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ABSTRACT:

Gross primary productivity (GPP) is an essential indicator of vegetation growth that reflects ecosystem function. GPP is the original
source of energy entering cropland ecosystem and thus could serve as a direct indicator of crop yield. In the context of increasing
population, changing climate, and decreasing available resources, accurate monitoring and forecasting of food and crop yields play
an essential role in sustainable human development. In this study, the process-based Farquhar GPP model (FGM) driven by multi-
source remote sensing data was implemented to estimate the spatial and temporal dynamics of GPP in crop-growing areas of the
North China Plain from 2001 to 2016. We found that the GPP of crops in the North China Plain is relatively high in the southern
provinces while lower in the northern part. The GPP values showed a significant increasing trend from 2001 to 2016 (+2.19 Mt C yr'!,
P<0.05). Based on crop yield statistical yearbook, we found that GPP is well correlated with crop yield (R?>=0.98, RMSE = 10.4 Mt
yr'). Thus, we constructed an empirical regression model between GPP and crop yield (i.e., ‘GPP-yield’ empirical model). Finally,
time-series GPP data and the ‘ GPP-yield” model were applied the crop yield in the North China Plain with spatial and temporal
continuity. We found that the crop yield in the North China Plain changed in accordance with GPP, and also showed a significant
increasing trend from 2001 to 2016, with a mean increasing rate of +2.84 Mt yr!' (P<0.05, R?>=0.16, RMSE = 31.73 Mt yr'). This

study proved an example of large-scale crop yield estimation using multi-source remote sensing data.

1. INTRODUCTION

Gross Primary Productivity (GPP) is defined as the total amount
of organic carbon fixed by green plants through photosynthesis
per unit of time and land area (Zhang et al, 2021). GPP plays a
pivotal role in the global carbon cycle (Chen et al, 2021). GPP
indicates the total amount of energy entering the terrestrial
ecosystem to support animal consumption and human lives.
Thus, crop productivity is a crucial indicator of food production,
while the production of crops is highly dependent on climatic
conditions. Therefore, quantitative estimation of primary crop
productivity and driving force analysis are crucial for
understanding the growth state of crops and their changes.

China's grain production is mainly concentrated in four regions:
East China, Northeast China, Central China, and the North
China Plain. The North China Plain has deep and fertile soils,
and the main grain crops are wheat, rice, and corn. The North
China Plain accounts for 13.66% of Chinese grain production
and is one of the significant grain-growing areas in China.
Therefore, it is important to estimate the productivity of crops in
the North China Plain.

With the development of remote sensing technology, numerous
vegetation productivity models have been proposed by scholars
and continuously improved in order to stimulate regional or
global crop productivity. These models can be broadly
classified into three categories: empirical models, light use
efficiency (LUE) models, and photosynthetic process-based
models.

First, the empirical models are generally based on regression
relationships between vegetation index and crop biomass, which
is simple in form and widely adopted. For example, Anup K.
Prasad et al. (2006) conducted crop yield assessment and
prediction based on 19 years records of Normalized Difference
Vegetation Index (NDVI), soil moisture, surface temperature,
and rainfall data in Iowa, USA. Zhao et al. (2011) used the
validated and corrected the MODIS GPP product to estimate the
total GPP of winter wheat in the North China Plain during the
2010 growing season. Wang (2020) used MODIS enhanced
vegetation index (EVI) data and auxiliary data for estimating
winter wheat yield. However, the common drawback of these
studies is that empirical models are often too empirical and lack
mechanisms behind photosynthesis.

