80 grid had the best 
performance (lowest MAE at 117.68), while the TPOT AutoML 
model for a 10 by 10 grid had the worst performance (highest 
MAE at 630.08). The most important variable across all models 
was the total traffic (traffic_count) followed by infrastructure 
related variables for schools, red light cameras, and transit 
shelters as shown in Figure 3, while the most important variable 
for the 80 by 80 models was total right-turning westbound car 
traffic (traffic_wb_cars_r_sum) as shown in Figure 4. 
 
The top three most important infrastructure-related variables 
were schools (school_counts), red light cameras 
(red_light_cams_count), and transit shelters 
(transit_shelter_counts). These three variables were fed into the 
prediction optimization step using the 80 by 80 Auto-Sklearn 
model (model with lowest MAE). In Scenario 1, grid cells for 
optimization were filtered to only cells with higher than average 
traffic for a total of 1860 cells (or parameters for optimization). 
In Scenario 2, grid cells for optimization were filtered to cells 
with lower than average schools, red light cameras, and transit 
shelters respectively for each of the three variables for a total of 
17,328 cells. Bayesian optimization was used with 10 iterations 
to optimize the three most important infrastructure-related 
variables to minimize the predicted total number of road traffic 
collisions for each scenario. The generated geo-intervention for 
Scenario 1 in Figure 5 was predicted to reduce the total number 
of road traffic collisions by 202,522 collisions from the 
recorded 429,630 original collisions, while the generated geo-
intervention for Scenario 2 was predicted to increase (see Figure 
6). The total number of road traffic collisions by 6127 
collisions. 
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Figure 3. Top 20 important variables across models. 

 

Figure 4. Top 20 important variables from 80 by 80 models. 
 

 
Figure 5. Scenario 1 generated geo-intervention. 

 

Figure 6. Scenario 2 generated geo-intervention. 
 

5. DISCUSSION 

Observing the results reveals that the user-design constraints 
and decisions have a heavy influence on the prediction 
optimization step, particularly under low time constraints (10 
Bayesian Optimization iterations in this case). Both scenarios 
used the same three most important infrastructure-related 
variables (namely schools_count, red_light_cams_count, and 
transit_shelters_count), but Scenario 2 with the grid cells in 
scarce infrastructure areas was much noisier and resulted in an 
increase in total predicted road traffic collisions rather than a 
decrease. In comparison, Scenario 1 had much lower grid cells 
with more focused areas of intervention, which resulted in a 
predicted outcome of approximately halving the total number of 
collisions. Another note is that the variable importance 
computed from permutation importance during the AutoML 
modelling step helped focus the optimization process on 
particularly influential variables and guided the grid cell 
filtering constraints made by the user. This is especially helpful 
in cases where there are a large number of variables and a large 
number of grid cells. The choice of grid cell dimensions during 
the geo-binning step is also important, as lower resolution grids 
(e.g., 10 by 10 grid) resulted in AutoML models with much 
higher MAE scores of above 400 versus higher resolution grids 
(e.g., 80 by 80) resulted in models with MAE scores below 400. 
 
Limitations to this research includes subjectivity in user design 
constraints, scalability, and interactivity. Although the geo-
binning, AutoML, and the optimization process are largely 
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automatic, user design constraints are reliant on the user and 
empirical experimentation, which heavily influence the 
generated geo-intervention outcomes. Related to user design 
subjectivity are scalability and interactivity. Depending on the 
data size and resources available, the major restriction becomes 
time needed for building models, calculating variable 
importance, and optimizing predictions, which require a more 
iterative approach to explore variables and different user design 
constraints to find appropriate running times and optimization 
constraints (Jiang, Liu, and Chen, 2019). Future work may be 
studying distributed computing related to the AutoML and 
optimization processes, and developing an interactive graphical 
interface for exploring user design constraints and generated 
geo-interventions that balance efficiency with performance. 
 

6. CONCLUSION 

This research proposed an approach for a SDSS that integrated 
AutoML and HPO with GIS to leverage modern advancements 
in computing power and big data availability. The geo-
intervention generation approach involved three steps of geo-
binning, AutoML modelling, and prediction optimization. Geo-
binning standardized tabular point, line, and polygon geospatial 
data into regularized grid cells with aggregated variables. 
AutoML then takes these regularized grids and modelled a 
target variable representing the geo-intervention outcomes 
desired. This step also produced variable importance that helped 
provide insight on the effects of important variables relative to 
the AutoML model, which helped guide the user to define better 
design constraints in the next step. Finally, the prediction 
optimization step used the AutoML model and user design 
constraints (selection of important variables and grid cells to 
optimize) to generate precision geo-interventions in which the 
predicted outcome is desirable. The geo-intervention generation 
approach was evaluated with an experiment focused on 
reducing road traffic collisions with infrastructure changes in 
Toronto, Ontario, Canada. A total of 22 datasets with 1,140,927 
geospatial objects and 550 variables were geo-binned into 
several grid cells of 10 by 10, 40 by 40, and 100 by 100, where 
each grid had a total of 1417 aggregate variables. Six AutoML 
models were produced (two for each set of three grids). The top 
three most important infrastructure variables from the best 
performing model (80 by 80 Auto-Sklearn model) with an MAE 
of 117.68 were used in the prediction optimization step to 
generate two geo-interventions. The geo-intervention for 
Scenario 1 was targeted in high traffic areas and predicted to 
reduce the total road traffic collisions by approximately a half, 
while the geo-intervention for Scenario 2 was noisy and more 
randomly spread out and was predicted increased the total road 
traffic collisions by over 6000. From experimental observations, 
limitations included subjectivity in user constraints, scalability, 
and interactivity. Although precision geo-interventions were 
generated with AutoML and cover a much larger range of 
considerations and possibilities from big data and high 
computation, future work to improve efficiency in 
modelling/optimization processes and user exploration is 
essential to build user trust, and to help users explore more 
optimal geo-interventions. 
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