The second type is the LUE model. LUE models are most
widely used because of the simple structure and physical basis.
For example, Tao et al. (2005) used the CASA model and GLO-
PEM2 model to estimate maize yield in China. Huang (2020)
used the CASA light energy utilization model to simulate the
spatial and temporal variation of total primary productivity of
vegetation in the North China Plain over the past 19 years.
However, the mechanistic expression of LUE models is still
lacking, and the input variables for LUE models are generally
limited to solar radiation, leaf area index, and environmental
factors (such as temperature, and humidity). However, in the
context of continuous rising atmospheric CO> concentration and
global climate change, LUE model rarely considers changes in
ambient CO; concentration, which could lead to substantial
uncertainties in GPP estimations.
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The third category are the process-based models, such as BEPS
and FGM. Wang et al. (2009) improved the BEPS (Boreal
Ecosystem Productivity Simulator) model to estimate winter
wheat yield using remote sensing mechanistic models. Ji et al.
(2021) simulated the gross primary productivity (GPP) and net
primary productivity (NPP) of Chinese Moso bamboo forests
from 2001-2018 using the BEPS model, a northern hemisphere
ecosystem productivity simulator. Chen et al. (2021)
implemented a large-scale canopy photosynthetic capacity
model, the remote sensing-driving Farquhar GPP Model (FGM).
The FGM combines the Farquhar model, the two-leaf model,
and the radiative transfer process model to estimate GPP using
multi-source remote sensing data. The FGM model overcomes
the shortcomings of the current photosynthesis rate estimation
process model with a complex structure, numerous parameters,
and great computational effort. Process-based models provide
an avenue to improve GPP estimation and thus crop yield
estimation at a large-scale. However, the current domestic and
international productivity studies are mainly focused on the
effects of land use change and vegetation cover change on GPP.
Studies of continuous crop yield estimation over long periods in
North China Plain using process-based models are still lacking.

In this study, the process-based GPP model (i.e., FGM) was
used to estimate the total primary productivity (GPP) of
croplands in the North China Plain by combining long time
series of multi-source remote sensing data, meteorological data
and atmospheric CO; concentration observations. We
hypothesized that GPP is well correlated with field
measurements of crop production. Specifically, we address two
scientific questions: (1) Can we build a reliable ‘GPP-yield’
model for crop yield estimation based on crop yield data
obtained from the statistical yearbook? (2) How did GPP and
crop yield change in the North China Plain from 2001 to 2016?
This study helps us better understand the relationship between
GPP and crop yield.

2. MATERIALS AND METHODS
2.1 Study area

The study area from northeast to southwest includes the Brigade
area in the south of Liaodong Peninsula, Tianjin, Beijing, and
all of Shandong Province; most of Henan Province, Hebei
Province, Shanxi Province, and Shaanxi Province; and eastern
and southern Gansu Province and northern Jiangsu and northern
Anhui (Figure 1).

The area has a continental climate except for the coastal areas.
The average elevation of the study area is about 200m with an
average annual temperature between 9 °C and 15 °C. The
average temperature of the coldest month ranges from 0.7 to
10.7 °C. The annual precipitation in the region ranges from 440
to 980 mm, with most areas around 200 mm. The distribution of
precipitation between different seasons is uneven. The
precipitation mostly happened in summer, especially in July and
August. The major crop types grown in our study area mainly
include winter wheat, summer corn, summer soybean, and
spring corn.

2.2 Dataset

2.2.1 Remote sensing data

This study used the yearly MODIS land use land cover (LULC)
data (i.e., MCD12Q1) with a temporal resolution of 1 year and a
spatial resolution of 500 m. The data were resampled to a target
spatial resolution of lkm wusing the nearest neighbor
interpolation method. The GLASS leaf area index (LAI) and
downward shortwave radiation (DSR) products were
downloaded from the website (http://glass-
product.bnu.edu.cn/index.html). The GLASS LAI product is
produced based on the generalized regression neural networks
(GRNNs) method wusing pre-processed long-time series
MODIS/AVHRR reflectance data, with a spatial resolution of 1
km and a temporal resolution of 8 days. The DSR data is
retrieved from the spectral reflectance of the MODIS top-of-
atmosphere (TOA), with a temporal resolution of 1 day and a
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Figure 1. The distribution of land cover types in the study areas.
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spatial resolution of 5 km. The DSR data was eventually
sampled to a spatial resolution of 1 km using a bilinear
interpolation method.

2.2.2 Crop yield data

The yield of crops in the North China Plain from 2001-2016
was obtained from the grain production data statistical yearbook
platform (https://www.yearbookchina.com/index.aspx).

Crop productivity is a crucial indicator of grain production, and
quantitative estimation of primary crop yield under climate
change and land use change, which is essential for human
surviving. Based on the Origin platform, we conducted a linear
regression of crop GPP and crop yield of each province in the
study area from 2001 to 2006. Then, we built a "GPP-yield"
regression model for estimating crop yield from GPP across the
North China Plain and analyzed the correlation between GPP
and yield using Pearson's correlation coefficient. The regression
model and Pearson correlation coefficient was calculated as
follows:

= o+ 1 + (D
And
(=) =)
= L 2
-2 L0-
where ¢ and jare coefficients, is the random error. is the

total number of samples sampled at the time of analysis, and
are the data values of two variables, and are the mean of
the sample data for each of the two variables.

2.3 Farquhar GPP Model (FGM)

The Farquhar GPP Model (FGM) is based on the Farquhar
photosynthetic model, which is the key component to estimate
leaf photosynthesis rate in most terrestrial ecosystem models. In
order to upscale leaf photosynthesis rate to canopy scale, FGM
synthesizes the two-leaf model with the canopy radiative
transfer model. By improving the basic framework of the model
of Song et al. (2009), Chen et al., (2021) introduces the equation
of the relationship between leaf cell CO» concentration and
atmospheric CO; concentration proposed by Medlyn et al.
(2012) to improve model calculation efficiency in solving leaf
photosynthesis rate. A new model for GPP estimation based on
photosynthetic processes, namely FGM, is proposed, which is
more suitable for large-scale GPP estimation and dramatically
improves the model’s computational efficiency.

The two-leaf model (Chen et al., 1999; Pury and Farquhar,
1997 ) divides canopy leaves into sunlit and shaded leaves The
photosynthetic active radiation (PAR) absorbed by sunlit and
shaded leaves and the photosynthetic rate of sunlit and shaded
leaves were estimated separately. The total GPP of the entire
canopy is the weighted summation of GPP using the respective
LAI ratios for sunlit and shaded leaves:

= + (3)

where A, is the net photosynthetic rate of the entire canopy (i.e.,
GPP); Aguniit and Aghadeg are the net photosynthetic rates of a
unit light and shaded leaf, respectively; LAlgpi¢ is the leaf area
index of sunlit leaves, and LAlghageq is the leaf area index of
shaded leaves, respectively, which can be calculated as:

O @
And

= - ®)

where L is the total area of the canopy. The light extinction
coefficient ( ( )) is a function of solar zenith angle and
expressed as follow:

_ 2+ 2
()= ©

where 0, is the solar zenith angle. We assumed x equals one
with a spherical leaf angle distribution assumption.

Solar radiation is the ultimate energy source for photosynthesis.
Thus, simulation of the radiation transport process within the
canopy is the basis for GPP estimation. The total radiation
absorbed by sunlit leaves comes from three components. The
first part includes the direct radiation that is absorbed when it
first reaches the sunlit canopies. The second part is the diffuse
sky light collides with the leaves. The third part is the scattered
light that is absorbed after the first hit. In contrast, the total
radiation absorbed by the shaded leaves is only composed of the
latter two scattered radiation mentioned above. The following
formula can be used to estimate solar radiation hitting sunlit and
shaded leaves:

() ()°+ + @

And
()= + ®)

where Kp(0,) is the extinction coefficient for beam light; 1° is
the direct solar light received at the top of the canopy, Jgjs is the
mean flux density of diffuse radiation, and lg, is the average
direct light downward scattered radiant flux density of the
canopy.

The FGM model introduces the clumping index () to
ameliorate the effect of overestimating GPP using the Beer’s
law. The FGM model also introduces VPD and a fitting
parameter to express the relationship between internal leaf CO»
concentration and atmospheric CO; concentration. The model
framework of Song et al. (2009) is improved to allow direct
calculation of photosynthetic rates in vegetation canopies when
combined with the appealed two-leaf model and the radiation
transfer model. In this study, we uesd the FGM process model
to estimate the GPP of crops in the North China Plain by
combining long time series of multi-source remote sensing data,
meteorological data, and atmospheric CO: concentration
monitoring data.
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3. RESULTS
3.1 Changes in land cover and vegetation structure

Land use and land cover change (LULCC) could cause changes
in LAI simultaneously. Thus, the impacts of land cover change

on GPP are generally combined with LAI change effect on GPP.

We refer to the total effect of LULCC and changes in LAI on
GPP as the vegetation structure change effect, which is also
considered as one of the essential drivers of the FGM model. In
this study, we calculated land use transition matrix for the study
area using MODIS LULC data in 2001 and 2016 (Figure 2a).
The results showed that the primary vegetation type in the North
China Plain was cropland from 2001 to 2016, but the cropland
area in this study area decreased from 2001 to 2016. Of the area
reduced by crops, 1.64% of croplands were converted to shrubs,
1.38% of croplands were converted to grassland, 0.65% of
croplands were converted to urban land, and 0.11% of croplands
were converted to forests.

(a) Land cover transition matrix over the North China Plain
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Figure 2. (a) is Land cover transition matrix over the North
China Plain (b) is interannual trends of LAI in the North China
Plain and (c) is a spatial distribution of average LAI in the
North China Plain from 2001 to 2016 (The redder part of the
figure indicates a lower LAI value. The greener part indicates a
higher LAI value).

LAI is a biophysical parameter indicating leaf abundance in
canopies. In this study, we statistically analyzed the GLASS
LAI products. The results showed that the annual average LAI
increased by 0.0039 m? m yr'! (R>=0.20, p<0.05) during 2001
to 2016 (Figure 2b). The LAI of the North China Plain cropland
area decreased continuously from 2007 to 2011. The spatial
trend distribution of LAI was shown in Figure 2c. The LAI of
the province in the southern part is higher than that in the north.
For example, the Henan Province, Anhui Province, Jiangsu
Province, and Shandong Province are greener than other
provinces.

3.2 Spatial and temporal distribution of crop GPP in the
North China Plain

In this study, we estimated the GPP in the North China Plain
crop growing areas from 2001 to 2016 using the FGM process
model. The annual total GPP showed a significant increasing
trend from 2001-2016, with a mean increasing rate of +2.19 Mt
C yr! (P<0.05). The mean annual total GPP for the cropland
was 670.57 Mt C yr! during 2001 to 2016 (Figure 3). The
maximum value of crop GPP occurred in 2015 (703.06 Mt C yr
1), and the minimum value occurred in 2003 (618.62 Mt C yr).
The total GPP of crops in the North China Plain from 2001 to
2007 showed an increasing trend, while the total GPP of crops
from 2007 to 2011 showed a significant(P<0.05) decreasing
trend.
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Figure 3. The interannual variations in GPP from 2001 to 2016.

The spatial distribution of GPP followed the same spatial
pattern of LAI with large spatial variability (Figure 4). The GPP
for southern part of the North China Plain was larger than that
of the northern province. Low LAI mainly occurred in Beijing,
Tianjin, and the southern coastal area of Liaoning, with GPP
mean values of 3.65 Mt C yr!, 5.59 Mt C yr'!, and 8.19 Mt C yr-
!, respectively. High LAI mainly occurred in the south part of
Henan Province, most of Shandong Province, and northern
Anhui Province; and the corresponding mean annual total GPP
was 154.78 Mt C yr'!, 140.17 Mt C yr'!, and 91.58 Mt C yr'!,
respectively.
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Figure 4. The spatial distribution of cropland GPP in the North China Plain.

3.3 Crop yield estimation in the North China Plain

3.3.1 Empirical ‘GPP-Yield’ regression model

The results showed that changes in annual total GPP could
explain 99.2% of the variation in grain production (RMSE =
10.4 Mt C yr'!) (Figure 5). GPP and crop yield showed a strong
positive linear regression relationship, which means that crop
yield increases with GPP since the original source of grain
production is GPP.
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Figure 5. Regression plot of GPP and Grain yield.

3.3.2 Spatial and temporal variation of crop yield in the
North China Plain

Finally, we calculated the crop yields from FGM GPP using the
"GPP-yield" model (Figure 5). The results showed that the crop
yields in the North China Plain fluctuate in accordance with
GPP, and also showed a significant increasing trend from 2001
to 2016, with a mean increasing rate of +2.84 Mt yr'! (Figure
6a). The maximum value of crop yield occurred in 2015 (913.07
Mt), and the minimum value occurred in 2003 (803.4 Mt). High
crop yields occurred in Henan Province (>2000 Mt yr!),

720

|
~n

\

N

*®

S
T

640

Total GPP (Mt C)
N
D
(=]

y=2.19x+651.99

R™=0.163
620 RMSE=24.44
600 1 1 1 1 1 1 1 1
2000 2002 2004 2006 2008 2010 2012 2014 2016
Year
I“f"l’. I1II)°F. I1:"\“F ll[‘}c'l-' Ili"l-‘
(b) Crop yield -

‘.; ;
T
40°N

40°N
f

35°N
'
T
35°N

[ Provinee
crop yield (M)
[ <00
4] 7 100-500
I 5001000
I 1000-2000
o 1 3
I 2000

105°E

30°N
T
30°N

680 KM

110°E 115°E 120°E 125°E

Figure 6. (a) is inter-annual variation trend of crop yield in the
North China Plain from 2001 to 2016. (b) shows the spatial
distribution of mean annual total crop yields in the North China
Plain from 2001 to 2016.

Shandong Province (1000 to 2000 Mt yr'), and northern
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Jiangsu Province (1000 to 2000 Mt yr'). The areas with lower
crop yields were mainly located in Beijing (<100 Mt yr),
Tianjin (<100 Mt yr'), and some coastal areas of Liaoning
(<100 Mt yr'!) (Figure 6b), due to rapidly urbanizing progress in
the last twenty years and a relatively small share of arable land.
The spatial and temporal pattern of crop yield agreed with that
of GPP estimated by the FGM model.

4. DISCUSSION AND CONCLUSIONS

By applying a process-based GPP model, multi-source remote
sensing data, and the grain production data statistical yearbook,
this study achieves the goal of estimating the spatial and
temporal dynamics of the crop productivity and crop yield in the
North China Plain from 2001 to 2016, with a spatial resolution
of 1 km and temporal resolution of 1 day.

The FGM model effectively estimated crop GPP in the North
China Plain. Crop GPP in the North China Plain shows a
fluctuating increasing trend from 2001 to 2016 (+2.19 Mt C yr'!,
P<0.05), and the total annual average GPP is about 670.75+
24.98 Mt C yr''. The GPP of the North China Plain shows an
overall increasing trend from the north to the south, with large
spatial variability. The crop productivity is low in Beijing-
Tianjin and coastal areas, while high in the southern part of
Henan Province, Shandong Province, and Jiangsu Province.

The correlation between crop productivity and crop yield in the
North China Plain is robust, with a determination coefficient of
R? = 0.98 (RMSE = 10.4 Mt yr'!"). Therefore, GPP can be used
to estimate the crop yield effectively and to analyze its spatial
and temporal distribution scientifically. The spatio-temporal
distribution pattern of crop yield and GPP in the North China
Plain is highly consistent. Meanwhile, the crop yield in the
North China Plain also showed a significant increasing trend
during 2001 to 2016 (+2.84 Mt yr! P<0.05), with a mean
annual total crop yield of about 870.87 + 32.44 Mt yr'!'. Crop
yield is low in Beijing and Tianjin, mainly because of the rapid
economic development and high urbanization level, with limited
portion of agricultural land. The southern regions had relative
high yields due to larger proportions of agricultural lands, with
slower urbanization levels. In addition, the southern regions
have favorable climatic and soil conditions for crop growth.

It is interesting to note that the productivity and yield of crops
in North China have been rising during this study period, but
the crop area appears to be decreasing. This may be due to the
advancement of farming technologies that have led to the rise in
food production, for example, irrigation and long-term
fertilization (Zhang et al, 2021). In addition, climate change and
the fertilization effect of CO, may also lead to an increase in
crop productivity (Zhang et al, 2021). This needs to be
improved in further research.

This research can provide research data for large-scale crop
production estimation and help us better understand how crop
yield changes under climate change.
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